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Synthesising Robust Schedules for Minimum

Disruption Repair Using Linear Programming

Dávid Hanák∗, Nagarajan Kandasamy†

Abstract

An off-line scheduling algorithm considers resource, precedence, and syn-
chronisation requirements of a task graph, and generates a schedule guaran-
teeing its timing requirements. This schedule must, however, be executed in
a dynamic and unpredictable operating environment where resources may fail
and tasks may execute longer than expected. To accommodate such execu-
tion uncertainties, this paper addresses the synthesis of robust task schedules
using a slack-based approach and proposes a solution using integer linear pro-
gramming (ILP). Earlier we formulated a time slot based ILP model whose
solutions maximise the temporal flexibility of the overall task schedule. In
this paper, we propose an improved, interval based model, compare it to
the former, and evaluate both on a set of random scenarios using two public
domain ILP solvers and a proprietary SAT/ILP mixed solver.

Keywords: scheduling, integer linear programming, robustness, slack, re-
source failure

1 Introduction

Scheduling plays a crucial role in manufacturing and service industries where com-
panies must sequence their activities (or tasks) appropriately to meet customer
deadlines. An off-line scheduling strategy considers resource, precedence, and syn-
chronisation requirements of tasks, and generates a static schedule satisfying task
timing constraints [2]. This schedule executes in a dynamic and unpredictable oper-
ating environment where critical resources may fail, tasks may execute longer than
expected, or certain new tasks may need urgent processing. Consequently, the task
schedule must accommodate such execution uncertainties.
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In this paper we address the synthesis of robust task schedules using a slack-
based approach. In [11] we developed a method to construct schedules where in-
dividual tasks retain some temporal flexibility in the form of slack while satisfying
their timing requirements. As opposed to reactive methods [7,16,19], which recover
from the disruption as it happens, our method was proactive, i.e. it constructed a
schedule that could absorb some disruptions without the need for rescheduling. In
previously proposed proactive methods, like [4] and [9], a given amount of slack had
been added to the tasks to accommodate expected repair times prior to schedul-
ing. This had resulted in an increased make-span of the entire schedule. On the
other hand, our method assumed that the tasks had explicit deadline and resource
requirements. The goal was then to maximise the slack of each task such that the
resulting schedule satisfied all the temporal constraints and the flexibility was max-
imal according to a given cost function. We proposed an Integer Linear Program-
ming (ILP) model of the scheduling problem, and evaluated it using two different
ILP solvers. In this paper, we advance our method by introducing an improved
ILP model that performs better on larger problems. We also get a third kind of
ILP solver involved in the evaluation of the new model, and compare the evaluation
results with those of the first model.

We begin the discussion in Sect. 2 with a brief introduction of the background
and preliminary assumptions. Section 3 summarises the first, slot based ILP model
formulated in [11] and introduces the second, interval based model. We also show
how the new model can incorporate additional forms of temporal constraints. Sec-
tion 4 evaluates the performance of both models and compares the evaluation met-
rics. We conclude the paper with a discussion of future work in Sect. 5.

2 Preliminaries

This section introduces the application domain, then goes on to discuss the task
model, sources of slack in a task schedule, and the slack distribution algorithm.

2.1 Application Domain

A research group of the Institute for Software Integrated Systems (ISIS) at Vander-
bilt University in Nashville had been participating in the Autonomous Negotiating
Teams (ANT) project [1, 17] of the Defense Advanced Research Projects Agency
(DARPA) for several years, in cooperation with the Information Sciences Institute
(ISI) at the University of Southern California in Los Angeles. The deliverable re-
sult of the research was the prototype of a software tool to aid the scheduling of
flight missions and regular maintenance of Harrier aircraft in a U.S. Marine Corps
squadron.

A considerable part of the effort was the development of the core scheduling
engine for maintenance tasks, which has been solved by implementing a finite do-
main constraint scheduler in Mozart-Oz [18]. This approach relies on a group of
propagators which act independently on a shared set of variables with finite in-
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Figure 1: An example task graph G with an overall deadline of 17 seconds

teger domains [20], which, however, due to the independence of the propagators,
can sometimes lead to inconveniently deep but solutionless subtrees in the search
tree of the entire problem. This in turn can produce an unpredictable behaviour,
where the scheduling engine produces a solution in a matter of seconds for one
problem, but enters into a unacceptably long and fruitless search for another. This
problem is a current issue in the field of constraint programming and it has been
addressed by various research efforts [3, 15]. Our response to the problem was the
attempt introduced in this paper to replace the domain of finite domain constraint
programming with integer linear programming, which is perhaps more reliable in
this respect. A further advantage of the approach is that it gives us an anytime
algorithm [5] “for free”.

2.2 Modelling Assumptions

Figure 1 shows a directed acyclic graph G modelling task interaction. Tasks are non-
preemptive and have resource, precedence, and synchronisation requirements. The
graph comprises vertices and edges representing tasks and precedence constraints,
respectively. Each vertex is labelled Ti/ci, where Ti is a task and ci its estimated
execution time in appropriate time units (seconds in this example). We denote
the precedence constraint between tasks Ti and Tj in the graph by Ti → Tj . Tasks
without predecessors are called entry tasks and tasks having no successors are called
exit tasks. We also assume that each task Ti requires a set of resources Ri = {Rm}
for its execution where Rm denotes a resource of type m. Also, for each resource
Rm, its available capacity at a given t point in time is given by cap(Rm, t).
Scheduling is a mapping of tasks to resources such that the specified precedence
and deadline constraints are satisfied. The desired result is a feasible schedule
specifying the start times (also referred to as release times) for each task Ti. It is
also necessary to introduce some slack in this schedule to improve its robustness
to execution uncertainties. In many cases, the necessary slack may be obtained by
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appropriately dividing up the entire available time frame (i.e. the interval between
the overall start and deadline time, 0 s resp. 17 s in the example) among the tasks.

Assume that tasks T0 and T1 start at 0 s, and that G must meet a deadline
of 17 seconds, i.e. T8 and T9 must finish before 17 s. Note, however, that the
longest path T0T2T4T6T8 through G is only 7 s long. This implies that a slack of
17 − 7 = 10 s can be distributed to tasks along that path to retain some temporal
flexibility during their scheduling. We now discuss a method aimed at distributing
G’s overall slack among tasks such that the slack added to each intermediate task
is maximised. This process results in a scheduling range [ ri, di) for each Ti where
ri and di denote the earliest release time and latest deadline, respectively.

2.3 Slack Distribution

Initially, only entry and exit tasks having no predecessors and successors, respec-
tively, have their release times and deadlines fixed. In the slack distribution prob-
lem, the overall graph time frame must be distributed over each intermediate task
such that all tasks can be feasibly scheduled on their respective resources. Slack
distribution is NP-complete and various heuristics have been proposed to solve it.
We use the approach proposed in [6] to maximise the slack added to each task in
graph G while still satisfying its deadline D. The heuristic is simple, and for general
task graphs, its performance compares favourably with other heuristics [12].

As part of the slack distribution, entry and exit tasks in the graph are first as-
signed release times and deadlines respectively. A path pathq through G comprises
one or more tasks {Ti}; the slack available for distribution to these tasks is:

slackq = Dq −
∑

i : Ti∈pathq

ci (1)

where Dq is the length of the time frame of pathq (i.e. the difference between the
deadline and the release time of the path) and ci is the execution time of task Ti

along this path. The distribution heuristic in [6] maximises the minimum slack
added to each Ti along pathq by dividing slackq equally among tasks. During each
iteration through G, a non-extensible path pathq is chosen such that slackq/nq is
minimal, where nq denotes the number of tasks along pathq. Then the correspond-
ing slack is added to each task along that path. The deadlines (release times) of
the predecessors (successors) of tasks belonging to pathq are updated. Tasks along
pathq are then removed from the original graph, and the above process is repeated
until all tasks are assigned release times and deadlines.

The graph in Fig. 1 is used to illustrate the above procedure. First, we select
the path T0T2T4T6T8 shown in boldface in Fig. 2(a); the total execution time of
tasks along this path is 7 s, and as per the heuristic, a slack of (17 − 7)/5 = 2 s
is distributed to each task. Once their release times and deadlines are fixed, these
tasks are removed from the graph. Then path T1T3T5 and finally path T7T9 is
chosen, as shown in Figs. 2(b) and 2(c), respectively. In the former case, a slack
of ⌊(13 − 5)/3⌋ = 2 s is added to each task. Our algorithm leaves any remaining
slack (2 s in Fig. 2(b)) unexploited, although it could be distributed to tasks with
longer execution times to allocate the relative slack more evenly.
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Figure 2: Steps corresponding to the the deadline assignment algorithm in [6]; the
selected paths are shown as bold edges

3 ILP Model Formulation

In this section we first describe the part of the scheduling problem that remains
after the slack distribution finishes, and present how it can be formulated as an ILP
model. Two different formulations are shown, one where a contiguous sequence of
uniform length time slots is assigned to each task, and another where one of a set
of possible predetermined intervals is chosen for each task.

3.1 Interval Allocation

Once tasks are assigned deadlines, each Ti has a scheduling range given by [ ri, di).
However, to generate a feasible mapping of tasks to a limited number of resources,
these scheduling ranges must be reduced appropriately to account for resource
contention during task execution; we adapt concepts from interval scheduling [8] to
solve this problem.

The scheduling range for Ti is first decomposed into a number of possibly over-
lapping intervals {Iij}. Each Iij , corresponding to the jth possible scheduling
interval for Ti is such that:

Iij = [ rij , dij) where ri ≤ rij ≤ di − ci and ri + ci ≤ dij ≤ di. (2)

Iij is also assigned a weight

wij =
dij − rij − ci

dij − rij
(3)

denoting the scheduling flexibility within that interval in terms of available relative
slack.

Robust schedule generation can now be formulated as an interval selection prob-
lem where exactly one scheduling interval for each task must be selected such
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that (i) at any point in the schedule, the overlapping task intervals do not con-
sume more than the number of available resources and (ii) the sum of the interval
weights is maximised.

3.2 Slot Based Approach

In [11], we proposed an ILP model using uniform length time slots, where the
solution of a problem is an assignment of a contiguous set of slots to each task,
such that the task can be executed in those slots without violating any of the
constraints. The interval selection described above appears in this model only
indirectly, since an interval is implicitly determined by the set of contiguous slots
selected for the task. The model is shown on Fig. 3, and can be explained as follows.
A boolean variable xit corresponds to each task-slot pair, such that a specific task
is scheduled to run in a particular slot if and only if the corresponding variable
is assigned the value 1 in the solution. It is also necessary to introduce a set of
auxiliary variables yik, such that yik is 1 if and only if the total number of slots (viz.
the length of the scheduling interval) assigned to task Ti is exactly k. These values
are used in the objective function to mask out the predetermined interval length
weights.1 The constraints ensure that resource capacities are not exceeded (4), that
the intervals selected by the slot variables are contiguous to ensure non-preemptive
execution (5), that tasks are not executed outside their scheduling ranges (6), and
that the generated interval lengths are long enough to accommodate the tasks (7).
Equations (8) and (9) describe the connection between the appropriate xit and yik

variables.
The major weakness of this approach is hidden in (5), the constraint which

ensures that the scheduling intervals assigned to the tasks are contiguous. This
involves moving a simple convolution window over the entire scheduling range and
ensuring that there is not more than one 0-to-1 transition. Unfortunately, this is a
nonlinear requirement, thus the number of ILP inequalities it can be expressed with
is quadratic in the average size of the scheduling ranges, totalling approximately∑

i(di−ri)
2. Another difficult and inefficient detail of the model is the cost function,

which cannot be expressed directly in terms of the slot variables, but requires the
introduction of a large number of auxiliary variables, precisely

∑
i(di − ri − ci)

many.

3.3 Interval Selectors

To circumvent the shortcomings of the slot based model, the number of equations
was reduced at the cost of increasing the number of variables, in the hope that the
ILP solvers can cope better with the latter than the former. In the new model,
a boolean variable was assigned to each selectable scheduling interval of each task
defined in (2). A solution is an assignment of 0/1 values to these variables, such

1Weights must be calculated in advance and “hardwired” into the model, because as long as
they are nonlinear in terms of interval length, they cannot be expressed explicitly in a linear

model.
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Index sets and constant parameters:

L := {i | i is the index of task Ti}

R := {R1, R2, . . . } set of cumulative resources

Ri := {Ri1, Ri2, . . . } ⊆ R, i ∈ L set of resources used by task Ti

Ki := {ci, ci + 1, . . . , (di − ri)}, i ∈ L interval lengths for Ti

wik := (k − ci)/k, i ∈ L, k ∈ Ki weight of interval of length k for Ti

Variables:

xit =

(
1 if interval for Ti occupies slot t

0 otherwise
i ∈ L, −1∗ ≤ t ≤ D

yik =

(
1 if interval of length k is selected for Ti

0 otherwise
i ∈ L, k ∈ Ki

Maximise
X
i∈L

X
k∈Ki

yikwik subject to the following constraints:

Resource availability:

∀Rm ∈ R, ∀ 0 ≤ t ≤ D :
X

i ∈{i | Rm∈Ri}

xit ≤ cap(Rm, t) (4)

Interval contiguity:

∀i ∈ L,∀t ∈ {ri − 1, . . . , di − 4}, ∀l ∈ {t + 2, . . . , di − 2} :

xit+1 − xit + xil+1 − xil < 2 (5)

Interval length:

∀i ∈ L,∀t ∈ {−1∗ . . . , ri − 1, di, . . . , D} : xit = 0 (6)

∀i ∈ L :
X

ri≤t≤di

xit ≥ ci (7)

Variable consistency:

∀i ∈ L :
X

ri≤t≤di

xit −
X

k∈Ki

kyik = 0 (8)

∀i ∈ L :
X

k∈Ki

yik = 1 (9)

∗For technical reasons, the index t of xit can take −1 as its value. Since a task cannot
start at time −1, xi,−1 = 0 by definition.

Figure 3: The slot based ILP model
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Index sets and constant parameters:

L : i task indices Zi : j interval indices for Ti, i ∈ L

R : cumulative resources Ri ⊆ R : resources used by Ti, i ∈ L

Iij := [ rij , dij), i ∈ L, j ∈ Zi jth possible scheduling interval for Ti

wij :=
dij − rij − ci

dij − rij

, i ∈ L, j ∈ Zi weight corresponding to interval Iij

Variables:

xij =

(
1 if interval Iij is selected for task Ti

0 otherwise
i ∈ L, j ∈ Zi

Maximise
X
i∈L

X
j∈Zi

xijwij subject to the following constraints:

Resource availability:

∀Rm ∈ R, ∀ 0 ≤ t ≤ D :
XX

i ∈{i | Rm∈Ri}

j ∈{j | t ∈ Iij}

xij ≤ cap(Rm, t) (10)

Singular interval selection:

∀i ∈ L :
X
j∈Zi

xij = 1 (11)

Figure 4: The interval based ILP model

that exactly one out of all the variables belonging to a task is assigned the value 1,
in addition to satisfying all the resource and temporal constraints. The complete
model is shown in Fig. 4.

The constraints defined by (10) ensure that the time dependent resource ca-
pacities are never exceeded. For each particular resource and time slot, we select
all the possible scheduling intervals containing this slot of all the tasks using the
given resource. The sum of these 0/1 values equals the actual resource usage of any
specific solution, therefore it must not be greater than the corresponding capacity.
Constraint (11) encodes the requirement that exactly one interval is chosen for each
task.

3.4 Jobs as Groups of Tasks

In addition to maintenance tasks, the application domain also operates with the
concept of jobs. Regular aircraft maintenance consists of independent jobs (e.g.
56-DSI, an inspection scheduled about every 56 days), which are built up from
smaller, interrelated tasks (e.g. remove wings to give access to the engine). When
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Index sets and constant parameters:

M : k job indices Nk : l job span indices for Jk, k ∈ M

Hkl := [ skl, ekl), k ∈ M, l ∈ Nk lth possible job span for job Jk

Variables:

ykl =

(
1 if job span Hkl is selected for job Jk

0 otherwise
k ∈ M, l ∈ Nk

Consistent & singular interval selection (replacing (11)):

∀k ∈ M, ∀l ∈ Nk, ∀i ∈ {i |Ti ∈ Jk} :
X

j ∈{j | Iij⊆Hkl}

xij = ykl (12)

∀k ∈ M :
X

l∈Nk

ykl = 1 (13)

Figure 5: Extending the interval model with jobs

this is translated into a graph, each job constitutes a connected subgraph of the
entire task graph, and slack distribution can be performed on these subgraphs
independently. In addition, maintenance can only be performed while the aircraft
is on the ground, and a job cannot be interrupted with a flight mission (for example
because the aircraft is not yet completely reassembled). Assuming that mission
planning always precedes maintenance scheduling, the interval based model must
be extended to avoid scheduling jobs during and across missions.

Let us introduce the notion of jobs, denoted by Jk, which are sets of Ti tasks, and
the concept of job spans, those time intervals within which jobs can be performed.
A job span is denoted by Hkl = [ skl, ekl), and either all or none of the tasks
constituting the job must be completed in it.

The overall algorithm is then modified as follows. Slack distribution described
in Sect. 2.3 is executed for each job (i.e. a connected graph) and for each job span
separately, assigning a separate scheduling range to each task of the job within each
span. Then each of these scheduling ranges is used to generate possible scheduling
intervals according to (2), with the added notational complexity that now there
is more than one scheduling range per task. The remaining problem is again a
singular interval selection for each task, but this time we must also ensure that for
all tasks of a single job we select intervals from the same job span.

The extension of the model is shown on Fig. 5 (only new or modified elements
are listed). For each job Jk, it introduces a second set of boolean variables, ykl,
one for each job span, which is 1 if and only if the corresponding span contains all
tasks of the Jk in the resulting schedule.

Equation (11) is replaced with two new equations. Constraint (12) encodes the
requirement that all the tasks of a job must be executed in the same job span. The



248 Dávid Hanák, Nagarajan Kandasamy

equation specifies that a particular job span is selected (ykl = 1) if and only if all
the tasks constituting the job have exactly one interval selected within that job
span. Finally, (13) ensures that exactly one job span is selected for each job.

An obvious special case of the extended model is when there is exactly one job,
containing all the tasks, and there is exactly one job span. Then the extended
model behaves exactly like the simple interval based model on Fig. 4.

3.5 Efficiency Considerations

To avoid the explosion of the number of variables as the number of tasks and the
size of the scheduling ranges (di − ri) increase, we decided to limit the number of
possible scheduling intervals per task. The algorithm we created to determine the
intervals is as follows. For each task:

1. The number of intervals per job span is set to be proportional to the size of
the span.

2. For each span, generate a set of possible starting points, at which all eventu-
ally created intervals will start. The number of points is chosen by keeping
two goals in mind:

• the number of intervals is not less than two per point;

• the distance between neighbouring points is not less than the execution
time of the task.

The points themselves are distributed evenly within the job span. These
rules help to maintain a healthy balance between the number of choices in
the starting point and the length of the scheduling interval. And even though
the rules are arbitrary, measurement results summarised in Sect. 4.3 indicate
that these limitations do not effect the quality of the solutions significantly:
the maximal objective values returned by the solvers using the latter model
are not worse than those running on the former.

3. For each starting point, generate the required number of intervals (number
intervals in the span divided by the number of points), in gradually increasing
length from the minimally required up to a globally fixed multiple of the
execution time.

Note that due to rounding and integer division, the number of actually generated
intervals may not reach the limit. In our current solution, this remainder capacity
is unexploited.

Figure 6 shows a robust schedule for the task graph displayed in Fig. 1, generated
using an ILP solver on the defined model. Here we assumed that each task uses
exactly one of the two available resources. The intervals corresponding to tasks
T5 and T7 are shorter than the scheduling ranges in the solution, therefore they
are shown in bold. The dotted sections are indicating the subintervals removed to
satisfy the constraints.
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Figure 6: The robust schedule generated with the ILP model

4 Performance Evaluation

In [11], two ILP solvers were tested: a pure ILP called LP_SOLVE2, a freely
available generic linear programming solver [13], and a specialised 0-1 ILP solver
targeting pseudo-boolean optimisation problems called PBS [14], which can also
handle SAT formulæ. In order to use PBS, the integer constraints in the ILP
model were converted to their appropriate pseudo-boolean and conjunctive normal
forms. Now we added a second pure ILP solver called GLPK [10] to the list3, which
is also available under a free license.

We have tested the interval based model with real life data take from the soft-
ware tool mentioned in Sect. 2.1, and verified that the ILP solvers were able to
create valid schedules for them in an acceptable time frame. However, the slot
based model was not elaborate enough (i.e. no notion of jobs) to handle these sce-
narios, and also these data represented only a small number of points in the entire
problem space. In order to be able to perform a more thorough and systematic
evaluation of the models, we turned to random problem generation. Here, our goal
was to make the generated problems similar in structure to real life scenarios, so
that the evaluation of the former would give us some feel for the performance of
the solvers on the latter as well.

2We used version 2.0 of LP_SOLVE in our experiments. Since then, newer versions of the
software have been released, at the time of writing this article the newest is version 5.5, which
might (or might not) perform better on the test data sets.

3GLPK version 4.4 was used in the tests. The most recent version at this time is 4.13.
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4.1 Expectations

Since the new model does not include constraints which could be encoded as clauses
of a SAT formula, we expected a drop in the performance of PBS when moving
from the slot based to the interval based model. On the other hand, since the
number of constraints has decreased, we hoped that the pure ILP solver will tackle
the problem better than before. As for the new GLPK solver, we did not have any
previous experience to begin with.

4.2 Problem Generation

The random task graphs used in our experiments were obtained as follows. To
generate a directed acyclic graph (DAG) with a specific number of tasks, a certain
number of layers are filled by randomly distributing a number of independent tasks
to each layer.4 Next, we randomly link the edges between tasks in different layers.
Finally, tasks are assigned execution times uniformly distributed between [2, 5] secs.
A set of resource types R = {Rm}, each with a specific capacity is also generated.
In our experiments, these resources are distributed uniformly among tasks such
that each task is allocated exactly one resource of a certain type. The original
resource capacity can also be increased (decreased) as needed. Finally, the graph
deadline D is set to (1 + slack) · pmax , where pmax denotes the longest path length
through the graph and slack is a user-specified value.

4.3 Analysis of Measurement Results

The slot based model has been evaluated with two solvers, LP_SOLVE and PBS.
Table 1 summarises the performance of the two solvers given four resource types,
each with a capacity of three. The experiments were performed on a 3.2 GHz
Pentium 4 processor wit 1 GB of RAM. Graph deadlines are derived using slack =
1.0. The table shows the first solution (value of the objective function in the ILP
model) returned by both solvers as well as the time taken to do so. (The resolution
of the timer was 15 seconds in these experiments.) The solvers were then allowed
to improve on their initial solutions up to a time-out period of five minutes and the
best solution returned by the solvers after that period is also shown. If a problem
is shown to be infeasible by a solver (i.e. it can prove that there is no solution),
this fact is denoted by ‘Inf.’ in the appropriate cell, while a solver time-out without
returning any solution is denoted by ‘—’.
For small numbers of intervals, the solutions returned by LP_SOLVE are superior
to PBS at the cost of greater time overhead. For larger numbers of intervals,
however, LP_SOLVE was unable to return a solution within the time-out period
whereas PBS returned the first solution very quickly.

Now let us turn to the interval based model. It has been evaluated with both
solvers used earlier, as well as GLPK, a second pure ILP solver. The results are

4The number of tasks per layer is chosen randomly from a specified range, and the number of
layers is implicitly determined by the total number of tasks and the number of tasks chosen for
each layer.
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Table 1: Results of the slot based model with 4 resources of capacity 3, slack = 1.0

Tasks
Scheduling
intervals

LP_SOLVE PBS
First

solution
Time
(secs.)

Best
solution

First
solution

Time
(secs.)

Best
solution

∼25 892 12.52 < 15 13.02 2.35 < 15 10.66

∼50 2628 19.41 75 21.26 13.37 < 15 18.92

∼75 2639 18.53 135 20.77 13.44 < 15 17.97

∼100 3091 — — — 14.12 < 15 21.83

∼150 7326 — — — 30.64 15 33.03

Table 2: Results of the interval based model with 4 resources of cap. 3, slack = 1.0

Tasks
Sched.
ints

LP_SOLVE PBS GLPK
First
sol.

Time
Best
sol.

First
sol.

Time
Best
sol.

First
sol.

Time
Best
sol.

∼25 892 13.02 < 5 13.02 11.22 < 5 11.22 13.02 < 5 13.02

∼50 2628 28.00 < 5 28.00 13.82 < 5 16.42 27.99 < 5 28.00

∼100 3091 32.81 < 5 32.81 17.02 10 17.02 32.73 < 5 32.81

∼150 7326 63.4 25 63.4 32.06 15 32.06 63.41 < 5 63.43

∼200 9167 72.77 25 72.82 — — — 72.72 10 72.82

∼500 17613 157.78 275 157.78 — — — 157.78 15 157.78

summarised in Table 2. The test parameters and conditions were chosen to be
identical to the previous tests (in fact, the very same task graphs were used) in
order to make comparison possible, only in this case larger problems have been
tested as well, since the speedup of the solvers using the new model permitted this
increase in size. The time resolution has also been refined to 5 seconds.

The results clearly show that the interval based model suits the taste of the integer
linear solvers much better. For all but the smallest problem, the solutions returned
by LP_SOLVE are better than with the slot based model, and with much quicker
response times. This solver has also been able to cope with problems containing
100–150 tasks, which earlier caused a time-out, and even with problems of 200–500
tasks, which were not even attempted. It is also worth pointing out that the quality
of the first and the best solutions differ only minimally (if at all). The results of the
GLPK solver are very similar to those of LP_SOLVE, only with smaller run times.
(In fact, it would be interesting to observe how GLPK behaves with even larger
problem sizes.) On the other hand, the performance of PBS is clearly poorer. Even
though the quality of the first solutions is better than before for smaller problems,
the quality of the best solutions has diminished. This change for the worse could
be explained by the fact that while the slot based model contained a number of
SAT encodable constraints, the interval based model does not, and we believe that
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Table 3: Effect of slack values on solver performance

T#
slack = 0.5 slack = 0.8 slack = 1.0

int# obj LPS GLPK int# obj LPS GLPK int# obj LPS GLPK

∼25 436 9.48 0.03 0.13 747 12.52 0.04 0.23 892 13.02 0.05 0.25
∼50 1338 19.66 0.11 0.34 1961 ∼ 24.7 0.18 0.53 2628 28 0.27 0.88

∼100 1384 Inf. 0.12 0.28 2277 Inf. 0.31 0.48 3091 32.81 3.72 1.19
∼150 3638 33.2 > 300 2.01 5839 56.65 > 300 3.76 7326 ∼ 63.4 > 300 4.3
∼200 4234 Inf. 0.74 1.07 6886 58.79 60.99 2.7 9167 72.82 > 300 12.9
∼500 8582 Inf. 1.99 2.38 14257 ∼ 126.3 > 300 30.32 17613 157.78 > 300 17.06

the main strength of PBS, which gave it an edge over LP_SOLVE, lies in the SAT
solver core. Since it has not been able to exploit this feature with the interval based
model, its performance has degraded.

In [11] we presented a table which emphasised the effect of increasing slack

values on solver performance. It showed that when slack was increased, a larger
number of possible scheduling intervals was generated, which in turn caused a larger
search space and thus more time-outs. On the other hand, the robustness of the
schedules improved where the solvers finished in time. Table 3 shows a similar data
set for the interval based model, including results for the two ILP solvers. Since the
objective values returned by LP_SOLVE and GLPK were always very close (and
almost always equal), the table includes a single set of objective values, i.e. those
of the best solutions found by both solvers. (A ∼ sign denotes where there was a
minor difference in the values.) Two further columns per slack value show the total
run time of the two solvers (i.e. the time required to be able to tell that the found
solution is indeed the best).

It is interesting to see that there is a jump in the time values of LP_SOLVE, where
it was not able to finish within the time limit any more. Nonetheless, it always
found a solution5, which was not even worse than the best solution found by GLPK.
However, the time results of GLPK are convincing, it appears that GLPK scales
well with the problem size.

5 Conclusions

This paper has addressed the problem of generating robust task schedules under
explicit deadline constraints and proposed a new ILP-based solution. In addition
to an earlier model of ours, we formulated a second ILP model whose solution
maximises the temporal flexibility of the overall task schedule. This model was
solved using three integer solvers LP_SOLVE, PBS and GLPK that use widely
varying solution techniques. Our experiments show that while LP_SOLVE provides
superior solutions for the smallest problems, it is outperformed by GLPK both in

5ILP searches can be considered anytime algorithms for practical purposes, knowing that
they use the branch-and-bound algorithm, and assuming that the search tree is interspersed with
solutions, which is apparently true our case.
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speed and scalability. The SAT based PBS solver finished poorly in our tests. We
believe this is because the strength of this solver lies in the SAT solver core, but
our ILP model did not contain SAT encodable constraints.

5.1 Future Work

The tests clearly showed that even with the new model, the performance of the
solvers degrades drastically as the problem size increases. To face the issue of
scalability, we are experimenting with generating solutions in multiple passes, using
a technique we call rolling horizon. First, scheduling ranges are determined as usual.
The idea is then to generate a robust schedule for a relatively short period of the
entire planning horizon in each pass, giving greater flexibility to the tasks scheduled
at the end of this period, i.e. with the interval weights defined in (3) being modified
to be monotonous in rij . Then in the next pass, the scheduling intervals selected for
the trailing part (i.e. part of the output of the first pass) are used as new, reduced
scheduling ranges (i.e. as input of the second pass). The second pass will then
finalise these tasks by selecting a subinterval of these reduced ranges. This way
each pass has the ability to slightly modify the decisions made in the previous pass
near the “seams” without breaking any of the already satisfied temporal constraints.

The advantage of this “divide and conquer” approach is that it could help to
keep the complexity of the problem linear in the number of tasks. When the ILP
models are applied to the entire problem, the increase in run times is steeper than
linear as shown in Sect. 4.3. By using a rolling horizon, however, the number of
tasks per pass can be kept constant.
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