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Abstract

Consumer goods are mainly produced in multiple steps through a long
process. These steps are often done by separate, independent production
nodes (enterprises), linked by supply chains. The networks of enterprises—
where members have their own objectives and act in an autonomous, rational
way to reach their goals—can be naturally modeled by agent-based method-
ology. The inner structure of each enterprise is similar in the sense that it
contains separated planning functions (e.g., production-, inventory-, capac-
ity planning). While the operation inside an enterprise can be controlled
centrally, the interaction between the nodes could be synchronized only by
negotiation and coordination. Coordination can be based on protocols which
regulate information, material and financial flows alike. In this paper we ex-
pose an agent-based organizational model of production networks and suggest
some planning algorithms which can handle the uncertainty of demand. In
addition, we outline the first results of our ongoing research, an analysis of the
asymmetric information case and an appropriate coordination mechanism.
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1 Introduction

Nowadays, customers of consumer goods are more demanding than ever and man-
ufacturing must fulfill their needs to remain competitive. Naturally, there exist
several manufacturing paradigms to answer the existing challenges all with their
own advantages and disadvantages [16]. The craft production—whose golden age
was before the 20th century—allows large variety of products, but requires compli-
cated, time-consuming processes, which are also expensive. Mass production—the
main paradigm in the 20th century—achieves higher efficiency with standardized
products, exploiting economies of scale and (semi-)automated processes, but gives
up the wide product scale. In the last few decades the new paradigm of mass
customization has arisen, which tries to combine the advantages of the previous
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two approaches by offering a larger variety of products made of standardized com-
ponents with mass production technology and delayed differentiation. As it has
turned out, while this new paradigm solves some of the problems, it also poses new
questions.

Satisfying demand directly from production is impossible, because production
and supply lead-times are much larger than the acceptable delivery times for the
customers, and, in addition, manufacturers should also exploit the economies of
scale. Therefore holding inventories is necessary, which can only be based on fluc-
tuating, uncertain forecasts. Unfortunately, the use of some non-standardizable
components (e.g., customized packaging materials) is necessary, which leads to ob-
solete inventory when the demand for the customized product suddenly ceases.
Hence, this phenomenon called run-out causes both significant financial losses for
the manufacturers and waste of environmental resources.

Consumer goods are mainly produced in a long process of multiple steps, which
are often carried out by separate, independent and rational production enterprises,
linked by supply chains. This decentralization leads to suboptimal overall system
performance called double marginalization [19].

The goal of our research is to improve the efficiency of production networks as
a whole. In order to do this, we have first developed a multiagent model of the
networks and the various planning functions within the enterprises. These func-
tions cover all kinds of decision making that influence and control the future, thus
it is substantial to examine and describe them in detail. Then we have analyzed
industrial databases and found that component inventory levels have often been
inappropriate—either too high or low. These levels are set by the supply processes
that connect planning functions of different enterprises. Hence, we have introduced
some new models and optimization algorithms which align to the new market con-
ditions. While these models assume a centralized decision maker who possesses all
relevant information, in a real network this is not the case. The solutions of these
algorithms provide only lower bounds on the total cost in case of a decentralized
network with asymmetric information. Hence, our aim is to design and develop
such channel coordination mechanisms that achieve or approximate the outcome
of theoretically optimal decisions even if the partners decide locally, by relying on
incomplete (asymmetric) and uncertain information. In the end, we are going to
turn our multiagent model into a simulation which will include the implemented
planning algorithms in order to verify them on real industrial data.

The goal of this paper is, on one hand, to expose the results of these research
steps. On the other hand, we present recent results of our related work in a unified
framework that is based on the agent-based design metaphor. As we will show
in the sequel, taking the agent-based approach helps a lot in clarifying complex
and often blurred organizational relations and constructing an appropriate orga-
nizational model. Though the transformation of this model into an agent-based
simulation model is far from being straightforward, still it is the best way towards
validating and verifying the outcomes of our research.

The motivation of this work comes from a large-scale national industrial-
academical R&D project aimed at realizing real-time, cooperative enterprises. The
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participating industrial partners form a complete focal network: a central assembly
plant with several external and internal suppliers. The assembler produces alto-
gether several million units per week from a mix of thousands of products. The
ratio of the customization follows the 80/20 Pareto-principle: they give 80% of the
product spectrum, but only 20% of the volume. The setup costs are significant
and since customized products are consumed slower, their smaller lot sizes involve
higher average setup costs. Service level requirements are extremely high: some
retailers suddenly demand products in large quantities even within 24 hours, and
if the request is not fulfilled on time, they cancel the order (i.e., backorders are not
possible). This causes not only lost sales, but also decrease of goodwill.

2 Related work

Business process and supply chain modeling research has produced several method-
ologies in the last decades (e.g., CIMOSA, IDEF0, EPC, SCOR) [22]. These ap-
proaches, however, provide tools only for modeling and analyzing the processes
and do not support decision making. A uniform model of inter-enterprise planning
functions and their hierarchical layout in a matrix is described in [17]. The impor-
tance of the role-based modeling approach of collaborative networks is emphasized
in [25]. Recently, several efforts have been made towards integrating modeling and
optimization, e.g., an object-oriented approach is presented in [1].

From the viewpoint of production networks, there are basically two types of
research utilizing agent-based concepts and methods: (i) the general approach han-
dles supply chain management as a problem of designing and operating a multiagent
system and (ii) the other kind focuses on specific problems, such as collaborative
inventory management, bidding decision, material handling and inventory planning
in warehouses. The majority of the literature has been focusing on the general ap-
plication of agent-based supply chain management. The rich variety of multiagent
approaches clearly shows the application potential of agent technology. By now,
there is a common understanding that various requirements of networked manufac-
turing can really be met by autonomous, embodied, communicative and eventually
cooperative agents operating in a society.

Still, according to our recent survey, the number of deployed multi-agent sys-
tems that are already running in real industrial environments is surprisingly small:
even in the “ideal” field of supply chain management, only half a dozen applications
can be found that are deployed in everyday use [13]. Other reviews also concluded
with the observation that no significant advancement had been made yet in trans-
ferring agent technology to industry [12, 15]. This, relatively slow transfer has
manifold reasons. First, the introduction of agents, in principle, does not reduce
the complexity of problems. Next, interoperability is expensive. Just due to the
increased communication overhead, the performance of a multiagent system can
degrade and especially rough-grained systems (consisting of sophisticated agents)
can hardly be scaled up. Although the agent metaphor is useful in system de-
sign, and there are also several methodologies to support agent-oriented software
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engineering, industrial-strength support is still missing. Finally, in the behavior
of a multiagent system there is always an element of emergence which can be a
serious barrier to the practical acceptance of agent-based solutions. Industry needs
safeguards against unpredictable behavior and guarantee regarding reliability and
operational performance.

In order to bridge this gap between theory and practice, we put emphasis on the
elaboration of network coordination models that have analytically provable proper-
ties and, at the same time, efficient solution techniques. In a production network,
it is logistics that essentially links the various partners. Hence, our coordination
models have been derived from models of logistics and inventory planning.

The history of inventory planning is almost hundred years old and the most
important models were born in the 1950s. Nevertheless, because of the changing
market conditions, the research in this area is still ongoing. The related idea of
coordination mechanisms has also attained interest in the recent years [10]. This
research can be classified along two dimensions: (i) the nature of the demand is
either deterministic or stochastic, and (ii) the decision structure is either centralized
or decentralized. From the four possible combinations the decentralized stochastic
one is the most complex, hence the literature of this case is scattered. Existing
research approaches are mostly based on the results of game theory and economy
with asymmetric information. The risk of obsolete inventory and its placement is
studied considering different types of contracts in [2].

3 Multiagent organizational model

We have decided to model a production network and the planning functions within
an enterprise as a multiagent system and this decision needs explanation, because
there already exist widely used methodologies for this purpose [22]. While these
modeling tools can describe the high-level structure and processes of enterprises,
they cannot be further detailed and do not directly support neither the elaboration
of planning algorithms, nor the estimation of their computational complexity, nor
the software implementation. On the contrary, agent-oriented methodology offers
(i) a design metaphor for complex systems, (ii) technologies for handling interac-
tions and (iii) simulation tools alike [11].

For studying the situation, we have used the Gaia methodology, which is a
specification framework for analyzing and designing the organizational model of
multiagent systems [24]. This methodology helps to identify and separate different
roles in the planning structure of an enterprise, which are in real life sometimes
mixed and overlapping.

Gaia deals with two aspects of the modeled system: the abstract viewpoint helps
to conceptualize and analyze the organization, while the concrete viewpoint is used
during the design phase to model entities which will be realized in the run-time
system. So far we have taken only the high-level analytic approach, but as a future
direction, we will continue detailing the model and use it as a basis for multiagent
simulation.
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The analytic part of Gaia consists of two models: roles and interactions. Since
an organization is considered a collection of roles, the main challenge is to distin-
guish different roles, describe them and define their interactions. A role can have
a set of permissions, which are rights associated with the role—typically these are
read/create/modify permissions to certain shared information resources. In addi-
tion, a role has some responsibilities: there are liveness properties which declare
what the role must do and safety properties which are invariants stating situations
to be avoided. Liveness properties, which resemble regular expressions, consist of
activities, which are autonomous computations, and protocols, which are interac-
tions between roles. We have extended the roles model with the description of
optimization objectives what we have found essential in planning functions.

The evolution of planning functions in production management, and recently in
supply chain management, resulted in a planning hierarchy [17] that we adopt to
our modeling purpose. This so-called planning matrix shows long-term, medium-
term and short-term planning functions organized along the main flow of materials.
These functions are common at each node of a production network, though, of
course, manifest themselves in different forms and complexity. We have described
all functions of the matrix as Gaia roles [4]; an example can be seen in Figure 1.

Role Schema: SupplyPlanner

Description:
This role ensures the necessary raw materials for the manufacturer by creat-
ing medium-term material requirement plan, ordering and maintaining the
raw product inventory.

Protocols and Activities:
Order, CustomerForecast, Call-off, Transport, Exception,
CreateMaterialRequirementPlan

Permissions:
reads forecasts

plannedOrders

schedule

technologicalData

changes rawProductInventoryLevels

Responsibilities

Liveness:
SupplyPlanner = (CreateMaterialRequirementPlan . [Order] . [Call-off] .

([CustomerForecast])p ‖ (Exception | Transport)ω

Safety:
– execution of the schedule must not stop because of material shortage

Objectives:

– minimal raw product inventory level
– minimal obsolete raw product inventory

Figure 1: An example role description in Gaia.
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The protocols of the roles can be further detailed in the interaction model of
Gaia. While most interactions inside an enterprise are realized via Enterprise Re-
source Planning (ERP) systems, the inter-enterprise interactions should be precisely
regulated according to some protocols. Examples of such interactions—namely fore-
cast sharing and ordering—can be seen in Figure 2, which contains two instances
of the planning matrix. In the following, we concentrate on the planning functions
directly related to these interactions.
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Master planning

Supply

planning
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Scheduling

Distribution
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Order
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Figure 2: Interactions between enterprises.

4 Uncertainty and planning

While the golden age of inventory research was in the 1950s, the recently changed
market conditions have induced paradigm change and the need for new models
[3]. In order to remain competitive on global markets, today’s production must be
customer-oriented, which means that customer demand must be satisfied at high
service level with short lead-times. These main requirements—which are speci-
fied by the long-term strategic management—must be achieved on lower levels by
the tactical and operational management, which need new models and tools for
optimization.

The strategic decisions are out of the scope of this research; we take their
results given. I.e., we depart from an existing network structure and specified
high-level goals. The tactical and operational decisions, in turn, can be detached:
the medium-term (planning) level is responsible for the cost-efficient production by
aggregating production into batches, while the short-term (scheduling) level—where
the precise demand is known—cares for the service level requirements. Our models
presented below are dealing with planning decisions, but we have also developed a
framework for coordinating the two levels [5, 6].

As it was previously mentioned, the production is based on uncertain finished
good forecast, which can be prepared using several statistical methods [8] and
therefore the uncertainty can be expressed in terms of standard deviation. Unfor-
tunately, this information is usually distorted by human factors [7]. In addition,
when the production is planned in medium term, the uncertainty information dis-
appears or is transformed to safety stock margins, because most practical planning
systems cannot handle stochastic problems. The result of the planning process is
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a discrete plan of production quantities, respecting the capacity and technological
constraints. This is also regarded as the basis of the “component usage forecast”
and the economic purchase plan can be determined from this component forecast
using appropriate lot-sizing methods. This metamorphosis of demand-related in-
formation is illustrated in Figure 3.

Finished good forecast Production plan Purchase plan

Figure 3: The distortion of demand-related information.

The general inventory planning problem can be briefly characterized in the
following way: there exists a medium-term planning horizon with an uncertain
demand. We regard the component demand derived from the production plan,
since supply must be aligned to production instead of the finished good sales.
Components should be produced in large batches in order to decrease the setup
cost, but this comes together with an increase of inventory levels and of expected
obsolete inventory costs. While searching for the optimal trade-off, the constraint
of avoiding shortage must be respected.

4.1 Modeling uncertainty

Typically, the operational managers have no models and decision support tools for
handling the inventory risk, therefore they usually use ad-hoc rules-of-thumb based
on historical statistics—which is sometimes referred to as “driving by the rear-view
mirror”.

The stochastic inventory models developed using theoretical approaches are
rarely used in the practice because of their complexity and lack of data. Instead,
deterministic demand is assumed and reconsidered from time to time, which is
called rolling-horizon planning [21]. We have extended this practical approach
by introducing a single parameter, the weekly probability of run-out (p), which
reflects the stability of the products and components. It can be assigned either to
components or groups, based on market information, as well as on historical data.

Nevertheless, this information about probability cannot be explicitly found in
existing enterprise data warehouses and determining it can be costly and time-
consuming. Therefore we have proposed to use our planning methods with different
run-out parameters in parallel. From these scenarios it can be estimated how robust
is the solution, i.e., how much it depends on the changes of the run-out parameter.
If the robustness is low, then the automatically generated plan must be reviewed
by human experts or a more precise parameter value is required.
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There are two fundamentally different situations according to the information
available: (i) the fact of the run-out and its date are known in advance and (ii)
run-out can occur with a certain probability, but no further details are known.
In the first case, the standard Wagner – Whitin (WW) method [23] can be used,
which plans the whole horizon and tells in which periods to produce and how much.
Nevertheless, this approach can lead to an inappropriate solution when the horizon
is too short: it suggests producing in one lot and disregards the possibility of a
larger demand, which causes inefficient additional production. Therefore, if WW
proposes producing in one lot, one should switch to a more appropriate method:
the so-called newsvendor model for one-period. But this first case is exceptional,
usually run-out is not known in advance. For this case, we have developed two
heuristics and a modified version of WW what we present below.

4.2 One-period model

The inventory systems of perishable goods are usually modeled as one-period deci-
sion problems: the decision maker has to determine the value of a variable q, then
a cost of c(q, ξ) arises, where ξ is a random variable with known distribution. The
risk neutral decision maker wishes to minimize the expected cost. In the context of
inventories, this model is called the newsvendor model, since it describes well the
inventory management problems of the daily newspaper markets [8].

In such a case, overplanning leads to obsolete inventory, while underplanning
may lead to costly additional setups. The standard model disregards the setup
cost. It only considers per unit left over cost—if the demand is below the pro-
duced quantity—and per unit shortage cost (it may be interpreted as producing in
overtime)—if the demand is above. However, if the inventory is filled by manufac-
turing instead of ordering, then the setup cost must be included in the calculation.

In our model [6], service level has the highest priority, hence it follows that
the manufacturer has to satisfy all demand. If the produced quantity is below the
actual demand, it can only be satisfied by an emergency production which also
involves an additional setup. Thus, our model involves four types of costs: (i) the
certain setup cost (cs), (ii) the production cost for satisfying actual demand (cp per
item), (iii) the expected value of obsolete left over products (with cp per unit left
over cost) and (iv) the expected cost of additional setup. Then the expected total
cost becomes:

E[TC(q)] = cs + cpE[ξ] + cpE[max(q − ξ, 0)] + csE[δ(ξ − q)], (1)

where q is the produced quantity, ξ is the random demand and

δ(ξ − q) =

{

0 if ξ − q ≤ 0
1 if ξ − q > 0

(2)

In order to minimize the expected total cost, we have to compute the derivative
of the cost function, which ought to be zero:

dE[TC(q)]

dq
= cpΦ(q) − csφ(q), (3)
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where φ and Φ are the density and distribution functions of the demand respectively.
Here, usually normal distribution is considered, despite of its disadvantages [18].

Since this expression cannot be inverted in the general case as in the standard
model, we apply the so-called logistic distribution with parameters b and m, which
is often used instead of the normal distribution when longer tail is more appropriate.
This yields the unique stationary point—which is a minimum—if b < cs

cp

:

q∗ = m − b ln

(

bcp

cs − bcp

)

(4)

This optimal lot size gives a balance between the risk of obsolete inventory and the
additional setup. It can be both more or less than the expectation value, depending
on the variance and the cost parameters (see also Section 6).

4.3 Multi-period models

The more remote a forecast is, the more uncertain it is—this reasonable hypothesis
was confirmed by our analysis of historical industrial data. Based on this observa-
tion, our first idea was to disregard the less trusted remote forecasts and plan only
the starting segment of the horizon. Therefore we have developed two heuristic
methods, which minimize the expected average cost—both per time unit and per
piece—in the first segment of the horizon [20]. As it has turned out, the heuris-
tics have several disadvantages: (i) they cannot estimate the number of setups on
the horizon, (ii) disregarding a part of the available information can lead to sig-
nificant inefficiency and (iii) they sometimes behave unreasonably: increasing the
probability of run-out can cause higher lot size, see Figure 4.

10 12 14 16 18 20 22

x

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

C
A

p = 0.18

p = 0.15

Figure 4: Anomaly of heuristics.

The lines show average costs in case of different run-out probabilities. If p =
0.15, producing the demand of 17 time units would minimize the average cost,
while the higher p suggests 22 time units. According to our experiments, such
anomalies occur rarely, and when run-out probability is relatively high (p > 0.13).
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Note that such anomalies are known in the field of operations management; see e.g.,
nervousness in the widely used Material Requirements Planning (MRP) method,
when a decrease in the demand leads to an infeasible situation [8].

Hence, our conclusion was that planning the whole horizon is necessary, there-
fore we have decided to use the Wagner – Whitin model ([23]) extended with the
probability of run-out, which we abbreviate as WWr [5]. The main elements of this
model are as follows: length of the horizon (n), forecasted demand (F1, . . . , Fn),
setup cost (cs), inventory holding cost per piece per time unit (h), production cost
per piece (cp) and the probability of run-out in an arbitrary time unit (p). The
decision variables are the production quantities in the time units throughout the
whole horizon (x0, . . . , xn−1). We assume infinite capacity and introduce a one-
period lead-time. In this setting, the Wagner – Whitin property remains valid: it is
optimal not to produce, unless the inventory would become empty otherwise. The
planned lot sizes can be determined by a dynamic programming algorithm briefly
summarized below.

If we produce in time unit t for the period { t+1, . . . , t+j }, this implies that (i)
the expected inventory at the beginning of time unit t+1 is zero (Wagner – Whitin
property) and (ii) the product has not run out until the beginning of time unit t

(which has a probability (1−p)t). Then the expected storage cost at time unit t+ i

is

SC(t, j, i) = (1 − p)ih

(

j
∑

k=i+1

Ft+k +
Ft+i

2

)

(5)

and the cost of expected obsolete inventory is

OC(t, j, i) = p(1 − p)i−1cp

j
∑

k=i

Ft+k, (6)

which expresses that with probability (1−p)i the product is still saleable, therefore
storage cost must be paid, and with probability p(1− p)i−1 it runs out in the very
time unit and the remaining inventory becomes obsolete. The expected total cost
of period { t + 1, . . . , t + j } is therefore

Ctj = cs +

j
∑

i=1

(SC(t, j, i) + OC(t, j, i)) . (7)

The optimal total cost for period { t, . . . , n } (TCt) can be computed by the following
recursion:

TCn = 0 (8)

TCt = min
j∈{ 1,... n−t }

{

Ctj + (1 − p)jTCt+j

}

. (9)

Note that (1− p)j is the probability of the event that the product has not run out
and further production is necessary.

With a backward induction, the optimal lot sizes and the expected number
of setups can be also obtained from the optimal j values in the recursion. This
provides an O(n2) algorithm, which is practically acceptable.
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5 Asymmetric information

In a real network, no central planner exists with all required information, as it
was assumed in Section 4.1. In a two-echelon supply chain system, the supplier
is familiar with the production and setup cost for the components, while the end
manufacturer can have a good estimate of the finished good demand. In this case,
the so-called first-best solutions of the presented algorithms provide only lower
bounds for the achievable expected total cost.

Our goal is to design a coordination mechanism which helps the partners to
reach (or approximate) the results of the first-best solutions. At first, we have
concentrated on the one-period newsvendor problem. Extending this research to
the multi-period case is part of future work.

In the decentralized newsvendor setting, the production cost (cp), the setup
cost (cs) are the parameters known by the supplier, while the end manufacturer
knows only the demand-related information (m and b). We assume that the lot
size decision is made by the supplier—who can schedule its own production—and
it also holds the inventory. For being able to do this, the end manufacturer signals
the demand information towards the supplier. This information can be distorted—
e.g., the mean can be inflated in order to decrease the risk of shortage—therefore
we denote these parameters with m′ and b′. Note that if there is no distortion
(i.e., m′ = m and b′ = b) and this is a common knowledge, supplier is facing the
problem presented in Section 4.2 with all required information, therefore its rational
lot sizing decision is also optimal on the system level.

This is a conflict of interests: while the optimal network performance requires
truthful information sharing, the manufacturer can be better off by distorting the
information. This conflict can be resolved by an appropriate payment function
which aligns the objective of the manufacturer with that of the supply chain: it
guarantees that the expected payment will be minimal, if the end manufacturer
signals the truth and does not distort forecast information.

In this situation, the supplier takes all inventory risks, therefore the end manu-
facturer has to pay for the service of flexibility besides paying for the components.
Hence, payment consists of (i) the price of the delivered components, (ii) compen-
sation for the deviation from the forecast and (iii) compensation for the forecast
uncertainty. Therefore the payment function becomes:

P (m′, b′, ξ) = c0ξ +
c1

b′
d(m′, ξ) + c2(b

′), (10)

where c0 and c1 are constants: the unit prices for required components and in-
appropriate demand estimation, respectively. The term d(m′, ξ) is the difference
between the estimated and the realized demand and c2(b

′) is the compensation for
uncertainty. Note that the payment depends only on commonly known parameters.
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A possible choice for measuring the deviation from the forecast is the quadratic
difference function: d(m′, ξ) = (m′ − ξ)2. For this case we have proven that, if

the uncertainty compensation is c2(b
′) = c1

π2

3
b′, the payment function inspires the

rational manufacturer to signal the real m and b values to minimize the payment.
Since the income depends only on the demand, minimal payment also maximizes
the profit of the manufacturer.

6 Experiments

All presented algorithms were implemented—together with the safety stock calcula-
tion—and tested both on generated and real industrial data in several scenarios. We
have studied how the uncertainty influences the optimal lot sizes and the expected
costs. We have also simulated the inventory levels according to our models, based
on industrial information of past demand. Some of these results are presented
below.

An example result of the newsvendor model can be found in Figure 5: the
proposed lot sizes vary with the relative deviation of the estimated demand and
are compared with the forecast. Note that the solution can be both more or less
than the forecast, depending on the uncertainty and cost parameters. Nevertheless,
the curve is smooth, i.e., proposed quantities do not fluctuate with high frequency.
The intuitive explanation of the shape of the curve is as follows: if there was no
uncertainty, optimal lot size would equal to the demand. When the uncertainty
increases, it is better to increase the lot size in order to avoid the additional setup.
However, when the uncertainty reaches a certain threshold, the expected cost of
obsolete inventory equals the expected cost of the additional setup, therefore the
optimal lot size starts to decrease.
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Figure 5: Results of the newsvendor model.

In Figure 6, the results of the two heuristics (ACx minimizes the average cost
for a time unit, while ACq minimizes the average cost of an item) and the WWr are
shown considering different run-out parameters. As mentioned before, WWr can
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estimate the number of setups on the horizon, therefore these are also indicated.
The results were also compared with the lot sizing decision made by human experts.
The conclusion of several months of weekly consultations with industrial partners
was that, in around 90% of the cases, WWr with probability parameter p = 0.02
proposed automatically almost the same lot size as the human planners—apart from
the rounding. In the remaining cases the planners had additional information—
received via phone or e-mail—which was not stored in the data warehouse, therefore
it was not visible to us.
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Figure 6: Results of the multi-period models.

The algorithms were also included into a pilot decision support application,
which is now under testing in industrial environment.

Finally, we have started to develop a multiagent inventory simulation system
in Repast [14]. The structure of the system follows the model presented in Section
3, while the internal decision making of the agents is based on the algorithms of
Section 4. The stochastic data can be obtained from two sources:

• for random number generation we use the Colt package included in Repast,
which was developed for high performance scientific and technical computing
by CERN, and

• we can query real forecast and demand data from industrial databases via
direct database access (JDBC).

The simulation runs are evaluated using several common indices, such as total cost,
number of setups, average inventory level, service level, etc. An example interface
of the system can be seen in Figure 7.
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Figure 7: Inventory simulation system in Repast.

7 Future work

The presented multi-period inventory planning models consider infinite capacity
and therefore they can be solved efficiently. However, in the real world, capacities
are often limited, and in addition, setup costs are not independent of the production
sequences. This makes the problem much more difficult: it is proven to be NP-hard.
The exact solution of such problems—even with efficient specialized algorithms—is
achievable only on relatively small instances [9]. Therefore numerous approximation
algorithms and heuristics are applied, which provide quasi-optimal solutions for
some special cases. One possible future work is to combine our model with these
solution concepts.

So far, we have considered only the one-period case of the asymmetric informa-
tion. Naturally, we will continue the research in the case of longer horizons. We
would also like to improve our agent-based simulation system so that it supports
more complex analysis of the problems.
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