
Acta Cybernetica 18 (2008) 503–527.

Two New Approximation Algorithms for the

Maximum Planar Subgraph Problem∗

Timo Poranen
†

Abstract

The maximum planar subgraph problem (MPS) is defined as follows: given
a graph G, find a largest planar subgraph of G. The problem is NP -hard
and it has applications in graph drawing and resource location optimization.
Călinescu et al. [J. Alg. 27, 269-302 (1998)] presented the first approximation
algorithms for MPS with nontrivial performance ratios. Two algorithms were
given, a simple algorithm which runs in linear time for bounded-degree graphs
with a ratio 7/18 and a more complicated algorithm with a ratio 4/9. Both
algorithms produce outerplanar subgraphs.

In this article we present two new versions of the simpler algorithm. The
first new algorithm still runs in the same time, produces outerplanar sub-
graphs, has at least the same performance ratio as the original algorithm,
but in practice it finds larger planar subgraphs than the original algorithm.
The second new algorithm has similar properties to the first algorithm, but it
produces only planar subgraphs. We conjecture that the performance ratios
of our algorithms are at least 4/9 for MPS.

We experimentally compare the new algorithms against the original simple
algorithm. We also apply the new algorithms for approximating the thickness
and outerthickness of a graph. Experiments show that the new algorithms
produce clearly better approximations than the original simple algorithm by
Călinescu et al.

Keywords: maximum planar subgraph, maximum outerplanar subgraph,
thickness, outerthickness, triangular cactus heuristic, approximation algo-
rithm

1 Introduction

A graph is planar if it admits a plane drawing where no two distinct edges intersect
apart from their endpoints, otherwise the graph is non-planar. Let G = (V,E) be a

∗Work funded by the Tampere Graduate School in Information Science and Engineering (TISE)
and supported by the Academy of Finland (Project 51528). The results of this paper have origi-
nally published in the PhD thesis [32] of the author.

†Department of Computer Sciences, P.O. Box 607, FIN-33014 University of Tampere, Finland,
E-mail: tp@cs.uta.fi

504 Timo Poranen

graph without loops and parallel edges. If a graph G′ = (V,E′) is a planar subgraph
of G such that every graph G′′ obtained from G′ by adding an edge from E \ E′

is non-planar, then G′ is called a maximal planar subgraph of G. Let G′ = (V,E′)
be a maximal planar subgraph of G. If there is no planar subgraph G′′ = (V,E′′)
of G with |E′′| > |E′|, then G′ is a maximum planar subgraph. A maximal planar
subgraph is maximal in the sense that adding edges is not possible and a maximum
planar subgraph is maximal with respect to the cardinality of its edge set.

A planar graph is outerplanar if it admits a plane drawing where all its vertices
lie on the same face and no two distinct edges intersect apart from their endpoints.
Maximal and maximum outerplanar subgraphs are defined analogously.

Maximum planar subgraphs have applications in facility layout [17] and graph
drawing [20, 22]. The problems of finding a maximum planar subgraph or a maxi-
mum outerplanar subgraph are denoted respectively throughout this work by MPS
and MOPS. Both problems are known to be NP-hard [26, 38]. Therefore, heuristic
algorithms are needed to find good approximations. Several methods for approx-
imating MPS are given in the literature, see for example a survey by Liebers [25]
and the references given there.

The performance ratio of an approximation algorithm for a maximization prob-
lem is the worst case ratio of solutions obtained to the cost of optimal solution. The
performance ratio measures the solution quality of an approximation algorithm, the
closer to 1 the ratio is, the better solutions the algorithm guarantees. A simple way
to find an approximation for MPS is to produce a spanning tree for the input graph.
Since a spanning tree of an n-vertex graph contains n − 1 edges and a maximum
planar subgraph could contain at most 3n− 6 edges, the performance ratio of this
method is 1/3 [10].

Călinescu et al. [5] presented the first approximation algorithms with non-
trivial performance ratios for MPS and MOPS. Their method, triangular cactus

heuristic, gives a performance ratio of 4/9 for MPS and 2/3 for MOPS. These
approximations can be achieved by a complicated algorithm having a running time
of O(m3/2n log6 n) for a graph with n vertices and m edges. There is no known
implementation of this algorithm. Călinescu et al. also presented a simple version of
their algorithm having performance ratios 7/18 and 7/12 respectively. The simple
algorithm runs in linear time for bounded-degree graphs.

In this paper we introduce two new algorithms based on the simple version of
the algorithm presented by Călinescu et al. for MPS and MOPS. Our first algo-
rithm also runs in linear time for bounded-degree graphs and it has at least the
same performance ratio as the original simple algorithm. The second algorithm
has properties similar to those of the first algorithm, but it produces only planar
subgraphs. We conjecture that the new algorithms have at least the same perfor-
mance ratio as the more complicated algorithm. Our experiments show that the
new algorithms produce clearly better approximations than the original simple al-
gorithm. Since the better algorithm by Călinescu et al. is difficult to implement,
it is not included in our experiments.

The thickness of a graph is the minimum number of planar subgraphs into which
the graph can be decomposed. The outerthickness of a graph is the minimum

Two New Approximation Algorithms for the Maximum Planar... 505

number of outerplanar subgraphs into which the graph can be decomposed. The
thickness and outerthickness are topological invariants that measure the graph’s
embeddability into the plane. Determining the thickness of a graph plays an im-
portant role in VLSI circuit design: the minimum number of planar subgraphs
whose union is the graph corresponding to an electronic circuit provides an effi-
cient way to find a decomposition for the distinct layers of the circuit [30].

Determining the thickness of a given graph is NP-hard [28] but the complexity
status of determining the outerthickness is not known. The thickness is known for
hypercubes [23], complete graphs [1, 2] and complete bipartite graphs [3]. Similar
results for outerthickness have been reported by Guy and Nowakowski [14, 15].

Only one method to obtain approximations for thickness has been introduced
in the literature: extract maximal planar subgraphs from the original graph until
the remaining graph is planar [8, 30]. All earlier algorithms apply planarity tests
to construct large planar subgraphs.

A new approach presented here for approximating the thickness of a graph is
to extract planar subgraphs in such a way that the extracted graph is constructed
without using planarity testing algorithms. In this paper we apply the simple al-
gorithm by Călinescu et al. [5] with our new algorithms for approximating the
thickness and outerthickness of a graph. Our experiments show that the new algo-
rithms give better approximations than the original simple algorithm.

The rest of this paper is organised as follows. Next we give graph theoretical
definitions and introduce a greedy algorithm for MPS with the extraction algorithm
for the thickness problem. We also describe the triangular cactus heuristic. The
new algorithms and their theoretical properties are discussed in Section 3. The
experimental comparison of the algorithms for MPS is presented in Section 4 and
then the algorithms are applied to the thickness problem in Section 5. The last
section concludes our paper.

2 Preliminaries

2.1 Graph-theoretical definitions

For the basic graph-theoretical definitions, we refer to Harary [16]. Throughout
this work we assume that graphs are simple and connected. An m×n grid graph is
the product of paths of length m and n and contains mn vertices and 2mn−n−m
edges.

A triangular structure is a graph in which every cycle is a triangle. A triangular

cactus is a triangular structure in which every edge is in some cycle. A triangular
structure is outerplanar, since the graph cannot contain a subdivision of K4 or
K3,2.

A maximal outerplanar graph (mop) is an outerplanar graph such that inserting
any edge produces a non-outerplanar graph. Next we present a useful characteri-
zation for mops [4] having at least three vertices.

506 Timo Poranen

Definition 2.1. Mops having at least three vertices can be defined recursively as
follows:

1. K3 is a mop.

2. If G is a mop which is embedded in the plane so that every vertex lies on the
outer face and G′ is obtained by joining a new vertex to two vertices of an
edge on the outer face of G, then G′ is a mop.

3. H is a mop if and only if it can be obtained from K3 by a finite sequence of
applications of statement (2).

2.2 A greedy algorithm for MPS

Throughout this work, all algorithms for MPS return a subgraph of the input
graph. The cost of a solution is the number of edges in the returned approximation.
Thickness algorithms return a partition of the edges of the input graph. The cost
of a solution is the number of subsets in the partition.

A greedy algorithm to search for a maximal planar subgraph is to apply a pla-
narity testing algorithm and to add as many edges as possible to a planar subgraph.
See Algorithm 2.1 (GRE) for a detailed description of this edge adding method.
The performance ratio of GRE is 1/3 for MPS [10].

GRE(G = (V,E), G′ = (V,E′))

1 E′′ = E \ E′;
2 while there is an edge (u, v) in E′′

3 do E′ ← E′ ∪ {(u, v)}, E′′ ← E′′ \ {(u, v)};
4 if (V,E′) is not planar
5 then E′ ← E′ \ {(u, v)};
6 return (V,E′);

Algorithm 2.1: GRE for MPS.

GRE takes as input a graph G = (V,E) and its planar subgraph G′ = (V,E′).
The algorithm returns a maximal planar subgraph containing the input graph as a
subgraph. Our reason for assuming that a planar subgraph is given as input to the
algorithm is that then we can apply GRE to improve solutions of other heuristics.
This approach is described in Section 3. The running time of GRE heuristic is
O(|V ||E|) if a linear time planarity testing algorithm [18] is applied at Step 4.

2.3 The thickness heuristic

Next we describe the basic approach to obtain approximations for thickness. The
extraction method was first studied by Cimikowski [8] and Mutzel et al. [30]. For

Two New Approximation Algorithms for the Maximum Planar... 507

a detailed description of the extracting method see Algorithm 2.2 (Thick). Step 3
of the algorithm is usually given as “find a maximal/maximum planar subgraph”
instead of finding just a planar subgraph.

Thick(G = (V,E))

1 P ← ∅ ; t← 1;
2 while E 6= ∅
3 do find a planar subgraph G′ = (V,Et) of G;
4 E ← E \ Et;
5 P ← P ∪ {Et};
6 t← t + 1;
7 return P ;

Algorithm 2.2: Basic structure of the extraction algorithm for the thickness prob-
lem.

Thick takes as input a graph G = (V,E) and it returns a partition of the
edges into subsets inducing planar subgraphs. The running time of Algorithm 2.2
depends heavily on the method used in Step 3. If a maximal planar subgraph
is recognised from the input graph by applying GRE, the running time of the
algorithm is O(|V |2|E|).

2.4 Triangular cactus heuristics

Next we introduce the triangular cactus algorithms for MPS and MOPS [5]. Given
a connected graph G = (V,E), the triangular cactus heuristic is based on finding
a subgraph G′ = (V,E′) whose components are triangular cacti. The subgraph is
constructed in the following way: E′ is initialized to be empty. Triangles having all
vertices in different components in G′ are searched from G and added to E′. After
all suitable triangles have been added to G′, the subgraph is connected by adding
edges until the resulting graph is a connected triangular structure. See Algorithm
2.3 (CA) for a detailed description of the triangular cactus heuristic. Steps 2 and 3
are called Phase 1 (the construction phase of a triangular cactus) and Steps 4 and
5 are called Phase 2 (the connection phase) of the algorithm.

Algorithm CA can be implemented to run in linear time as shown by Călinescu
et al. [5], provided that the maximum degree of the graph is bounded by a constant.
The theorem below concludes the properties of CA.

Theorem 2.2. [5] CA runs in linear time for bounded-degree graphs. The perfor-
mance ratio of CA for MPS is 7/18 and for MOPS 7/12.

If a maximum triangular cactus is searched for in Phase 1 instead of the trian-
gular cactus of CA, the performance ratio increases to 4/9 for MPS and 2/3 for
MOPS [5]. The algorithm is denoted by CAM .

508 Timo Poranen

CA(G = (V,E))

1 E′ ← ∅;
2 while there is a triangle (v1, v2, v3) in G such that

v1, v2 and v3 belong to different components of (V,E′)
3 do E′ ← E′ ∪ {(v1, v2), (v2, v3), (v3, v1)};
4 while there is an edge (v1, v2) ∈ E such that v1 and v2 belong to

different components in (V,E′)
5 do E′ ← E′ ∪ {(v1, v2)};
6 return (V,E′);

Algorithm 2.3: CA for MPS and MOPS.

All the known algorithms for finding a maximum triangular structure are very
complicated. The method proposed by Călinescu et al. [5] was based on reducing
the problem of finding a maximum triangular structure to a graphic matroid parity
problem [27] and then solving it with an algorithm by Gabow and Stallman [11].
This method leads to running time O(m3/2 log6 n). There are no known imple-
mentations of the algorithm. The following theorem formulates the properties of
CAM .

Theorem 2.3. [5] The performance ratio of CAM for MPS is 4/9 and for MOPS
2/3. CAM runs in O(m3/2 log6 n) for a graph with m edges and n vertices.

3 New algorithms for MPS and MOPS

In this section we introduce first our new algorithms, CA1 for MPS and MOPS
and CA2 for MPS. We also study the theoretical properties of the algorithms and
compare them with CA and CAM .

When a triangle is found in CA, it always connects three vertices from differ-
ent components of the subgraph. It is easy to see that not all the vertices of a
triangle need belong to different components. It is enough to have two vertices
v1 and v2 joined by an edge (v1, v2) in one component and the third vertex v3 in
another component forming a triangle (v1, v2, v3). When triangles are added using
this principle whenever possible, and otherwise requiring that the vertices of the
triangle belong to different components, the planarity is not violated. If any trian-
gle is added with this new principle, the resulting graph is no longer a triangular
structure. To ensure that the constructed subgraph is also outerplanar, it is nec-
essary and sufficient to demand that (v1, v2) belongs to at most two triangles at
the same time. The algorithm applying this restriction and producing outerplanar
subgraphs is denoted by CA1, and the algorithm without the restriction is denoted
by CA2. The properties of CA1 are studied first. The exact description of CA1
is given in Algorithm 3.1.

Two New Approximation Algorithms for the Maximum Planar... 509

CA1(G=(V,E))

1 E′ ← ∅;
2 repeat while there is a triangle (v1, v2, v3) in G such that (v1, v2) belongs

to exactly one triangle in E′ and v3 to a different component of
(V,E′)

3 do E′ ← E′ ∪ {(v2, v3), (v3, v1)};
4 if there is a triangle (v1, v2, v3) in G such that v1, v2 and v3

belong to different components of (V,E′)
5 then E′ ← E′ ∪ {(v1, v2), (v2, v3), (v3, v1)};
6 until the number of edges in E′ does not increase during the loop;
7 while there is an edge (v1, v2) ∈ E such that v1 and v2 belong to

different components in (V,E′)
8 do E′ ← E′ ∪ {(v1, v2)};
9 return (V,E′);

Algorithm 3.1: CA1 for MPS and MOPS.

CA1 was inspired by the recognition algorithm for maximal outerplanar graphs
proposed by Mitchell [29]. The algorithm was based on extracting degree 2 vertices
from the graph. In CA1, vertices of degree 2 are added to an outerplanar subgraph.

Figure 1 provides an illustration of the behaviour of CA and CA1 for the graph
cimi-g4 [9], which is a non-planar graph with 10 vertices and 22 edges. A maximum
planar subgraph of this graph contains 20 edges. The triangles are numbered in the
order they are found. This order depends on the implementation of the algorithm
and the representation of the graph. CA first finds four triangles and then it
connects one remaining vertex with the rest of the subgraph. The planar subgraph
contains 13 edges. CA1 finds first one triangle, then it adds 5 triangles that increase
the number of edges by 2 and finally a triangle with three new edges is added. The
size of the planar subgraph is now 16.

Next we show that CA1 can be implemented to run in linear time, if the max-
imum degree of the input graph is bounded by a constant.

Lemma 3.1. CA1 runs in linear time for bounded-degree graphs.

Proof. To establish that CA1 runs in linear time, it is sufficient to note that the
steps where a triangle connecting two vertices from the same component and one
vertex from another component take in total linear time provided that the degree of
the graph is bounded. The total time for all other operations is linear for bounded-
degree graphs by Theorem 2.2.

Suppose that the degree of a graph is bounded by a constant d. Each time an
edge (v1, v2) is considered in Step 2, it takes at most d2 time to check the adjacency
lists of v1 and v2 to recognise a triangle. Since it is enough to consider each edge
only once in the first while loop, CA1 runs in time O(n) for bounded-degree graphs.

510 Timo Poranen

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
������
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

��
��
��
��
��

��
��
��
��
��

�������������������������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��
��
��
��
��

��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�

�
�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��
��
��
��
��

��
��
��
��
����
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

������������������

���
���
���
���g

dh

i

a

f
e

bj

c

d

e

f

g

h

i

j

a
5

b
f

g

j

h

4

2

1 3
a

c

d

e

f

h

i

c

ac

1

2
4

5

7

3

i

b
e

d

b j

gCA

CA2

cimi−g4

CA1

3

2
1

4

6

7

6

Figure 1: Illustrations of planar subgraphs for graph cimi-g4 found by CA, CA1
and CA2. Triangles are enumerated in the order they have been found in a sample
run.

To show that the performance ratio of CA1 for MPS is at least 7/18 and for
MOPS at least 7/12, the original proof of Theorem 2.2 can be applied directly. We
only outline the important property of CA1 that makes it possible to apply the
proof technique introduced by Călinescu et al. [5].

Lemma 3.2. The performance ratio of CA1 for MPS is at least 7/18 and for
MOPS at least 7/12.

Proof. Let GCA and GCA1 be the planar subgraphs produced by CA and CA1 after
Phase 1 respectively. No triangle was added to GCA if two of its vertices were in
the same component. The same holds for GCA1: there is no triangle in the input

Two New Approximation Algorithms for the Maximum Planar... 511

graph with its vertices in different components in GCA1. The original proof was
based on this observation, and therefore, it follows that CA1 has at least the same
performance ratio as CA.

The proof of the upper bound given by Călinescu et al. [5] for the performance
ratio of CA cannot be applied to CA1, but it is clear that the ratio cannot exceed
1/2, as shown by the following constructive proof.

Lemma 3.3. The performance ratio of CA1 for MPS is at most 1/2.

Proof. Let G be an n×n grid graph with n ≥ 2. The graph has in total n2 vertices
and 2n2− 2n edges. Since G is planar, the maximum planar subgraph is the graph
itself. CA1 finds a planar subgraph with n2 − 1 edges by constructing a spanning
tree of G. The ratio between the number of edges found by CA1 and the number
of edges in G is

n2 − 1

2n2 − 2n
.

The limit of the ratio is 1/2 as n tends to infinity.

Next we present a sample graph which shows that the performance ratio of CA1
for MOPS is at most 2/3.

Lemma 3.4. The performance ratio of CA1 for MOPS is at most 2/3.

Proof. Let G be a 2 × n grid graph. G has in total 2n vertices and 3n − 2 edges.
Since G is outerplanar, the maximum outerplanar subgraph is the graph itself.
CA1 finds an outerplanar subgraph with 2n− 1 edges by constructing a spanning
tree of G. The ratio between the number of edges found by CA1 and the number
of edges in G is

2n− 1

3n− 2
.

The limit of the ratio is 2/3 as n tends to infinity.

We can now conclude the properties of CA1 for MPS and MOPS.

Theorem 3.5. The performance ratio of CA1 for MPS is at least 7/18 and at
most 1/2. The performance ratio of CA1 for MOPS is at least 7/12 and at most
2/3. The algorithm runs in linear time for bounded-degree graphs.

There is a gap between the lower and upper bounds of the performance ratios
of CA1 for MPS and MOPS, and the exact performance ratio is left open. One
way to confirm or refute that the performance ratio is at least 4/9 for MPS is to
show that a subgraph produced by CA1 has always at least the same number of
edges as a maximum triangular structure of a graph. We present conjecture for the
performance ratio of CA1 for MPS and MOPS. The computational experiments
reported in the next section support the conjecture.

512 Timo Poranen

Conjecture 3.6. The performance ratio of CA1 for MPS is at least 4/9 and for
MOPS exactly 2/3.

Next we study CA2. From the condition in the first while loop of CA1 it follows
that at the end of the algorithm an edge of G′ belongs at most to two triangles.
It is not necessary in the case of planar subgraphs to require that one edge should
belong to at most two triangles at the same time. The restriction “(v1, v2) belongs
to exactly one triangle in E′“ of the while loop of CA1 can be changed to “(v1, v2)
belongs to E′“. This observation leads to Algorithm CA2. Now outerplanarity is
violated if at the end of the algorithm any edge belongs to more than two triangles
(a forbidden subgraph K3,2 is created [16]). The subgraph remains planar. In
Figure 1, there is an illustration of the behaviour of CA2. Note that the edge
(f, i) belongs to three triangles and hence, outerplanarity is violated. The planar
subgraph found by CA2 contains 16 edges.

CA2(G = (V,E))

1 E′ ← ∅;
2 repeat while there is a triangle (v1, v2, v3) in G such that (v1, v2) belongs

to E′ and v3 to a different component of (V,E′)
3 do E′ ← E′ ∪ {(v2, v3), (v3, v1)};
4 if there is a triangle (v1, v2, v3) in G such that

v1, v2 and v3 belong to different components in (V,E′)
5 then E′ ← E′ ∪ {(v1, v2), (v2, v3), (v3, v1)};
6 until the number of edges in E′ does not increase during the loop;
7 while there is an edge (v1, v2) ∈ E such that v1 and v2 belong to

different components in (V,E′)
8 do E′ ← E′ ∪ {(v1, v2)};
9 return (V,E′);

Algorithm 3.2: CA2 for MPS.

The linear running time of CA2 for bounded-degree graphs follows directly by
Theorem 2.2 for CA and by Lemma 3.1 for CA1. The bounds for the performance
ratio of CA2 are the same as they are for CA1. The following theorem concludes
the properties of CA2.

Theorem 3.7. The performance ratio of CA2 for MPS is at least 7/18 and at
most 1/2, and the algorithm runs in linear time for bounded-degree graphs.

We give a similar conjecture for the performance ratio of CA2 as for CA1. This
conjecture is also supported by the experiments reported in the next section.

Conjecture 3.8. The performance ratio of CA2 for MPS is at least 4/9.

Next we present three simple corollaries that describe the properties of the
algorithms.

Two New Approximation Algorithms for the Maximum Planar... 513

A difference between CA1, CA2, CA and CAM is that CA1 and CA2 recognise
maximal outerplanar graphs. This follows directly from Definition 2.1, which gave
a recursive method to construct a maximal outerplanar graph.

Corollary 3.9. CA1 and CA2 recognise maximal outerplanar graphs.

The second corollary yields a graph class for which CA1 and CA2 find better
approximations than CAM .

Corollary 3.10. There are graphs for which the limit of the ratio of the solutions
of CA1 (or CA2) and CAM is 4/3.

Proof. Let G be a maximal outerplanar graph with n vertices. G has 2n− 3 edges.
Since CA1 (CA2) finds all edges of a maximal outerplanar graph and a maximum
triangular structure of a maximal outerplanar graph contains 3⌊(n−1)/2⌋ edges [5],
the ratio of the solutions of CA1 (CA2) and CAM is 4/3 as n tends to infinity.

Our third corollary describes the differences between CA2 and CA1 (CAM).

Corollary 3.11. There are graphs for which the limit of the ratio of the solutions
of CA2 and CA1 (or CAM) is 2.

Proof. Let G be a graph with a single triangle containing vertices v1, v2 and v3.
Add to G a new vertex vi, where i > 3, and two edges (vi, v1) and (vi, v2). Continue
this process and denote the graph by G′. If G′ has k vertices, it has 2(k − 2) + 1
edges. Since CA2 finds all edges of G′ and CA1 (CAM) finds k + 1 (k) edges, the
ratio of the solutions of CA2 and CA1 (CAM) is 2 as n tends to infinity.

CA, CA1 and CA2 can be made greedy by giving the subgraph constructed in
Phase 1 as input to GRE. These greedy versions are denoted by GCA, GCA1 and
GCA2. Since GRE connects the subgraph, at least the same number of edges is
added as in Phase 2 of CA, CA1 and CA2. Therefore, GCA, GCA1 and GCA2
have the same performance ratios as CA, CA1 and CA2 respectively.

4 MPS experiments

In this section, different algorithms for MPS are compared. More detailed compar-
ison statistics for the algorithms can be found in [32].

4.1 MPS algorithms and comparison measures

We implemented the following algorithms for MPS: CA, CA1, CA2 and their
greedy versions GCA, GCA1 and GCA2 with the pure greedy algorithm GRE.
The results of CA and CA1 are valid for MOPS.

Algorithms CA, CA1 and CA2 were randomized by always choosing the edges
and start vertices randomly. The greedy heuristics were randomized by handling
the edges in a random order.

514 Timo Poranen

Table 1: Test graph statistics for MPS.

Graph data The best solutions
graph |V | |E| ub CA CA1 CA2 GRE GCA GCA1 GCA2
cimi-g1 10 21 19⋆ 11 13 13 19 19 19 19
cimi-g2 60 166 165⋆ 88 117 117 165 165 165 165
cimi-g3 28 75 73⋆ 38 49 49 73 73 73 73
cimi-g4 10 22 20⋆ 13 16 16 20 20 20 20
cimi-g5 45 85 82⋆ 59 73 73 82 82 82 82
cimi-g6 43 63 59⋆ 42 42 42 59 59 59 59
g10 25 71 69⋆ 36 47 47 69 69 69 69
g11 25 72 69⋆ 36 47 47 69 69 69 69
g12 25 90 69⋆ 36 47 47 67 66 67 67
g13 50 367 144 73 97 97 119 120 128 125
g14 50 491 144 73 97 97 127 132 134 133
g15 50 582 144⋆ 73 97 97 133 136 138 137
g16 100 451 294 137 162 167 175 193 200 196
g17 100 742 294 147 194 196 196 224 237 229
g18 100 922 294 147 197 197 210 230 244 239
g19 150 1064 444 218 274 283 266 305 326 323
rg100.1 100 261 260 119 124 125 150 157 157 157
rg100.2 100 271 270 118 125 127 151 160 162 162
rg100.3 100 297 294 120 128 128 153 163 163 164
rg100.4 100 334 294 126 136 140 155 172 175 174
rg100.5 100 373 294 137 153 153 162 186 186 186
rg150.1 150 387 386 171 174 175 214 222 223 223
rg150.2 150 402 401 176 182 182 213 224 225 226
rg150.3 150 453 444 171 179 179 221 237 230 232
rg150.4 150 473 444 180 190 190 217 236 241 238
rg150.5 150 481 444 178 185 185 221 237 236 236
rg200.1 200 514 513 222 227 227 270 278 283 280
rg200.2 200 519 518 216 219 219 268 274 277 277
rg200.3 200 644 594 235 243 244 280 303 306 309
rg200.4 200 684 594 237 254 261 282 308 317 317
rg200.5 200 701 594 235 251 253 285 311 314 314
rg300.1 300 814 813 324 330 330 390 402 406 407
rg300.2 300 1159 894 355 376 377 412 455 461 461
rg300.3 300 1176 894 360 376 378 411 457 461 464
rg300.4 300 1474 894 389 422 426 432 497 508 509
rg300.5 300 1507 894 400 428 430 438 504 515 512
tg100.1 100 300 294⋆ 138 188 197 292 292 294 290
tg100.3 100 324 294⋆ 142 191 197 264 290 284 283
tg100.5 100 344 294⋆ 138 187 197 251 262 268 272
tg100.7 100 364 294⋆ 138 191 197 236 255 262 276
tg100.9 100 384 294⋆ 140 189 196 226 260 263 272
tg200.1 200 604 594⋆ 275 375 397 582 594 592 594
tg200.3 200 624 594⋆ 279 382 397 558 579 592 586
tg200.5 200 644 594⋆ 275 373 397 515 551 569 578
tg200.7 200 664 594⋆ 275 372 397 492 552 578 589
tg200.9 200 684 594⋆ 279 377 397 487 543 558 566

⋆ Upper bound is known to be optimal.

Two New Approximation Algorithms for the Maximum Planar... 515

All algorithms were written in C++ and their source codes are available as
part of the the program apptopinv [31]. LEDA 4.3 [24] was used for the planarity
test. All test runs were executed on a computer (1992 BogoMips) which has one
AMD Athlon 1GHz processor with 256 Megabytes memory running under Linux
Mandrake 8.1.

CA, CA1, CA2, GRE, GCA, GCA1 and GCA2 were repeated 100 times for
graphs with no more than 100 edges and 25 times for larger graphs.

To compare the algorithms, we concentrated on studying the running time and
performance differences between the algorithms. Methods and measures for the
experimental analysis of the heuristics used in this work are mainly given by Golden
and Stewart [12].

Running times for the algorithms were obtained by running all test runs as
background processes and performing the time command to obtain the total run-
ning time. Finally, this total running time was divided by the number of repeats
to obtain the average running time of a run.

For each algorithm, it is easy to select the best solution from all repeats for
a test instance. We can then count the total number of best solutions for each
algorithm, that is, an algorithm is awarded 1 point, if it obtained the best or tied
the best solution for a test instance among all the algorithms.

Another measure is the total number of points for an algorithm: a heuristic is
awarded p points, if it obtained the pth best solution for an instance. The average
rank of an algorithm is the total number of points divided by the number of test
instances.

4.2 Test graph set for MPS

Since MPS is a much studied optimization problem, there is already a wide variety
of suitable test graphs. We mainly used the same test graph set as Resende and
Ribeiro [35].1

The test graph set used in this work contains 46 graphs. Statistics for the graphs
are given in Table 1. For all graphs we have listed the name of the graph (graph)
and the number of vertices (|V |) and edges (|E|). Then we give the upper bound
for MPS (ub). If the upper bound is known to be optimal, it is marked with a star
(⋆). Finally, the best solution found over all runs for the heuristics is given.

For graphs with an unknown optima, the upper bound was obtained by applying
Euler’s polyhedron formula [16]. If the number of edges was less than the bound
obtained from the formula, the upper bound is the number of edges decreased by
one for non-planar graphs.

The first six graphs (cimi-g1 – cimi-g6) in Table 1 were taken from the experi-
ments of Cimikowski [7]. These graphs have relevance to applications or have their
origin in other research papers. Graphs cimi-g4, cimi-g5 and cimi-g6 were intro-
duced originally in [19], [21] and [37] respectively. Graph cimi-g6 does not contain

1The graphs can be downloaded from http://www.research.att.com/~mgcr/data/

planar-data.tar.gz (April 27, 2006).

516 Timo Poranen

any triangles. Graphs g10 – g19 are Hamiltonian graphs constructed by Goldsmith
and Takvorian [13].

Graphs rg100.1 – rg300.5 are random graphs with the number of vertices varying
between 100 and 300 and the number of edges varying between 261 and 1507. Table
1 also contains graphs with a planar subgraph of maximum size (tg100.1 – tg200.9).
The graphs were generated by Cimikowski [7].

4.3 Comparison of CA, CA1 and CA2 for MPS

The best solutions for the heuristics are reported in Table 1. The difference in
the performance of the fast algorithms is clear. CA1 and CA2 find quite similar
solutions, and they outperform CA with a clear margin. For all 46 test instances,
algorithm CA2 finds the best solution, and CA1 finds the same solution as CA2
for 22 graphs. The solutions of CA are inferior to those of CA1 and CA2 for
graphs that contain triangles. The only graph for which all the algorithms found
the same solution was cimi-g6. The average rank of the heuristics is 2.96 for CA,
1.52 for CA1 and 1.00 for CA2. The comparison statistics are collected in Table
2.

Table 2: Comparison of the performance of the fast MPS heuristics.

CA CA1 CA2
Number of times heuristic is
the best or tied for the best 1 22 46
Average rank 2.96 1.52 1.00

Figure 2 shows the average running times of one run for CA, CA1 and CA2
as a function of the number of edges. For graphs having more than 1600 edges,
the running times are taken from the graphs used in the thickness algorithms com-
parison given in Section 5. Further, Figure 2 has the average running times of the
greedy heuristics to illustrate the running time differences.

The running times of CA, CA1 and CA2 are less than one tenth of a second
for all graphs up to 1600 edges. For the largest graphs, r9 with 449550 edges, used
in the thickness comparison, we obtained the following average running times for
the heuristics: 4.2, 5.8 and 6.5 seconds for CA, CA1 and CA2 respectively.

The running time differences between CA, CA1 and CA2 are in general very
small. Only with graphs having more than 10000 edges can it be seen that CA is
slightly faster than the other two algorithms. The sharp turns in the curve are the
influence of the different ratios of the number of vertices and edges in a test graph.
All three heuristics run faster for a sparse graph than for a dense graph with the
same number of edges.

To further compare CA2 and CA we studied the relative differences of their
solutions. See Figure 3 for the ratios of the poorest solutions (see [32] for these
results) of CA2 and the best solutions of CA. The worst solutions by CA1 and CA2

Two New Approximation Algorithms for the Maximum Planar... 517

0.001

0.01

0.1

1

10

100

1000

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

GCA2

0.001

0.01

0.1

1

10

100

1000

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

GCA1

0.001

0.01

0.1

1

10

100

1000

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

GCA

0.001

0.01

0.1

1

10

100

1000

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

GRE

0.001

0.01

0.1

1

10

100

1000

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

CA

0.001

0.01

0.1

1

10

100

1000

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

CA1

0.001

0.01

0.1

1

10

100

1000

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

CA2

Figure 2: Average running times of MPS heuristics. Notice that the axes are
logarithmic.

were always at least as good as the best solution by CA. The greatest improvement
was for tg200.1 with a 1.44 times better solution when CA2 was used instead of
CA. In general, the greatest improvements were obtained for graphs containing a
planar subgraph of maximum size (tg100.1 – tg200.9). The solutions of CA2 were
on average 20 percentages better than those of CA.

The worst case ratios of CA solutions and the optimal (marked with a dot) or
the best known (marked with a circle) solution [32] are shown in Figure 4. Our
experiments give evidence on the conjectured performance ratio 4/9 for the new
algorithms: the solutions by CA1 and CA2 were never more than 4/9 away from
the optima. For the ratios of the poorest found solutions and the optimal or the
best known solution for CA2, see Figure 5. The solutions of CA1 and CA2 were
never less than 0.61 and 0.65 times the optima respectively.

4.4 Comparison of GRE, GCA, GCA1 and GCA2 for MPS

It is clear that when a greedy method to add edges is applied instead of just
connecting the subgraphs in Phase 2 of CA, CA1 and CA2, the solutions remain
at least the same. The main questions are, thus, how much the greedy approach
improves the solutions, how much longer running time is needed, and if there are
graphs for which CA, CA1 or CA2 outperform GRE.

As shown in Subsection 4.3, CA2 outperformed CA1, but when the greedy
algorithms were considered, GCA1 produced approximations similar to GCA2.

518 Timo Poranen

0.9

1

1.1

1.2
1.3
1.4
1.5

0 200 400 600 800 1000 1200 1400 1600

 W
or

st
 C

A
2

vs
. B

es
t C

A

Edges

0.9

1

1.1

1.2
1.3
1.4
1.5

0 200 400 600 800 1000 1200 1400 1600

 W
or

st
 C

A
2

vs
. B

es
t C

A

Edges

Figure 3: Ratios of the worst solutions of CA2 and the best solutions of CA.

0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

Edges

0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

Edges

0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

Edges

0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

Edges

Optimal solution
0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

Edges

Best known solution

Figure 4: Ratios of the worst solutions of CA and the optimal or the best known
solution.

GCA1 found the best or the tied best solution for 30 and GCA2 for 31 from 46
test instances, but the average ranks for these two heuristics were both 1.37. One
explanation for the success of GCA1 is that the method of constructing a solution
in Phase 1 of CA2 is greedier than that in CA1. The solution of CA2 could
contain more edges than that of CA1, but it is more difficult to insert additional
edges into the subgraph. GCA and GRE found the best or tied best solutions
for 13 and 9 graphs and the average ranks were 2.41 and 3.41 respectively. These
results are listed in Table 3.

Table 3: Comparison of the performance of the greedy MPS heuristics.

GRE GCA GCA1 GCA2
Number of times heuristic is
the best or tied for the best 9 13 30 31
Average rank 3.41 2.41 1.37 1.37

The running time differences of the greedy heuristics are in general very small as
shown in Figure 2. For graphs with fewer than 1600 edges, GCA1 and GCA2 are

Two New Approximation Algorithms for the Maximum Planar... 519

0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

2

Edges

0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

2

Edges

0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

2

Edges

0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

2

Edges

Optimal solution
0.3

7/18
8/18
1/2

0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 r
at

io
 o

f C
A

2

Edges

Best known solution

Figure 5: Ratios of the worst solutions of CA2 and the optimal or the best known
solution.

the fastest heuristics and their average running time curves coincide. For the larger
graphs (running times are taken from graphs used in the thickness comparison),
GRE seems to be the fastest by a small margin.

We recognised test instances for which the new algorithms outperformed GRE.
CA1 and CA2 found better solutions for graph g19. This shows that CA, CA1 and
CA2 can find better solutions for large and sparse graphs than GRE in significantly
shorter computation time. This coincides with the theoretical properties of CA1,
CA2 and GRE.

CA did not find better solutions than GRE in our tests, but it has been reported
that CA sometimes achieves better approximations for graphs with density varying
between 0.03 and 0.15 when the algorithms are applied for MOPS [33].

GCA2 improves the solutions of CA2 on average by 30 percent. The same
holds for GCA and GCA1.

5 Thickness experiments

5.1 Thickness algorithms and their implementation

For the thickness problem, we tested the extraction algorithm Thick by applying
in Step 4 algorithms CA, CA1, CA2, GCA, GCA1, GCA2 and GRE. Also,
we implemented an ST heuristic which in each iteration extracts the set of tree-
edges found by a depth-first search. In what follows, these algorithms are simply
denoted by the name of the extraction method. All these algorithms approximate
thickness, but algorithms ST, CA and CA1 directly produce approximations for
outerthickness.

ST, CA, CA1 and CA2 were repeated 25 times for graphs with fewer than
2000 edges, 10 times for graphs having more than 2000 edges but not more than
250000 edges and 5 times for larger graphs. Greedy heuristics for the thickness
were applied only for graphs with 79800 edges or less. The number of repetitions
was 25 for graphs with fewer than 2000 edges and 10 times for graphs with fewer

520 Timo Poranen

Table 4: Test graph statistics for the thickness problem.
Graph data The best solutions

graph |V | |E| lb ST CA CA1 CA2 GRE GCA GCA1 GCA2
K10 10 45 3⋆ 5 4 3 4 3 3 3 3

K15 15 105 3⋆ 8 7 5 5 4 4 4 4

K20 20 190 4⋆ 11 9 7 6 5 5 5 5

K30 30 435 6⋆ 16 13 10 9 8 7 7 7

K40 40 780 7⋆ 21 18 12 12 11 9 9 9

K50 50 1225 9⋆ 27 22 15 15 13 12 11 11

K60 60 1770 11⋆ 32 27 18 18 16 14 13 13

K70 70 2415 12⋆ 38 32 21 21 19 16 15 15

K80 80 3160 14⋆ 43 36 24 24 21 19 17 17

K90 90 4005 16⋆ 48 41 27 27 24 21 19 20

K100 100 4950 17⋆ 54 45 30 31 27 23 21 22

K150 150 11175 26⋆ 81 69 45 45 42 39 35 34

K200 200 19900 34⋆ 108 91 60 60 56 52 47 47

K300 300 44850 51⋆ 164 137 92 90 84 79 71 72

K400 400 79800 67⋆ 217 183 121 120 112 105 96 98

K500 500 124750 84⋆ 271 230 152 149 - - - -

K600 600 179700 101⋆ 334 277 185 186 - - - -

K700 700 244650 117⋆ 379 320 210 218 - - - -

K800 800 319600 134⋆ 437 366 247 250 - - - -

K900 900 404550 151⋆ 490 412 276 281 - - - -

K1000 1000 499500 167⋆ 551 456 303 315 - - - -

r20,92 20 92 2⋆ 6 4 4 4 2 3 3 3

r40,311 40 311 3 9 7 6 5 4 5 4 4

r60,556 60 556 4 10 8 7 7 6 5 5 5

r80,939 80 939 5 13 10 8 8 7 7 6 6

r100,1508 100 1508 5 17 13 10 10 9 8 8 8

r0 1000 14985 6 17 15 14 14 14 12 12 12

r1 1000 49950 17 53 43 32 31 36 30 27 27

r2 1000 99900 34 103 89 57 57 - - - -

r3 1000 149850 51 160 130 82 83 - - - -

r4 1000 199800 67 213 177 108 110 - - - -

r5 1000 249750 84 264 224 133 138 - - - -

r6 1000 299700 101 312 270 158 170 - - - -

r7 1000 349650 117 363 316 184 198 - - - -

r8 1000 399600 134 413 361 209 230 - - - -

r9 1000 449550 151 465 411 235 261 - - - -

rr1 1000 5000 2 6 6 6 6 5 5 5 5

rr2 1000 25000 9 26 22 19 19 20 17 16 16

rr3 1000 50000 17 51 43 32 31 36 30 27 27

rr4 1000 75000 26 76 65 44 44 50 43 37 37

rr5 1000 100000 34 101 88 57 57 - - - -

rr6 1000 125000 42 126 112 69 70 - - - -

rr7 1000 150000 51 151 136 82 83 - - - -

rr8 1000 175000 59 176 160 94 96 - - - -

rr9 1000 200000 67 201 184 107 108 - - - -

rr10 1000 225000 76 226 209 119 121 - - - -

rr11 1000 250000 84 251 233 132 134 - - - -

⋆ Lower bound is known to be optimal.
- The algorithm is not applied for this graph.

than 5000 edges. For larger graphs only one run was performed. The comparison
measures given in Section 4 also hold for the thickness experiments.

5.2 Test graph set for thickness

Algorithms for the thickness problem are compared in the literature using complete
graphs, complete bipartite graphs and random graphs [8, 30, 34]. We use mainly the

Two New Approximation Algorithms for the Maximum Planar... 521

same graphs as in the earlier experiments, but we have included larger complete and
random graphs to the test graph set. Since CA, CA1 and CA2 behave similarly to
ST for graphs without triangles, bipartite graphs are excluded from the comparison.
Only ST, CA, CA1 and CA2 are run for the largest graphs. In previous works,
graphs with fewer than 5000 edges have been used, while in this work the largest
graph considered has 499500.

Information on the test graphs is collected in Table 4. For all graphs, we have
listed the name of the graph (graph) and the number of vertices (|V |) and edges
(|E|). Then the lower bound for thickness (lb) is given. If the lower bound is known
to be optimal, it is marked with a star (⋆). For graphs with unknown optimum,
the lower bound is obtained by applying Euler’s polyhedron formula [16].

The total number of test graphs is 47.2 The first 21 graphs in Table 4 are
complete graphs with the number of vertices varying between 10 and 1000. The
next five graphs are random graphs with the number of vertices varying between
20 and 100 and the number of edges varying between 92 and 1508. Graphs r0 –
r9 are random graphs with 1000 vertices and the number of edges varying between
5000 and 449500. Graphs rr1 – rr11 are random regular graphs generated with an
algorithm by Steger and Wormald [36]. The degree of the vertices varies between
10 and 500.

5.3 Comparison of ST, CA, CA1 and CA2 for thickness

The total number of test graphs for the fast algorithms was 47. The best solutions
for the fast heuristics and the greedy heuristics are listed in Table 4.

CA1 and CA2 outperformed ST and CA by a clear margin. CA1 and CA2
found the best solution for 39 and 27 graphs and the average ranks were 1.17 and
1.43 respectively. CA and ST respectively found only once and twice tied best
solutions and their average ranks were 2.87 and 3.91. These comparison results are
collected in Table 5. The reason for the relative performance of CA2 and CA1
seems to be that CA2 adds many triangles with a common edge, and therefore it
constructs planar graphs with large degree. This means that the vertices that are
added later get smaller degree. For large regular graphs, it seems to be a better
strategy to extract subgraphs that are as regular as possible. CA1 found better
solutions for large complete graphs (K600 – K1000) and dense random graphs (r3
– r9 and rr6 – rr11). For complete graphs with fewer than 600 vertices and sparse
random graphs (r1 – r2 and rr0 – rr5), CA2 obtained approximations at least as
good as CA1.

The running time difference of the heuristics is clear. The relative order of
the algorithms from the slowest to the fastest is CA, CA1, CA2 and ST. The
explanation for the relative order of CA and CA1 (CA2) is that CA1 (CA2)
extracts larger planar subgraphs and therefore the number of edges in the remaining
graph decreases faster. See Figure 6 for the average running times in seconds of

2The random graphs can be downloaded from http://http://www.cs.uta.fi/~tp/apptopinv

(April 27, 2006). The other graphs can be constructed by giving the command line parameters
for apptopinv [31].

522 Timo Poranen

Table 5: Comparison of the performance of ST, CA, CA1 and CA2 for thickness.

ST CA CA1 CA2
Number of times heuristic is
the best or tied for the best 1 2 39 27
Average rank 3.91 2.87 1.17 1.43

1

10-2

10-1

1

10

102

103

104

105

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

GRE

1

10-2

10-1

1

10

102

103

104

105

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

GCA1

1

10-2

10-1

1

10

102

103

104

105

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

CA

1

10-2

10-1

1

10

102

103

104

105

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

CA2

1

10-2

10-1

1

10

102

103

104

105

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

CA1

1

10-2

10-1

1

10

102

103

104

105

10 100 1000 104 105 106

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Edges

ST

Figure 6: Average running times of ST, CA, CA1, CA2, GCA1 and GRE for
thickness. Notice that the axes are logarithmic.

CA, CA1, CA2 and ST as a function of the number of the edges. The sharp turns
in the curves are due to the influence of the random test graphs. The running
time is higher for a random graph containing the same number of edges than for
a complete graph. The average running times of GRE and GCA1 are drawn to
illustrate the running time differences of the heuristics.

5.4 Comparison of GRE, GCA, GCA1 and GCA2 for thick-

ness

The greedy algorithms achieved significantly better approximations than their non-
greedy variants. For example, GCA1 decreased the solutions of CA1 to 30 per-
centages: CA1 got a solution of 27 for K90, but the GCA1 solution was only 19.
The average improvements were about 15 – 20 percentages.

GCA1 and GCA2 respectively found 24 and 21 times a best solution whereas
GCA and GRE respectively found a best solution only 9 and 6 times. The average

Two New Approximation Algorithms for the Maximum Planar... 523

0

200

400

600

800

1000

1044

1100

1 25 50 75 100 125 150 175 200

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f K
35

0

Iteration

GCA1

0

200

400

600

800

1000

1044

1100

1 25 50 75 100 125 150 175 200

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f K
35

0

Iteration

GRE

0

200

400

600

800

1000

1044

1100

1 25 50 75 100 125 150 175 200

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f K
35

0

Iteration

CA1

0

200

400

600

800

1000

1044

1100

1 25 50 75 100 125 150 175 200

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f K
35

0

Iteration

CA2

0

200

400

600

800

1000

1044

1100

1 25 50 75 100 125 150 175 200

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f K
35

0

Iteration

CA

0

200

400

600

800

1000

1044

1100

1 25 50 75 100 125 150 175 200

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f K
35

0

Iteration

ST

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

1 10 20 30 40 50 60

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f r
1

Iteration

GCA1

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

1 10 20 30 40 50 60

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f r
1

Iteration

GRE

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

1 10 20 30 40 50 60

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f r
1

Iteration

CA1

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

1 10 20 30 40 50 60

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f r
1

Iteration

CA2

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

1 10 20 30 40 50 60

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f r
1

Iteration

CA

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

1 10 20 30 40 50 60

T
he

 s
iz

e
of

 th
e

ex
tr

ac
te

d
su

bg
ra

ph
 o

f r
1

Iteration

ST

Figure 7: Sizes of the extracted planar subgraphs as a function of the number of
iterations for all heuristics. In the left there are traces for K350 and in the right for
r1.

Table 6: Comparison of the performance of GRE, GCA, GCA1 and GCA2 for
thickness.

GRE GCA GCA1 GCA2
Number of times heuristic is
the best or tied for the best 6 9 24 21
Average rank 3.27 2.23 1.08 1.19

ranks for the heuristics were 3.27 for GRE, 2.23 for GCA, 1.08 for GCA1 and 1.19
for GCA2. These statistics are collected in Table 6.

The running times of the heuristics were very close to that of GRE, although
GCA1 ran slightly faster in the case of the largest graphs. The average running
times of GCA1 and GRE are illustrated in Figure 6. The running time differences
between the greedy and fast heuristics are considerable: GCA1 runs 10 to 100

524 Timo Poranen

times slower than CA1.

There were graphs for which CA1 and CA2 outperformed GRE. CA1 and
CA2 found better approximations for graphs r1, rr2, rr3 and rr4. These results are
not very reliable, since for these graphs GRE was run only once. One explanation
for the better performance of CA1 and CA2 against GRE for large random graphs
is that the sizes of the extracted planar subgraphs are larger than they are with
GRE. This is illustrated in Figure 7, where there are sample traces of ST, CA,
CA1, CA2, GRE and GCA1 for a complete graph with 350 vertices (not included
in the test graph set) and for r1. For K350, GCA1 found the best solution and GRE
found the second best solution. The extracted planar subgraphs are of maximum
size in the beginning of the runs for both heuristics, but the number of edges in
the extracted subgraphs of GRE decreases more rapidly than that of GCA1. The
sizes of the extracted subgraphs of CA, CA1 and CA2 do not vary as much as with
GRE and GCA1. The solutions of CA1 and CA2 are of the same quality, and
the solutions of ST are slightly poorer. For the random graph r1 in the figure on
the right, CA1 and CA2 extracts in the beginning much larger planar subgraphs
than GRE. Now CA1 and CA2 yielded better approximations. The solutions of
CA are worse than the solutions of GRE, but clearly better than the solutions of
ST. The sizes of the extracted planar subgraphs of GCA1 were much larger at the
beginning than those of CA1 and CA2 and the final solution of GCA1 was the
best.

6 Conclusions

We presented two new approximation algorithms, CA1 and CA2, for the maximum
planar subgraph problem and showed that the performance ratio of both algorithms
is at least 7/18. The new algorithms run in linear time for bounded-degree graphs.
We conjectured that the performance ratio of CA1 and CA2 is at least 4/9. All
experiments performed support the conjecture. A clear goal for future research is
to solve the performance ratios of CA1 and CA2. Moreover, the status of the
relative performance of the better triangular cactus algorithm by Călinescu et al.
[6] and the new algorithms is open.

Călinescu et al. applied their triangular cactus approach for approximating
weighted MPS and MOPS. Whether our new algorithms are applicable for the
weighted case remains an open question.

Acknowledgements

The author thanks the anonymous referees for their valuable comments.

Two New Approximation Algorithms for the Maximum Planar... 525

References

[1] Alekseev, V.B. and Gonchakov, V.S. Thickness for arbitrary complete graphs.
Mat. Sbornik., 143:212–230, 1976.

[2] Beineke, L.W. and Harary, F. The thickness of the complete graph. Can. J.
Math, 17:850–859, 1965.

[3] Beineke, L.W., Harary, F., and Moon, J.W. On the thickness of the complete
bipartite graphs. Proc. Camb. Phil. Soc., 60:1–5, 1964.

[4] Beyer, T., Jones, W., and Mitchell, S. Linear algorithms for isomorphism of
maximal outerplanar graphs. J. ACM, 26(4):603–610, 1979.

[5] Călinescu, G., Fernandes, C.G., Finkler, U., and Karloff, H. A better approxi-
mation algorithm for finding planar subgraphs. J. Algorithms, 27(2):269–302,
1998.

[6] Călinescu, G., Fernandes, C.G., Karloff, H., and Zelikovsky, A. A new approxi-
mation algorithm for finding heavy planar subgraphs. Algorithmica, 36(2):179–
205, 2003.

[7] Cimikowski, R. An analysis of heuristics for the maximum planar subgraph
problem. In Proceedings of the 6th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 322–331, 1995.

[8] Cimikowski, R. On heuristics for determining the thickness of a graph. Info.
Sci., 85:87–98, 1995.

[9] Cimikowski, R. An analysis of heuristics for graph planarization. J. Inf. Opt.
Sci., 18(1):49–73, 1997.

[10] Cimikowski, R. and Coppersmith, D. The sizes of maximal planar, outerplanar,
and bipartite planar subgraphs. Discr. Math., 149:303–309, 1996.

[11] Gabow, H.N. and Stallmann, M. Efficient algorithms for graphic matroid
intersections and parity. In Automata, Languages and Programming: 12th
Colloquium, volume 194 of Lecture Notes in Computer Science, pages 210–
220, 1985.

[12] Golden, B.L. and Stewart, W.R. Empirical analysis of heuristics. In Lawler,
E.L. and Lenstra, J.K., editors, The Traveling Salesman Problem, pages 207–
249. John Wiley & Sons, 1985.

[13] Goldschmidt, O. and Takvorian, A. An efficient graph planarization two-phase
heuristic. Networks, 24:69–73, 1994.

[14] Guy, R.K. and Nowakowski, R.J. The outerthickness and outercoarseness of
graphs I. The complete graph & the n-cube. In Bodendiek, R. and Henns,
R., editors, Topics in Combinatorics and Graph Theory: Essays in Honour of
Gerhard Ringel, pages 297–310. Physica-Verlag, 1990.

526 Timo Poranen

[15] Guy, R.K. and Nowakowski, R.J. The outerthickness and outercoarseness of
graphs II. The complete bipartite graph. In Bodendiek, R., editor, Contempo-
rary Methods in Graph Theory, pages 313–322. B.I. Wissenchaftsverlag, 1990.

[16] Harary, F. Graph Theory. Addison-Wesley, 1971.

[17] Hasan, M. and Osman, I.H. Local search algorithms for the maximal planar
layout problem. Int. Trans. Oper. Res., 2(1):89–106, 1995.

[18] Hopcroft, J. and Tarjan, R.E. Efficient planarity testing. J. ACM, 21:549–568,
1974.

[19] Jayakumar, R., Thulasiraman, K., and Swamy, M.N.S. O(n2) algorithms for
graph planarization. IEEE Trans. Comp.-Aided Design, 8(3):257–267, 1989.

[20] Jünger, M. and Mutzel, P. Maximum planar subgraphs and nice embeddings:
Practical layout tools. Algorithmica, 16:33–59, 1996.

[21] Kant, G. An O(n2) maximal planarization algorithm based on PQ-trees. Tech-
nical Report RUU-CS-92-03, Utrecht University, Department of Computer Sci-
ence, 1992.

[22] Kant, G. Augmenting outerplanar graphs. J. Algorithms, 21:1–25, 1996.

[23] Kleinert, M. Die Dicke des n-dimensionale Würfel-Graphen. J. Comb. Theory,
3:10–15, 1967.

[24] LEDA version 4.3 (commercial). Available at http://www.

algorithmic-solutions.com.

[25] Liebers, A. Planarizing graphs - a survey and annotated bibliography. JGAA,
5(1):1–74, 2001.

[26] Liu, P.C. and Geldmacher, R. On the deletion of nonplanar edges of a graph.
In Proceedings of the 10th Southeastern Conference on Combinatorics, Graph
Theory, and Computing, pages 727–738, 1977.

[27] Lovász, L. and Plummer, M.D. Matching Theory. Elsevier, 1986.

[28] Mansfield, A. Determining the thickness of graphs is NP-hard. Math. Proc.
Camb. Phil. Soc., 93:9–23, 1983.

[29] Mitchell, S.L. Linear algorithms to recognize outerplanar and maximal outer-
planar graphs. Inf. Proc. Lett., 9(5):177–189, 1979.

[30] Mutzel, P., Odenthal, T., and Scharbrodt, M. The thickness of graphs: a
survey. Graphs Comb., 14:59–73, 1998.

[31] Poranen, T. Apptopinv - user’s guide. Technical Report A-2003-3, University
of Tampere, Department of Computer Sciences, 2003.

Two New Approximation Algorithms for the Maximum Planar... 527

[32] Poranen, T. Approximation Algorithms for Some Topological Invariants of
Graphs. PhD thesis, University of Tampere, 2004.

[33] Poranen, T. Heuristics for the maximum outerplanar subgraph problem. J.
Heuristics, 11:59–88, 2005.

[34] Poranen, T. A simulated annealing algorithm for determining the thickness of
a graph. Info. Sci., 172:155–172, 2005.

[35] Resende, M.G.C. and Ribeiro, C.C. A GRASP for graph planarization. Net-
works, 29:173–189, 1997.

[36] Steger, A. and Wormald, N.C. Generating random regular graphs quickly.
Comb. Probab. Comput., 8:377–396, 1999.

[37] Tamassia, R., Di Battista, G., and Batini, C. Automatic graph drawing and
readability of diagrams. IEEE Trans. Syst. Man Cybern., 18(1):61–79, 1988.

[38] Yannakakis, M. Node- and edge-deletion NP-complete problems. In Proceed-
ings of the 10th Annual ACM Symposium on Theory of Computing, pages
253–264, 1978.

Received 10th January 2005

