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Abstract

In this paper, we improve our previously proposed Similarity Based
Smoothing (SBS) algorithm. The idea of the SBS is to map words or part
of sentences to an Euclidean space, and approximate the language model in
that space. The bottleneck of the original algorithm was to train a regular-
ized logistic regression model, which was incapable to deal with real world
data. We replace the logistic regression by regularized maximum entropy
estimation and a Gaussian mixture approach to model the language in the
Euclidean space, showing other possibilities to use the main idea of SBS.
We show that the regularized maximum entropy model is flexible enough to
handle conditional probability density estimation, thus enable parallel com-
putation tasks with significantly decreased iteration steps. The experimental
results demonstrate the success of our method, we achieve 14% improvement
on a real world corpus.

Keywords: language modeling, word similarity, maximum entropy, SVD

1 Introduction

Data Sparseness in Language Modeling. A central problem in statistical lan-
guage modeling is data sparseness, i.e. we do not have enough data to accurately
estimate the probability distribution of words. Even in the context of bigrams,
training an efficient model requires huge training corpus, not to mention training
higher order distributions. This phenomenon is also known as curse of dimension-
ality. Probability density estimation thus requires some form of approximation
techniques.

Smoothing. Generally, smoothing methods reserve some mass in the probabil-
ity model for unseen events, and then assign that mass to these events as a function
of their marginal frequencies. A great deal of techniques have been proposed for
smoothing of n-gram models, including discounting, recursively backing-off to lower
order n-grams, linearly interpolating n-grams of different orders. An excellent sur-
vey of these and some other techniques can be found in [6].
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Clustering models make use of smoothing ideas, but also attempt to make use
of similarities between words. In the class-based n-gram estimation [5], a greedy
algorithm searches the space of clustering to find one that increases the data like-
lihood the most. The method is extended to handle trigram [17], where a heuristic
randomization was used to speed-up the clustering process with only a slight loss
in performance.

These early works rely on short histories (such as bigram or trigram) and there-
fore tend to produce syntactically-oriented clusters. Another approach proposed
by [2] exploits larger contexts (i.e. documents) between words and results in clus-
ters that are semantically oriented. The idea is to exploit that documents can be
thought of as a semantically homogeneous set of sentences. The algorithm forms
a word-document matrix given the training data, performs singular-value decom-
position (SVD) on the resulting matrix, and then clusters over the projections
according to a well-chosen measure.

Similarity Information. Clustering is a special case of constructing similarity
information over the words (or word-forms) of a language. [8] proposed to use a
kernel-based smoothing technique where the kernel function is built using similar-
ity information derived from word co-occurrence distributions. [16] investigated a
Markov chain model that exploits a priori similarity information, whose stationary
distribution was used for solving prepositional phrase attachment problems.

Our contribution. In our previous work [4], we presented a special case of the
general Similarity Based Smoothing (SBS) method. We showed, that the similarity
based methods improve language models’ performance, and tested the approach
on bigram estimates. Regularized logistic regression struggled with computational
difficulties when estimating the parameters on real world data, although SBS per-
formed well on test cases with lower dimensions, suggesting that the approach may
introduce significant improvement to language models.

In this paper, we show that a more general and robust estimation method, the
regularized maximum entropy, is able to handle real world problems as well. Our
framework is also flexible enough to handle conditional probability density estima-
tion, thus enable parallel computation tasks with significantly decreased iteration
steps. The experimental results demonstrate 14% improvement on a real world
corpus, which proves the efficiency of the approach.

2 Language modeling based on similarity informa-

tion

The goal of language modeling is to provide an accurate estimation for P (w|h),
where w ∈ V is a word from the vocabulary, and h ∈ V∗ is some history. Restricting
the history to one word, we arrive at the well known bigram model (first order
Markov model). For the sake of simplicity in this paper we will deal only with
bigrams (the methods proposed can be easily extended to higher order n-grams).
In what follows the notation p(y|x) will be used to denote the bigram probabilities.
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Given appropriate basis functions, {ϕi}, the log-conditional probabilities of the
bigrams can be written in the form

log p(y|x) ∝
∑

i∈I
αiϕi(x, y). (1)

Clearly, the simplest choice is to let I = V×V and use the so-called Euclidean basis
functions, ϕi(x, y) = ϕ(i1,i2)(x, y) = δ(i1, x)δ(i2, y), where δ(·, ·) is the Kronecker’s
delta function. With this basis function set, fitting this model to some dataset is
equivalent to maximum likelihood training. The main idea in the paper is that
given some similarity information over V it might be possible to construct another
basis function set that facilitates generalization to unseen cases. Since the basis
functions that we will construct may form an overcomplete representation, we will
resort to a form of regularization to prevent overfitting.

2.1 Incorporating similarity information

Let V = {w1, . . . , w|V|} be the words in the vocabulary. In order to estimate the
p(y|x) conditional probability distribution, where (x, y) ∈ W, we used the similarity
information hidden in the context. Assume that the similarity information bet-
ween words is represented as an undirected weighted graph G = (V, E,W ), where
E ⊂ V × V are the edges and W : E → R

+
0 assigns non-negative weights to word-

pairs. For mathematical convenience, we use W to denote the |V| × |V| weight
matrix, where the (i, j)th entry of W is the weight of the edge i → j. The idea
is to construct basis functions that respect the similarity information in W . One
way to accomplish this is to use spectral graph clustering which is known to yield
basis functions that can be used to represent any square integrable function over
G [7]. In fact, spectral graph clustering methods construct basis functions that are
natural for constructing geodesically smooth global approximations of the target
function. In other words, smoothness respects the edges of the graph. In our case
this means that similar words (or word-pairs) will be assigned similar probabilities.

In the particular methods we have chosen, the basis functions are computed
using the singular value decomposition of the matrix P = D− 1

2 WD− 1
2 . Here D

is the diagonal valency matrix; its diagonal elements are defined by di =
∑

j wij .
This operator is spectrally similar to the normalized graph Laplacian operator, L =
D− 1

2 (D−W )D− 1
2 . In fact, elementary algebra yields that I−L = D− 1

2 WD− 1
2 = P .

The spectrum of the graph Laplacian is known to have a close relationship to global
properties of the graph, such as “dimension”, bottlenecks, clusters, mixing times of
random walks, etc. The spectral decomposition method employed is motivated as
follows: The smoothness of a function, f : V → R on the graph G can be measured
by the Sobolev-norm ‖f‖G =

∑

v∈V |f(v)|2dv +
∑

(u,v)∈E(f(u) − f(v))2wuv. The
first term here controls the size of the function, whilst the second controls the
gradient. Using this norm, the objective to exploit similarity information can be
expressed as the desire to find a log-likelihood function whose G-norm is small.
Now, the projection of a function f on the linear function space spanned by the
top k eigenvectors of the Laplacian is the smoothest approximation to f with k basis
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functions, in the sense of the G-norm. Hence, influenced by [10] we decomposed
P using singular value decomposition: P = USV T . For practical purposes, we
truncated the SVD of P in such a way that the ‖Pk‖F = 0.9 ‖P‖F , where ‖·‖F

is the Frobenius norm, and Pk = UkSkV T
k is the truncated version of P where

only the k column vectors of U and k row vectors of V corresponding to the k

largest singular values of S are kept. For proper normalization, the singular vectors
in Uk are multiplied by the square root of the respective singular values [9, 10]:

U ′
k = UkS

1/2
k .

Now, the basis functions are obtained using the columns of Uk: Denoting
these columns by ϕ1, . . . , ϕk, ϕ(i1,i2)(x, y) = δ(i1, y)ϕi2(x), where i1, x, y ∈ V,
i2 ∈ {1, . . . , k}. When the similarity information is unreliable we may add the
Euclidean basis functions, ϕ′

i(x, y) = ϕ(i1,i2)(x, y) = δ(i1, x)δ(i2, y), to the set ob-
tained. This way even when the automatically constructed basis functions are
useless, the method still has a chance to recover. To handle unknown words, one
may resort to Nyström’s method [1]: In order to extend a singular vector ϕi to a
new word, z, it suffices to know wxz for all x ∈ V in the set of known words. In
fact,

∑

x∈V
wxz√
dxdz

ϕi(x) can be shown to be a good approximation.

In the experiments below we always used a single similarity graph, though the
algorithm has the natural ability to use more graphs by simply merging the set
of resulting basis functions. We may use all the basis functions, as well as all the
products of two basis functions [15].

Algorithm 1 Similarity Based Smoothing (SBS)

Input: similarity information between words, training data
Output: estimated probability distribution

1. Build a similarity graph between words G = (V,E,W )

2. Calculate the normalized matrix of G: P = D− 1
2 WD− 1

2

3. Determine the SVD decomposition of P = USV T

4. Calculate the mapping operator from the singular vectors

of top singular values: Φ = UkS
1
2

k

5. Train the Estimation Model’s weight parameters using the training data (Max-
imum entropy estimation, Logistic regression, Gauss estimation)

2.2 Logistic regression based learning

In our previous work [4], we implemented SBS using logistic regression with Lapla-
cian and Gauss priors [14]. Logistic regression (LR) was already able to achieve
good results, but unfortunately it was infeasible on real world data with large vo-
cabularies.
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Int this paper, we investigate joint maximum entropy models with regulariza-
tion constraints which is a generalization of LR models, and provide better scaling
properties. Our regularized maximum entropy implementation significantly out-
performed the previous LR estimation in terms of computational time, which made
real world experiments possible. We did the synthetic experiments for both cases,
and it turned out, that using regularized maximum entropy estimation, in most of
the cases yielded better model quality as well.

2.3 Maximum entropy model

Incorporating the similarity information, the basis function takes the form of
ϕ(i1,i2)(x, y) = δ(i1, y)ϕi2(x), substituting into (1) and rose to the exponent:

pλ(x, y) =
1

Zλ
e(
P

i1,i2
λi1,i2

δ(i1,y)ϕi2
(x)) =

1

Zλ
e(
P

i2
λy,i2

ϕi2
(x)) =

1

Zλ
e(λT

y ϕ(x)) (2)

where Zλ is the normalizing factor, λ =
[

λ1, . . . , λ|V|
]T

is the matrix of weight
parameters to be learned, λy contains the weight parameters of word y, and ϕ(x)
is the vector formed from the basis functions evaluated at x. We shall call ϕ(x) the
feature vector associated with x. From p(x, y), it is straightforward to calculate
the conditional probability p(y|x).

The last term in (2) is a Gibbs distribution with parameter vector λy. According
to [3], the maximum likelihood Gibbs distribution is equivalent to the maximum
entropy distribution estimated from the training data. Assuming that the data
sequence D = (v1, . . . , vN ), vi ∈ V is generated by a first order Markov model
where the transition probabilities can be modeled by (2), the data log-likelihood
takes the following form:

LML(λ|D) =

N
∑

j=2

[

λT
vj

ϕ(vj−1) − log Zλ

]

(3)

The maximum likelihood (ML) estimate of the parameter vectors is the vector
that maximizes this function. In order to prevent overtraining it is advisable to
prefer smooth solutions, especially if the number of basis functions is big (in other
words, feature vectors are high dimensional). One way to enforce smoothness is to
introduce a prior distribution over the parameters λij . Several choices are possible
for such priors. In this work we studied the behavior of the method using the
Laplacian-prior, p(λij) ∝ βij exp(−βij |λij |). In this case, the training problem
becomes the maximization of the following objective function:

LMAP(λ|D) =

N
∑

j=2

[

λT
vj

ϕ(vj−1) − log Zλ

]

+

|V|
∑

i=1

k
∑

j=1

βij |λij | (4)

i.e. an ℓ1 penalty term is added to the ML objective function.
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Applying priors to avoid overtraining is called as regularization in maximum en-
tropy modeling. We implemented a state-of-the-art regularized maximum entropy
[11] algorithm to find the solution for equation (4).

Computational speed-up. Instead of estimating p(x, y) joint probability, we
estimated p(x|y). The reasons were two-fold, firstly in this case we were able to train
these conditional models parallel, secondly because the number of parameters to be
estimated reduced to k (dimension of feature vectors) from |V | · k, the number of
iterations reduced adequately in all p(x|y) instance resulting in an overall decrease
in running time.

2.4 Gauss based estimation

As another approach, it is obvious to try some simple models, when the words
are mapped to an Euclidean space. One such model can simply fit a Gaussian
mixture model on the training data, and use it to estimate (maybe only the missing)
statistics.

P (y|x) =
1

Zx

∑

x′∈V
P ′(y|x′) · e

�
− ||ϕ(x′)−ϕ(x)||

σ2

�
We used the maximum likelihood estimate for P ′, and Zx was a normalization
factor such that

∑

y P (y|x) = 1. If the distance of words in the Euclidean space
reflects the similarity between words (as in our case), this may lead to a good
estimate.

3 Experimental Results

We compared the performance of our approach, SBS, on synthetic and real-world
data to interpolated Kneser-Ney smoothing (IKN). IKN is considered as one of the
best smoothing techniques [13]. As special cases of SBS, we present the results for
the maximum entropy model (Maxent), the logistic regression estimation (Logreg)
and the Gauss mixture approach (only Maxent is calculated for real world data).

In order to evaluate the methods we calculated the empirical cross-entropy of
the trained model on held-out data, w1, . . . , wN :

HN (p, p̂) = −
1

N

N
∑

i=1

log2 p̂ (wi|wi−1) . (5)

Here p̂(wi|wi−1) is the probability assigned to the transition from wi−1 to wi by
the model and p denotes the true distribution. (For the synthetic datasets we have
wi ∼ p(·|wi−1).) Since by assumption, the held-out data has the same distribution
as the training data, by the Shannon-McMillan-Breiman theorem we know that
(under mild assumptions) HN is close to the cross-entropy of p̂ with respect to the
true distribution p of the data.

For each test, we calculated the cross entropies for the IKN estimate and the
proposed similarity based smoothing techniques. In the case of synthetic datasets
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we also estimated the entropy of the models by using the true transition probabil-
ities in (5), the corresponding points on the graphs are labeled as ‘Model’.

3.1 Tests on Synthetic Data

The model generating the synthetic data. In order to develop a good un-
derstanding of the possible advantages and limitations of the proposed method, we
tested it in a controlled environment where data was generated using some des-
ignated bigram model. In order to make the test interesting, we decided to use
“clustered” Markov models of the following form: the probability of observing y

given x is computed by

P (y|x) = P ( y | c(y) )P ( c(y) | c(x) ), (6)

where c(x) is the cluster of symbol (word) x (c : V → C with |C| < |V|). The
idea is that the next observation depends on the past observation x only through
its class, c(x) and hence two past observations, x and x′ yield to identical future
distributions whenever c(x) = c(x′). Note that when P (y|c) = δ(c(y), c) then the
model can be thought of as a Hidden Markov Model (HMM) with state transitions
defined over C, whilst when the observation probabilities are unconstrained then in
general no HMM with |C| states is equivalent to this model. In any way, the model
can be specified by two matrices, (A,B), with Ac1,c2

= P (c2|c1) (A ∈ R
|C|×|C|) and

By,c = P (y|c) (B ∈ R
|V|×|C|).

For computing the matrix A, we start with a permutation matrix of size |C|×|C|
and perturb it with random noise so that (i) all transition probabilities are nonzero
and (ii) for each state the number of “significant” transitions lies between 1 and
|C|
4 .

For computing B, we start from the idealized block-structured matrix with
B′

yc ∝ δ(c(y), c) and then perturb it according to

Byc ∝ B′
yc + δ(1 + γz′yc),

where the elements of z′yc are independent random variables uniformly distributed
in [−0.5, 0.5]. If δ = 0 then the block structure of the source is clearly identifiable
based on the outputs: Given an observation y and knowing C we can infer with
probability one that the hidden state is c(y) and as noted before the model collapses
to a hidden Markov model with C states. When δ is non-zero this structure is
blurred. In the experiments we used δ = 0.1 whilst we let γ change in [0, 1]. Note
that γ = 1 roughly corresponds to a noise level of 5% in the observations.

Similarity information provided for SBS. We controlled how well the similar-
ity information provided for SBS reflects the actual block structure of the data. The
perfect similarity information assigns 0 to observations (words) in different clusters,
whilst it assigns the same positive value, say 1, to observations in the same cluster.
The corresponding matrix is denoted by S (S ∈ R

|V|×|V|): Sxy = δ(c(x), c(y)).
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We then disturbed S by adding noise to it. For this a random |V| × |V| matrix
(Z) was created whose entries were independent, uniformly distributed random
variables taking values in [0, 1]. Given a noise parameter, ǫ ≥ 0, the perturbed
matrix is computed by

Sǫ = S + ǫ ((−S ⊙ Z) + ((1 − S) ⊙ Z)).

Here U⊙V denotes the component wise product of matrices U and V , 1 denotes the
matrix with all of its entries being 1. In words, increasing ǫ reduces the inter-cluster
similarity and increases between-cluster similarity. In the extreme case when ǫ = 1
all similarity information is lost.

Training and test datasets. A training dataset normally contains Ntr = 300
observation sequences (except when we experiment by changing this parameter),
each having a random length that was generated by drawing a random number
L from a normal distribution with mean 11 and variance 6 and then setting the
length to max(2, L). The test dataset (separate from the training dataset) had
5000 sequences which was generated using the same procedure. All measurements
were repeated 100 times and the average values are presented.

3.2 Results

We performed a sensitivity analysis to test the effect of how the various parameters
influence the results. In particular, we studied the performance of SBS as a function
of the observation noise, γ, that masks the identifiability of the block structure,
the noise in the similarity matrix (ǫ) that gradually decreases the quality of the
similarity information available for SBS, the number of training sentences (Ntr)
and the cluster structure. These parameters were changed one by one, whilst the
others are kept at their default values which were γ = 0.2, ǫ = 0.1, Ntr = 300. The
default cluster structure was to have 6 clusters, each having 30, 20, 10, 5, 5 and 5
words respectively (so that some clusters were bigger, some were smaller). Thus
|V|, was kept at 75.

Sensitivity to noise masking the block-structure. When γ = 0, the ob-
servations can be used directly to infer the underlying classes and the estimation
problem is easier. When the block-structure masking noise is increased the problem
becomes harder.

Figure 1 shows the results of the measurements. It can be observed that the
proposed methods perform significantly better over the considered spectrum of γ

than IKN. On the other hand, SBS Logreg and SBS Maxent were able to maintain
its estimation accuracy for the whole range of γ, while the Gauss estimate had a
slight loss of quality.

Robustness against the degradation of the similarity information. In
the next set of experiments we investigated the sensitivity of the methods to the
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Figure 1: Left: The cross-entropy of models built with various algorithms as a
function of the block-structure masking noise parameter (γ). Right: Cross-entropy
of the noise parameter, ǫ, governing the quality of the similarity information.

quality of the similarity information. For this we gradually increased the similarity-
information noise parameter, ǫ, from 0 to 1. As we have discussed, when ǫ = 0
the similarity information is perfect, whilst when ǫ = 1 all similarity information is
lost.

As expected, when the similarity information gets weaker, the performance of
SBS methods degrade and converge to that of the ML-estimated bigram model
(cross entropy 9.8 due to lack of all bigrams in training data). It is notable that
even when ǫ = 0.7 (when the similarity information is already very poor) SBS
Maxent performs as well as IKN. The reason is that although in these experiments
we did not add the Euclidean basis functions to the set of basis functions, we can
expect the spectrum of a high-noise similar matrix to be uniform, hence covering
90% of the spectrum will add almost all singular vectors to the basis and thus
the model automatically retains its power. This effect may be the reason for the
Gauss estimation, which seems to maintain it’s performance during this experiment.
Namely, as the noise gets bigger, the more features will be kept, and the Gauss
estimate seems to handle this very well (the training of the Gauss estimate does not
depend on the number of features as long as it contains the necessary information,
while LR and Maxent had a linear growth in the number of parameters).

Investigation of the ǫ = 1 case: Gauss estimation seems to result in a nearly
unigram distribution: P (y|x) = PGauss(y), which seems to be a very good model for
this data. Due to the small corpus size (about 3000 bigrams for 5625 word pairs)
and lack of similarity information, other models (including IKN) were trying to
capture the small differences in counts, while Gauss tried to fit normal distributions
randomly over the space resulting in nearly unigram distribution. However, we must
note, that there is still a significant difference between the original model and the
estimations.
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Sparsity of training data. The main promise of SBS is that by using the sim-
ilarity information it is capable of achieving better performance even when the
available training data is limited. In order to validate this, we performed a set of
experiments when the number of sentences in the training data was varied. The
results are shown in Figure 2. All SBS models were able to outperform IKN for a
wide range of values of Ntr, although for very small Ntr IKN seems to be better
than Maxent and Logreg. We see, that Gauss performs very well at the beginning,
but it does not converge quickly to the theoretical optimum ‘Model’.

Cluster structure. We tested SBS with large variety of cluster setups, ranging
from 1 to 15 clusters, and with vocabulary sizes between 7 and 110. The results
are summarized on Figure 2.

It is clear that if the number of clusters is small or when all the words are in
different clusters, then there is no significant structural information in the similarity.
It is notable that in such cases SBS Logreg was still able to perform as well as IKN.
On the other hand, if there is a significant hidden structure in the model, all SBS
methods greatly outperform IKN. In this experiment, H(p, p̂ikn) ranges 2.5 to 6.5.

Gauss seems to be able to perform well only with large vocabularies. Maybe
this is due to the observation made at sparsity of training data experiments, that
it does not really converge to the optimal model when more data is available.

H(p, p̂ikn) − H(p, p̂*)
clusters p̂* = p̂Gauss p̂Logreg p̂Maxent
1,1,1,1,1,1,1 -0.126 0.000 -1.933
10 -1.713 0.017 0.017
10x2 -0.044 0.089 0.073
10x3 -0.016 0.178 0.160
10x5 0.097 0.254 0.266
10,5 -0.050 0.044 0.015
10,7,5 -0.100 0.102 0.087
10,7,5,3 -0.012 0.128 0.128
30,20,10 0.161 0.284 0.309
30,20,10,5x3 0.156 0.194 0.238
30,20,10,5x3,1x3 0.161 0.151 0.219
30,20,10,5x3,1x6 0.169 0.113 0.209
30,20,10,5x3,1x9 0.166 0.073 0.194
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Figure 2: Left: The cross-entropy decrease of SBS as compared with IKN for a
number of different cluster structures. Right: The cross-entropy of models built
with various algorithms as a function of the number of sentences in the training
data (Ntr).

3.3 Tests on Real Data

The SBS Maxent model was built using 55,000 sentences from the Wall Street
Journal (WSJ) corpus. We tested the model on the Brown corpus, which contained
47,000 sentences.
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We reduced the feature space by using only the most relevant features from Φ
and we did not add the Euclidean basis functions to the features. With these con-
straints, the model is not in its most general form, but this relaxation reduced the
computational requirements significantly. To compensate the lack of information,
we use IKN to estimate high frequency bigrams, and leave the low frequency case
(C(x) < 2 when estimating P (y|x)) for SBS where IKN doesn’t perform well.

The similarity graph was constructed according to the number of word oc-
currences in the different senses of each word (WordNet [12] overview property).
Weights for the similarity graph were constructed according to weight information
in the overview.

Combined vocabulary size from WSJ and Brown contained nearly 70,000 words.
We reduced this to 18,000 words by merging the infrequent ones, which were mainly
numerical values and named entities.

The cross entropy using IKN trained on WSJ and tested on Brown corpus was
9.47, while using our approach for the sparse part of the IKN estimate, the cross
entropy was only 9.27. This is a 14% improvement in terms of Perplexity.

This result shows, that using general similarity graph from WordNet we were
able to improve the estimation even on a different corpus.

4 Conclusions

The improved Similarity Based Smoothing algorithm is now capable to work on
real world data. We have found that regularized maximum entropy models provide
a more flexible way of learning the parameters of the probability distribution to
be estimated. We have also investigated that a simple Gaussian mixture model
over the words might perform well, if relevant similarity information is present
in the underlying data. We achieved 14% perplexity improvement over Interpo-
lated Kneser-Ney smoothing on real world corpus using the maximum entropy SBS
method.

Using WordNet, we created a similarity graph over words. This graph is an
external information source, we built it independently from the training corpus,
thus we expect this graph to be domain independent. Real world experiments
showed that maximum entropy version of SBS was able to utilize this large graph
and improved the bigram estimation.

The current work shows that the expectations with SBS are true. It is able to
handle large dimension real world problems as well as synthetic and low dimension
problems (e.g. POS tag bigrams).

We also showed that this kind of word representation allows us using robust
mathematical models (Logistic Regression, Maxent, Gaussian Mixtures) to conserve
the topology (i.e. distance of points in the Euclidean space maps well to distance
of words in similarity), yielding promising results.
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