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Abstract

In the past few years numerous techniques have been proposed to improve

the efficiency of basic adaptation methods like MLLR and MAP. These adap-

tation methods have a common aim, which is to increase the likelihood of

the phoneme models for a particular speaker. During their operation, these

speaker adaptation methods need precise phonetic segmentation information

of the actual utterance, but these data samples are often faulty.

To improve the overall performance, only those frames from the spoken

sentence which are well segmented should be retained, while the incorrectly

segmented data should not be used during adaptation. Several heuristic al-

gorithms have been proposed in the literature for the selection of the reliably

segmented data blocks, and here we would like to suggest some new heuristics

that discriminate between faulty and well-segmented data. The effect of these

methods on the efficiency of speech recognition using speaker adaptation is

examined, and conclusions for each will be drawn.

Besided post-filtering the set of the segmented adaptation examples, an-

other way of improving the efficiency of the adaptation method might be to

create a more precise segmentation, which should then reduce the chance of

faulty data samples being included. We suggest a method like this here as

well which is based on a scoring procedure for the N-best lists, taking into

account phoneme duration.

Keywords: speech recognition, speaker adaptation, faulty transcripts, con-

fidence measures, a posteriori phoneme probabilities

1 Introduction

The probabilistic models for speech recognition are normally trained on a large
amount of data samples that contain utterances recorded from many speakers.
While these speaker-independent models usually operate with a quite similar and
acceptable performance for most speakers, speaker-dependent models which are
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trained just on the sample utterances of a particular speaker are much more effi-
cient at the recognition task for this specific speaker. The problem with develop-
ing speaker-dependent systems for each speaker separately, however, is that large
amounts of speech training data for each speaker may be unavailable and even diffi-
cult to acquire. In order to fine-tune the speaker independent model to achieve the
efficiency of a speaker dependent model, the following important techniques have
been already proposed.

The usual approaches for improving the performance of the speaker-independent
models are the transformation of the incoming feature vectors (e.g. by VTLN,
CMN or CVN) and the fine-tuning of the parameters in statistical acoustic models
(speaker adaptation techniques). The aim of feature vector transformation-based
methods is to transform (normalize) both the training and the test data in such
a way that the classes are easier to separate. In most cases these methods try to
normalize the input data with respect to a given parameter. The VTLN (vocal
tract length normalization) method normalizes the spectrum of the input speech
data by converting it as if all the samples had been pronounced by speakers with
the same vocal tract length [10],while the basic CMN (cepstral mean normalization)
method converts the cepstral coefficients of the input data so that the samples for
each speaker have the same mean value [5].

The other approach for adjusting a speaker independent model in order to bet-
ter approximate the performance of a speaker dependent model is speaker adapta-
tion. In classical HMM-based systems various speaker-adaptation techniques have
been used with success. These techniques fine-tune the parameters of the speaker-
independent system to more ’suitable’ ones corresponding to the adaptation data
examples of a particular speaker.

In most cases, adaptation can be applied using three strategies: batch adapta-
tion, self-adaptation and on-line adaptation [4, 15]. Batch adaptation performs the
reestimation of the model parameters only after all the adaptation data samples
have been collected, so it is an off-line method. Self-adaptation is performed on
the testing data at runtime, without collecting adaptation data, so this is normally
an unsupervised method. The on-line (or incremental) adaptation technique al-
ters the parameters of the statistical model only after a block of adaptation data
samples have been enrolled, and this block of data is thrown away after the adap-
tation method has been applied. Recognition errors and faulty transcripts pose
an important problem when the above-mentioned algorithms are used. The main
advantage of the on-line adaptation technique over the self-adaptation one is that
it has access to much more information to separate the non-faulty adaptation data
samples, which could be used in the adaptation phase with more success. The other
important advantage of on-line adaptation is that it will adapt the previous model
to those data samples which have the maximal probability after enrolling a block
of data, hence this method should be much more stable than the self-adaptation
one.

Computationally, two main approaches have been proposed in the literature for
the adaptation of HMM parameters. The first is the maximum likelihood (ML) -
based framework which contains the maximum likelihood linear regression (MLLR
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[11]) approach, the maximum likelihood stochastic matching (SM) approach [18]
and the constrained transformation approach [3].Some other adaptation techniques
are based on the maximum a posteriori formulation (MAP [6]), where only the
parameters of the states corresponding to the Viterbi path (the path with maximal
probability values) are reestimated. Because the speech recognition algorithm in
our speech recognition system works in a similar way (namely it approximates the
forward probability with the maximal value along the Viterbi path), this latter
technique might be more feasible in our framework than MLLR-like techniques.
The second main approach contains discriminative adaptation techniques like MCE
(Minimum Classification Error) [9] and MMI (Maximum Mutual Information) [16,
17], all of which try to maximize the recognition accuracy explicitly for a given
vocabulary.

Our goal with the experiments presented in this paper was to improve the per-
formance of a continuous speech recognizer by applying some modifications to the
supervised adaptation process. As the first step of HMM phoneme model adapta-
tion, the recognition system has to collect the phonetic data from the utterances of
the user. To achieve this an automatic segmentation is carried out by the speech
recognizer. In Section 2 we will provide a short description about of the key aspects
of our framework. The automatic segmentation phase however can be faulty for a
variety of reasons; e.g. the initial model is of poor quality, noise has been intro-
duced by the microphone or by the user, or simply the user stutters, or misreads
words. Our aim was to exclude these faulty segmented data items from the adap-
tation or at least to reduce their number. In the literature several methods have
been proposed to tackle this problem. Confidence measures have been investigated
to help the adaptation process deal with faulty transcripts [1, 12, 7].In the latter
articles confidence measures were used to mark possible recognition errors and to
exclude the erroneously segmented words from the adaptation process. In Section
3 we also propose two confidence-measure-like methods for improving the efficiency
of speaker adaptation.

Actually, the frequency of the occurrence of faulty adaptation data samples can
also be reduced directly at the on-line speech recognition level when the automatic
segmentation for the speech signal is being performed. When the speech recog-
nizer fills up the N-best hypothesis stacks, the scores of the hypotheses can be set
to eliminate certain (possibly faulty) hypotheses from the stack. Here we give a
method like this as well in Section 3.

2 The Speech Recognizer and the Adaptation Mod-

ule

The speech recognizer employed here is a continuous density HMM-based Viterbi
N-best decoder extended with some speed-up and pruning techniques for the pur-
pose of being real-time [2]. The speed-up techniques include, for example, some
constraints for the hypothesis extension procedure, thresholds for the stack size and
for the maximum number of new hypotheses, and fast Gaussian computation tech-
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niques. The adaptation module is based on the same program code as that used in
the decoder, with the same adjustable constraints and parameters to guarantee the
equivalence between the adaptation process and the continuous speech recognition
process. Hence we can say that the program has a recognition mode, and also an
adaptation mode. The difference between the recognition mode and the adaptation
mode lies in the following points:

• When the adaptation mode is running, a huge amount of auxiliary data has
to be stored for each active hypothesis in the N-best list whose data will be
used to trace back the Viterbi path and to find the mixture and state indices
of the HMMs belonging to the Viterbi path during the adaptation process.

• In order to make the search process efficient, some hypotheses are unified
after each hypothesis extension. The unifying technique of the adaptation
mode differs from that of the speech recognition mode in the sense that in
the adaptation mode not all the hypotheses with the same phonetic history
are unified, but just those whose trace-back data can be unified without
information loss.

• Because of the large amount of stored data in the adaptation mode, the stack
size should be reduced to keep the process real-time.

When the recognizer is in the adaptation mode, it will store the following data
that will be used to trace back the Viterbi path and compute the new adapted
HMMs. These data items are:

• the probability matrix for each state of each HMM,

• the mixture index matrix for each state of each HMM,

• the state matrix (with the series of phonetic labels, respectively) containing
the state from which the given state was attained with maximal probability.

From these data items the Viterbi path, the phonetic segments and all the
other data necessary for the computation of the adapted parameters can be easily
obtained. In order to efficiently store all these data items for all the hypotheses,
these data items are kept in a tree structure. If all hypotheses share a common
root, then, up to the end of this common root, only one matrix from each type is
stored, so the algorithm has linear storage requirements.

The adaptation module can be used both for supervised adaptation and for un-
supervised adaptation. Supervised adaptation means that the uttered word series
are known. The possible phonetic transcript variants of the word series are defined
by a grammar containing rules which only permit the type of phoneme series that
could be the phonetic transcription of the given word series. This simple gram-
matic model can also take into account assimilation rules and the possibility that
there are silent gaps between the words. However, when the adaptation process is
unsupervised, not a simple grammar, but a rather complex language model is used
by the continuous speech recognizer to build up N-best lists of possible hypotheses.
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Figure 1: The process of unsupervised adaptation

After processing a few frames, the hypotheses in the N-best stack will have a com-
mon phonetic transcription prefix (they will have this, because N-best pruning is
used, and the number of hypotheses grows exponentially); afterwards this common
segment of the spoken data can be processed by applying the supervised method
(see Figure 1).

3 Reducing the Amount of Faulty Adaptation Data

3.1 Extracting the Adaptation Data

As we mentioned earlier, the adaptation process could be more efficient if faulty
adaptation data samples were removed from the well-segmented ones before the
adaptation process was carried out. We will now discuss a new and simple Viterbi
N-best cutting constraint that can be used to efficiently remove faulty adaptation
data samples. Methods like this can be computed only with a highly limited stack
size because of their high computational cost. So it cannot be normally used in the
speech recognition process, but it can be used when adaptation data extraction is
being performed, because the data samples necessary for this method are stored
and are accessible.

It is a widely accepted property of HMMs that their transitional probability
values do not model the duration of phoneme utterances very well. Moreover, the
∆ and ∆∆ feature components are strongly influenced by the phoneme duration
(because they measure how fast the features change). When samples are taken
from many different speakers, these features can be very different, so the resulting
accuracy of the phonetic segmentation could be quite low. When the duration of
the phoneme is modeled incorrectly, long phoneme durations can occur many times.
In reality this is very unlikely, except in the case when the phoneme model has to
model silent phases between two words. Our aim here is to reduce the number
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Figure 2: The histogram of the duration of all the phonemes except silence

of hypotheses containing an abnormally long phoneme utterance. Because the
Viterbi path is stored for each hypothesis and for each state of the corresponding
HMM models, the duration of the last phoneme can be computed using the Viterbi
path corresponding to the HMM state having the maximal probability (for each
particular state of a HMM there are different Viterbi paths). If the hypotheses with
an unlikely duration are punished, then hypotheses with likely phoneme durations
will be kept in the N-best list with a higher probability. With this in mind we
define an a posteriori phoneme-weighting function by which the probability score
of all hypotheses get multiplied:

ϕL =

{

1 , if L <θ

e−α(L−θ) , if L ≥θ

Here L means the duration of the phoneme computed from the Viterbi path. For
the phoneme duration threshold (θ) we used a value of 15, and for the punishment
constant (α) we used a value of -5. The duration threshold value was obtained from
the histogram above (see Figure 2), this histogram was computed on the training
database described later in the Section 4.

3.2 Confidence Measures for Adaptation

Many heuristic methods have been proposed in the literature for separating faulty
adaptation data from correctly segmented ones. Another family of methods per-
forms a weighting of the learning data samples when the adapted model is com-
puted, here the weights are based on some particular confidence values. In this
section we propose some new confidence-measure-like heuristics to reduce the num-
ber of faulty adaptation data samples.

Our first confidence measure is based on the observation that many of the in-
correct segment boundaries are wrongly positioned by just a small amount. This
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Figure 3: The histogram of the first confidence-measure scores on well-segmented
samples (solid line), and on incorrectly segmented samples (dashed line)

means that the faulty segment parts at the boundaries will generally give a lower
probability for the first and last states of the HMM. The difference between the
probability values at the segments boundaries and the probability of the interme-
diate part will be higher for the faulty data than for the correctly segmented data.
Based on this idea, we devised a simple formulation to measure this difference:

ϕ(p) =

∣
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where p is the recognized phoneme, Θ represents the HMM model, and fi is a
feature vector for the recognizer. Here ϕ is the function ranking the test phonetic
data, and a classification between the correct and faulty samples can be done using
an acceptance threshold.

In order to determine the proper threshold value, we had run an algorithm on
the training set which computed the distribution of the above-mentioned scores on
correctly segmented data and on incorrectly segmented data. The two histograms
are shown in Figure 3 above.

The second scoring method proposed by us is based on the Fisher score [13],
[8]. The Fisher score of a probabilistic model (which fits a probabilistic distribution
to the data, and uses the Bayes rule for classification) is the gradient of the log-
likelihood of a feature series with respect to the model parameters. Put formally,

Uf = ∇Θ log(P (f |Θ))
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Figure 4: The histogram of the second confidence-measure scores on well-segmented
samples (solid line), and on incorrectly segmented samples (dashed line)

Here the parameter Θ represents the model, while the parameter f stands for the
feature vector series to be modeled. The gradient vector here measures how much
the log-likelihood of the feature data series changes when the model parameters
are varied. When using a Gaussian distribution, the Fisher score components with
respect to the means of the Gaussian mixtures can be computed via the following
formula:

∇µk
log(P (f |µk)) =

m
∑

i=1

P (k|fi)Σ
−1
k (fi − µk)

Here m stands for the number of feature vectors modeled by the k-th Gaussian
distribution. The feature vector series are denoted by f , and their elements are
denoted by fi.

We used the above-defined Fisher score to construct a confidence measure which
has the following form:

ϕ(p) =
1

N

N
∑

i=1

||∇µk
log(P (fi|µk))||,

where N is the number of feature vectors, and k is the index of the mixture that
corresponds to the Viterbi path. Figure 4 above shows the distribution of the scores
for the correctly segmented data samples and for the incorrectly segmented data
samples.
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4 Experiments and Results

The adaptation technique used here was the MAP (maximum a posteriori) method,
which can be used for incremental adaptation by applying the following recursive
formula [19]:

µd,N+1 =
xN+1 + (N + α) · µd,N

N + 1 + α
.

Here the parameter N represents the number of adapting examples for the given
mixture component, while the parameter α controls how fast the mean (µd) is
altered by this linear regression procedure.

For testing purposes we used the following settings (only the main parameters
are given here):

• The continuous speech recognizer had a stack size value of 1000. The max-
imum number of new hypotheses for the phonetic hypothesis extension was
set to 250, and the log-likelihood cut-off parameter was set to 260.

• The phoneme HMM models were monophone HMMs with 3 states, each state
having a mixtures of 3 Gaussian distributions.

• The stack size of the adaptation method was 30, and the maximum number of
new hypotheses in adaptation mode was restricted to 20. The log-likelihood
cut-off parameter was set to 260.

• The recognition system used the conventional mel-frequency cepstral coeffi-
cient (MFCC) features. More precisely, 13 coefficients were extracted from
each 25 msec frame, along with their ∆ and ∆∆ values, at a frame rate of
100 frames/sec.

• The α value of the MAP adaptation formula was set to 0.3. Other values were
also tested in the interval (0, 1), but no significant difference was observed in
the results.

• The threshold for the first confidence-measure method had a value of 5, and
the threshold value used by the second method was 8. These settings were
selected to reduce a relatively high amount of faulty adaptation data (see
Figures 3 and 4).

In the experiments our own training, test and speaker adaptation databases were
employed. These databases and the continuous speech recognition system were cre-
ated by the Research Group on Artificial Intelligence, the University of Szeged and
the Laboratory of Speech Acoustics of the Budapest University of Technology and
Economics within the framework of the Hungarian Medical Dictation Project finan-
cially supported by the national fund IKTA-056/2003. The adaptation database
contained spoken sentences of 2 male(denoted by L and T) and 2 female (denoted
by A and B) speakers, each speaker uttered 17 paragraphs from the same text.
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Database A B L T Average

Normal Adaptation 93.32% 92.28% 97.52% 93.29% 94.10%
Using PAPL 94.48% 93.48% 98.10% 94.10% 95.04%

WER reduction 17.36% 15.54% 23.38% 12.07% 17.08%

Table 1: Relative word error rate reductions achieved when using the phoneme a
posteriori likelihood (PAPL) method on the adaptation data sets of four speakers
(A, B, L, T).

Database A B L T Average

Base Adaptation 94.48% 93.48% 98.10% 94.10% 94.97%
1st method 94.92% 93.16% 98.10% 94.46% 95.16%
2nd method 95.77% 93.16% 98.33% 94.32% 95.41%

WER reduction 1. 7.9% -1.32% 0% 6.10% 3.9%
WER reduction 2. 23.36% -1.32% 13.68% 3.7% 8.8%

Table 2: Relative word error rate reductions achieved when using the proposed two
confidence measures on the adaptation data sets of four speakers (A, B, L, T).

The average duration of this speech data was 6 minutes per speaker, and the total
number of phoneme examples for the 44 monophone classes was 3500 on average.
The test database contained the utterances of the same four speakers, the record-
ings of 20 medical reports being taken from each speaker. The HMMs were trained
using the MRBA database that was created by the Research Group on Artificial
Intelligence, the University of Szeged and the Laboratory of Speech Acoustics of
the Budapest University of Technology and Economics within the framework of
the Hungarian Medical Dictation Project. This database contains 85365 phoneme
examples, 26 female speakers, and 74 male speakers. The grammar model built for
testing purposes was a simple word 3-gram, with a dictionary containing some 500
words. This grammar was trained on a text corpus built from 2500 thyroid gland
medical reports. The grammar model for the supervised adaptation contained 162
assimilation rules.

Table 1 shows the results of our experiments when using the a posteriori prob-
ability multiplier for punishing the hypotheses with extremely long phoneme du-
rations in the N-best stack. The results show that there is a definite improvement
in the efficiency of the adaptation when this kind of scoring technique is applied.
The experimental results using our confidence-measure-based methods to select the
adaptation data are listed in Table 2. As the reader can see, using theses methods,
a relative word error rate (WER) reduction of 4-8% was achieved on average, but
the WER reduction was not always positive. The reason for the instability of these
methods might be due to a significant reduction in the amount of adaptation data.
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5 Conclusions and Further Work

Our results show that the efficiency of an adaptation method can be improved in two
ways suggested here: by increasing the robustness of the method which extracts the
adaptation data so that the automatically segmented data of the uttered sentence
should contain fewer incorrect segments, and by selecting and dropping probably
faulty adaptation data samples after the segmentation process. Building upon these
promising results, more advanced adaptation data filtering methods will be tried in
the near future which apply Data Description (One-Class Classification) methods
that have a better scoring mechanism for phonetic segments, and are also better
able to separate faulty data samples from the good data samples.
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