
Acta Cybernetica 18 (2008) 561–578.

Prosper: Developing Web Applications Strongly

Integrated with Prolog

Levente Hunyadi∗

Abstract

Separating presentation and application logic, defining presentation in a

declarative way and automating recurring tasks are fundamental issues in

rapid web application development. Albeit Prolog is widely employed in

intelligent systems and knowledge discovery, creating a web interface for Pro-

log has been a cumbersome task producing poorly maintainable code, which

hinders harnessing the power of Prolog in information systems. This paper

presents a framework called Prosper that facilitates developing new or extend-

ing existing Prolog applications with a presentation front-end. The framework

relies on Prolog to the greatest possible extent, supports code re-use, and in-

tegrates easily with web servers. As a result, Prosper simplifies the creation

of complex, maintainable web applications running either independently or

as part of a heterogeneous system without leaving the Prolog domain.

Keywords: Prolog, web application development framework, application

integration, xml, heterogeneous systems

1 Introduction

In developing information systems, modelling complex business processes is a chal-
lenging task. The model has to cater for many exceptions to a general rule, has to
adapt to current business demands and has to be able to cope with large volumes
of heterogeneous data sources. Flexibility and quick development are key issues.
On the other hand, Prolog can ease development in a variety of ways. By straight-
forward formalisation of business rules, it yields verifiable code that is still close to
the application domain. Extended bnf-style grammars contribute to the flexibil-
ity of data transformations between different data pools. In addition, constraint
programming and intelligent reasoning based on background knowledge are other
fields where compact Prolog programs can be formulated for complex problems. In
other words, the expressiveness of Prolog can contribute greatly to the development
of information systems.

∗Budapest University of Technology and Economics, Department of Automation and Applied
Informatics, H-1111 Budapest, Goldmann György tér 3., Hungary. E-mail: hunyadi@aut.bme.hu

562 Levente Hunyadi

Using Prolog in information systems inevitably requires integration with other
parts of a larger system. However, the execution model of Prolog and imperative
languages differs substantially, making it difficult to embed Prolog code in a pro-
gram written in C#, Java or C++. Even though libraries [16, 14] are available to
support integration to some degree, the resultant code is often very obscure, type
safety is not enforced and debugging code is problematic.

One solution to this problem is presentation-level integration, indicated by the
proliferation of xml and web services. In this approach, it is not the applications
themselves that are integrated but output produced by one application is consumed
by the other, allowing the use of completely different programming languages in
the process.

An interesting application field of presentation-level integration is component-
based development of web portals. In this case, portals are not built as monolithic
applications but are composed of small, fairly independent components, called web
parts or portlets. Each component generates presentation-level code (e.g. xhtml or
xml), which is combined into a whole by a web portal framework. In this scenario,
Prolog can be used to generate parts of the portal that exhibit intelligent behaviour
while the rest can be developed by means of conventional imperative programming
languages.

The idea of generating html or xml output in Prolog is not new: several
frameworks [5, 14, 10, 11] exist that give excellent support for structured display
of data in web pages. However, neither of them promotes a clear definition of
presentation (i.e. how data are displayed) that is distinct from application logic
(i.e. the main job of the application). As a result, presentation and application
(or business) logic are interleaved, which in most cases eventually leads to poor
maintenance. In addition, complex presentation logic, such displaying parts of a
page based on a condition, or displaying variations of a given content repetitively
for each element of a list are tasks that cannot be accomplished in a generic manner.
Moreover, it would be desirable that these tasks be purely restricted to authoring
xhtml or xml documents, possibly by using special annotation.

The proposed system, named PROlog Server Pages Extensible aRchitecture (or
Prosper in short) [8], aims to combine the advantages of conventional web applica-
tion development methods (such as separation of presentation and application logic
and declarative definition of presentation by means of xml) with the potential in
the Prolog language in order to create more intelligent web portals. It supports
integrating Prolog applications in existing information systems as well as extending
existing Prolog applications with a web interface.

Prosper is implemented mainly in swi-Prolog and partially in C. swi-Prolog is
compliant to part one of the Prolog iso standard and has comprehensive support for
multi-threading. iso-compliance caters for portability while multi-threading helps
harness the potential in parallel execution. Network communication interfaces have
been written in C to ensure maximum performance. The Prosper project (including
full source code) is available at SourceForge.net [13].

The rest of the paper is structured as follows. Section 2 gives a brief intro-
duction to methodologies and technologies the proposed framework makes use of.

Prosper: Developing Web Applications Strongly Integrated with Prolog 563

Section 3 elaborates on design trade-offs, inspects related work and analyses possi-
ble approaches to create a framework for developing a web front-end with special
attention to the chosen approach. In Section 4, the architecture of the proposed
framework is laid out. Communication of remote parties over a network can be
broken down into a series of requests and associated replies: Section 5 traces the
way a request produces a reply in Prosper by means of an example. Section 6
gives some implementation details and performance metrics while Section 7, with
which this paper concludes, summarises contributions and outlines possible ways
of extension and future work.

Throughout the paper, knowledge of Prolog with basics on sgml-languages
(especially xml [3] and (x)html [12]) and some experience in developing web ap-
plications with an application development framework (such as asp.net [9] and/or
Java [2]) is assumed. One should consult the indicated sources for further details
on these technologies.

2 Background

Essentially, the web operates in a request-and-reply manner according to the Hyper-
Text Transfer Protocol [6]. First, the client formulates a request querying a docu-
ment. The request is received by the server, which looks up the requested document
in its file system and returns it to the client in reply. In the case of dynamic content
generation, the request received by the server does not correspond to a file system
entry but is forwarded to a possibly external application that outputs the reply
based on the request context (request parameters, session information, user prefer-
ences, etc.). Web application development frameworks are inserted into the chain
either in place of the server (e.g. Java web solutions) or between the server and
the external application (e.g. the asp.net framework), and expose a programmer-
friendly view of the web environment to the application developer.

Web frameworks taking the place of the server require a thorough implementa-
tion to provide general web service functionality (e.g. include serving static content)
with sufficient security. For this end, it is often desirable to use a trusted web server
behind which applications are placed rather than using a separate endpoint for each
application. In this scenario, frameworks are often connected to servers by means
of server apis (application programming interfaces). Here, the application is loaded
as a module of the server and the server forwards requests that match some criteria
(e.g. url pattern or extension) to the application instead of processing them itself.
This is called strong coupling.

Common Gateway Interface (cgi) describes a protocol that provides loose cou-
pling. In order to process matching requests, the server invokes an external applica-
tion (i.e. one that is not integrated with the server) with the given request context
(query parameters, user settings, etc.) and returns the output it produces to the
client. Loose coupling separates the operating system processes involved, which
therefore minimally affect each other, increasing flexibility. In addition, fatal errors
in the application do not endanger the server. Nonetheless, repetitive invocation of

564 Levente Hunyadi

web server

framework

API

user agent

CGI

application

FastCGI

application

application

internet

Figure 1: The web service chain. The dashed rectangle indicates the boundary of
process space, continuous arrows refer to persistent, while dashed arrows to non-
persistent connections.

an external program can take up valuable resources (by successive process initiali-
sations, re-opening database connections, etc.). Fastcgi [4] is a persistent version
of the cgi protocol that allows applications to remain active after serving a request
(thereby maintaining database connections, etc.) yet preserving their independence
(i.e. no modification of server internals is required and the application works with
web servers of multiple vendors).

The request and response chains and the relationships of the various application
types are shown in Figure 1.

Applications that process many simultaneous requests have to be multi-threaded
so that processing a request does not keep others waiting. Hence, each request is
assigned a separate newly initialised thread. However, on high demand this can lead
to the so-called thrashing, where threads with already assigned jobs lose computing
resources to dozens of rapidly launched new threads, eventually leading to no thread
performing useful task. Thus, applications often make use of the worker thread
model. In this model, a constant number of threads execute concurrently. Jobs are
assigned threads from a pool, which return to the pool after the job is complete.
This allows fast processing of simultaneous requests with the elimination of thread
startup costs and stability upon high demand.

Many web development platforms make use of the model-view paradigm. In this
paradigm, application logic (what the program does) and visual presentation (how
the results are displayed) are strictly separated. Presentation is defined in a declar-
ative manner, often by means of a markup document (such as xml or xhtml),
albeit additional code that drives the presentation layer (such as data binding or
events) may be required in a code-behind file. On the other hand, application logic
is written in the native language of the platform. While presentation may reference
objects in application logic, the reverse is not true. This allows presentation and ap-
plication logic to be created (more) independently and caters for easier maintenance
of both. While not every web development framework makes it compulsory, the
pattern can be considered fairly wide-spread, and is recognised as a key condition
to creating complex web applications.

Prosper: Developing Web Applications Strongly Integrated with Prolog 565

env(html, [], [

env(body, [lang=hu],

heading(1, title),

text,

ref(’http://www.aut.bme.hu’, hyperlink)

])

])

<html>

<body lang="hu">

<h1>title</h1>

text

hyperlink

</body>

</html>

Figure 2: A PiLLoW Prolog term (above) and the equivalent html document it
produces (below, ignoring white space).

3 Possible approaches and related work

In order to expose a web front-end, an application has to emit xml or (x)html
documents based on application logic. This can be accomplished in two different
ways:

1. producing and emitting presentation markup code directly using the platform
language, or

2. embedding snippets of code written in the platform language within presen-
tation markup code.

Generating web content directly in a Prolog program (1st approach), possibly
with the help of general-purpose libraries, is fairly straightforward. The PiLLoW
library [5], available in many Prolog implementations, is a notable representative of
this approach. As exemplified by the library, the close relationship of Prolog terms
and the hierarchical structure of html easily lends itself to composing the web page
in the form of terms (Figure 2), which are then transformed to and output as plain
text on demand. By means of uninstantiated variables in the term representation,
simple templates can be created.

Nevertheless, a Prolog term representation is inherently not visual and inte-
grates poorly into existing web authoring tools (such as web page designers). More-
over, the approach does not promote clear separation of application logic and pre-
sentation, so that programmers are tempted to violate the model-view paradigm,
which eventually leads to more difficult maintenance. Also, a stand-alone Prolog
server replying to requests on a dedicated port is often assumed, which is hard to

566 Levente Hunyadi

<?, member(number=N, Get),

forall((between(1, N, X), factorial(X, Y)),

?>

The factorial of <?= X ?> is <?= Y ?>.

<?), ?>

Figure 3: An excerpt from a dynamically generated html server page composed
with embedded Prolog escape sequences. The snippet lists all factorials from 1 to
N. N is specified as a query string parameter.

incorporate into a complex environment with an existing web server. However, a
library such as PiLLoW can relieve the programmer from the majority of recurring
tasks and can thus contribute greatly to web application development, especially
in simple scenarios. Commonly aided tasks include parsing http get and post
parameters, generating forms, http cookies and session maintenance.

Embedding pieces of Prolog in the presentation layer (2nd approach) is another
natural approach, which can be thought of as the “inside out” version of the pre-
vious one, motivated by various successful server-side technologies such as php [1].
Here, web pages are composed as (x)html rather than as Prolog terms, and Pro-
log calls are inserted in the text by means of special escape sequences. The helper
library parses the page into a predicate consisting of a series of write/1 statements
and the equivalents of the embedded Prolog calls. Many projects that take this
approach exist in the Prolog domain, [10] and [11] are two such examples.

Albeit simple, this approach is generally insufficient for larger projects as it is
weakly structured. Apparently, even repetitively displaying a variation of a block
of text as in Figure 3 produces code that is difficult to comprehend. More complex
nesting is even harder to implement merely by means of skipping in and out of
escaped blocks. Clearly, escape sequences lead to interleaved application logic and
presentation, and are hence extremely difficult to maintain or extend.

Another variant of the second approach is composing web pages in an exter-
nal framework, such as jsp or asp.net, and embedding foreign language calls to
Prolog. PrologBeans for Java and PrologBeans.net for the .net platform [14],
both available as sicstus extensions, are representatives of this variant. Here, all
web-related issues are handled by an external framework, which provides optimised
solutions to general patterns in web authoring and offers rapid application devel-
opment. In order to call Prolog predicates, however, wrapper objects, written in
the native language of the framework, are required that marshal calls to the Prolog
engine. In fact, from a design perspective, the approach entails two parts, so-called
stubs. The wrapper object constitutes the first stub, while its Prolog counterpart
the other. The stubs maintain a tcp or piped connection to each other through
which Prolog call parameters and results are transmitted, usually as a stream of
characters.

While practical in harnessing the benefits of a web development framework,
this approach undoubtedly requires experience in programming both Prolog and the

Prosper: Developing Web Applications Strongly Integrated with Prolog 567

<html logic-module="factorial">

<h1>Factorial example</h1>

<psp:assign var="E" expr="{atom_number(http_get(number))}">

<psp:for-all function="between(1, E)" iterator="N">

<psp:insert function="factorial(N)" />

</psp:for-all>

</psp:assign>

</html>

:- module(factorial, [factorial/2]).

factorial(Number, Factorial) :- ...

Figure 4: The Prosper example document factorial.xhtml (above) and the Prolog
module factorial.pl associated with it (below). Some xhtml elements (e.g. ul) have
been omitted and full namespaces are not shown for brevity.

external encapsulating language. From a performance point of view, stubs introduce
a further level of indirection into the web service chain and often operate inefficiently
because the Prolog and the foreign language execution model are vastly different.
Lastly, debugging Prolog embedded in foreign code is substantially harder, which
can greatly increase development time.

Prosper offers a balanced mix of the two main approaches. It is a variant of
the first approach in the sense that the majority of request processing and con-
tent generation is performed in Prolog or Prolog-integrated libraries. Only Prolog
programming experience is required and development is eased through improved
debugging. On the other hand, it is closer to the second approach in the sense that
it adopts the model-view paradigm of rapid application development frameworks
by splitting web applications into an application logic and a presentation layer.
Application logic is coded as a regular Prolog module, while presentation is an
(x)html document with some elements and attributes carrying extra information
for Prosper to realise so-called visual transformation rules (to be explained in de-
tail). Figure 4 shows a web page and the associated application logic that lists all
factorials up to N, functionally equivalent to the web page generated by the snip-
pet in Figure 3. Despite its verbosity, the presentation layer is not interleaved with
application logic and retains its structure as a regular xhtml document. Roughly
speaking, Prosper can be viewed as an extension of PiLLoW with a more robust
visual front-end. Section 4 elaborates on the design of the proposed framework.

4 Architectural overview

From a design perspective, Prosper can be decomposed into two major layers (Fig-
ure 5). The lower layer, Prolog Web Container, either acts as a stand-alone web
server or maintains a direct persistent connection to the web server through the

568 Levente Hunyadi

����������	����
���
����

������
������

�����������
���������

���������
�
��
��

��������������
���

���������������
���������

�������������������

�������	��
�
�����

������

�������
���

�������
����������

�����
������
����������

Figure 5: The architecture of the proposed framework.

Fastcgi protocol. The Fastcgi module transmits data to and from the Prolog
framework. In addition to acting as or communicating with the web server, Pro-
log Web Container parses headers and payload associated with http requests into
Prolog terms and generates them for replies, maintains a worker thread pool and
assigns jobs to threads. The primary task of the container is to isolate the com-
munication protocol and provide a natural view of request and session data for the
programmer. In accordance, the container provides similar facilities as other Pro-
log libraries in use, PiLLoW in particular, i.e. reversing content encoding, parsing
query strings, etc.

Prolog Server Pages, built on top of the container, defines an xml-based doc-
ument model. The conventional xml document model is extended with special
elements belonging to a dedicated namespace each of which realises a transforma-
tion rule. A transformation rule describes how the (visual) content of an element
is transformed based on attributes, and the local and global context of the given
element. Local context corresponds to variables instantiated in server documents,
while global context refers to request context as extracted by Prolog Web Container
and exposed as Prolog predicates by the context assertion module. In assigning val-
ues to local variables, Prosper offers the so-called expression language. Expression
language can be seen as an extension to the is/2 predicate to include basic atom
manipulation, request context variables and user-defined functions.1

Prosper includes a predefined set of special elements implementing the most
common transformation rules such as conditionals and iteration constructs. How-
ever, the set of transformation rules is not restricted. Relying on the extension

1In this paper, a Prolog function corresponds to a predicate all of whose arguments are strictly
inbound except for the last, which is strictly outbound, and which should be unified with a ground
term and is interpreted as the return value of the function. This corresponds to the Mercury [7]
definition of function.

Prosper: Developing Web Applications Strongly Integrated with Prolog 569

infrastructure, the user may create new modules that contain hook predicates reg-
istered for steps associated with reply generation. Modules correspond to xml
namespaces and exported hook predicate names to element names in server page
documents. In fact, it is via hook predicates that the predefined transformation
rules are realised in the framework, which means – in the extreme case – that they
can also be redefined. Special elements and their implementor hook predicates are
declared in a configuration file. The configuration file also holds connection set-
tings to the web server and parallel execution parameters required by Prolog Web
Container.

Apart from the visual part of Prolog Server Pages, the logic modules give real
power to the architecture. While independent from Prolog Server Pages documents,
they provide the code-behind that encapsulates true application logic as conven-
tional Prolog modules. Server pages can reference code-behind in a variety of ways:
assign server page variables based on application logic, test for the satisfiability of
predicates (goals), and formulate conditions using the return value of functions,
each of which may affect visual layout.

Prolog modules constituting application code reside in a dedicated directory,
the so-called logic module repository. Similarly, Prosper maintains a document
repository, which is the default location to search for server pages.

5 Generating a reply

In order to get a deeper insight into the internals of the framework, in this sec-
tion we will trace how a request dynamically produces a reply in Prosper. As an
example, let us suppose that the user has entered a url into his browser’s loca-
tion bar that corresponds to a web page which lists all factorials up to 3 (e.g.
http://prosper.cs.bme.hu/factorial.psp?number=3). Albeit the example is simple,
it will illustrate the different stages of the service chain.

Once received by the web server, based on configuration settings, the server
detects that this http request is to be forwarded to Prosper for reply generation.
It dispatches a Fastcgi request, which is intercepted by one of the idle Prolog Web
Container worker threads.2 The thread extracts the context associated with the
request as Prolog terms. The context typically includes query parameters in the
url (typically for http get requests), html form data passed as payload (typically
for http post requests) and the session identifier. The Prolog representation of
the context is handed over to Prolog Server Pages. In our example, the request
context only contains get parameters, represented by the list [number=’3’].

First, Prolog Server Pages loads the document associated with the url. The
loaded document is preprocessed into a so-called intermediate term (IT) represen-
tation. Context is then asserted into a dedicated module and the document is
evaluated. Evaluation ends with generating output, which is returned by Prolog
Web Container to the web server as a Fastcgi reply (Figure 6). So-called transfor-
mation rules are associated with both the preprocessing and the evaluation phase.

2See predicate worker/1 in module prosper server [13].

570 Levente Hunyadi

�����������
	
�����
���������������

	
���������
���
��

������	����
���

����������������	�
������������
�

�����
������� ��������
� �
��������������
�

��������	

���
	����	��
���
�����

�����
	
�����

����

����
�������

�
�����
	���������
�
����

Figure 6: The phases of reply generation for server page documents that have not
been cached.

The crucial difference is that in the preprocessing phase, no external context infor-
mation is available, while evaluation-time transformation is context-sensitive. The
aforementioned steps are elaborated below.

Loading a Prosper document. The role of the loading phase3 is to fetch a
referenced document from disk and construct its Prolog xml term representation,
similar to the one used by the PiLLoW library [5].

Whenever an http request corresponds to a server page that has not been
loaded, Prosper looks for the page in the document repository. Let us suppose that
the url entered by the imaginary user does not correspond to a loaded document.
Therefore, the document factorial.xhtml (Figure 4) is loaded and parsed into a
Prolog xml term representation as seen in Figure 7. This representation mainly
consists of nested element/3 terms, where the arguments represent:

1. the name of the xml element after namespace resolution;

2. a list of attributes associated with the element;

3. a list of nested xml nodes as element/3 terms for xml elements or atoms for
character data.

Preprocessing phase. The goal of the preprocessing phase,4 the next link in
the service chain, is to validate the loaded document. Preprocessing ensures that
special elements referenced by the document exist, they are used correctly in terms
of syntax, and that the logic module associated with the document is loaded and
compiled.

As previously mentioned, special elements correspond to transformation rules.
What the transformation rule exactly does depends on the attributes associated
with the element and its context. In our example, psp:assign, psp:for-all and

3Implemented in import page/3 in module prosper core [13].
4Implemented in markup to term/6 in module prosper core [13].

Prosper: Developing Web Applications Strongly Integrated with Prolog 571

elem(html, [’logic-module’=factorial], [

elem(h1, [], [’Factorial example’]),

elem(psp:assign, [var=’E’, expr=’{atom_number(http_get(number))}’], [

elem(psp:for-all, [function=’between(1, E)’, iterator=’N’], [

elem(li, [], [

elem(psp:insert, [function=’factorial(N)’], [])

])

])

])

])

Figure 7: The xml term representation of the example document in Figure 4.

psp:insert are special elements, assuming the namespace psp is registered with
Prosper.5 The psp:assign special element can have a var attribute, which speci-
fies the name of the variable to introduce in the scope of the element. Similarly,
psp:insert is used with the attribute function in the example to insert a return value
but could also be used in conjunction with expr to insert the value of an expression.

However, in the preprocessing phase no context information associated with the
http request is available; it has not yet been asserted. In spite of this, verifying
attributes, parsing atoms into terms, etc. are already possible. These operations
are performed by preprocessing-time hooks for each special element. A hook predi-
cate interprets element attributes and/or contents and has the following signature
(elementName denotes the name of the special element without the namespace):

elementName(+VarTypes, +Attrs, +Contents, -Terms)

Here, VarTypes propagates type information,6 Attrs is a list of Name=Value
pairs, which consists of attributes that parametrise the element. Contents is a list
of inner elements in xml term representation. Terms is the single output argument
of the predicate, which is the IT representation (preprocessed form) of the element
and is commonly bound to a single-element list of the following form:7

[extension(ModuleName:Predicate, ContentTerms)].

In this term, ContentTerms has similar semantics as Terms in the enclosing
element: it is the IT representation of the enclosed child elements. This suggests
a recursive way of operation. Indeed, albeit not compulsory, most special elements
compute their own IT representation based on that of their descendants. Predicate
corresponds to a Prolog predicate, which (augmented with some additional argu-
ments) will be called in the evaluation phase to generate output. In other words,

5For conciseness, namespaces are not written out as full urls, even though in the actual
implementation, they are used in that manner.

6Although there is no strict typing scheme in Prolog, some degree of type enforcement allows
catching errors at an earlier stage.

7In fact, Terms is a list of atoms, element/3 and extension/2 terms. However, only extension/2
terms are subject to evaluation in a later phase thus Terms is usually a list with a single extension/2
element.

572 Levente Hunyadi

elem(html, [], [

elem(h1, [], [’Factorial example’]),

extension(assign expression(’E’, EL), [

extension(for all(factorial:between(1, E)-[’E’=E], ’N’), [

elem(li, [], [

extension(insert function(factorial:factorial(N)-[’N’=N]), [])

])

])

])

])

Figure 8: The intermediate term representation of the example document. EL
denotes the execution plan of the expression language term and is omitted for
conciseness.

Predicate is the evaluation-time transformation rule associated with the special ele-
ment parametrised with Attrs. For instance, a different Predicate is associated with
a psp:assign element if it assigns a variable based on an expression than if based
on a function call. In fact, arguments present in Attrs as an association list are
converted into positional arguments with appropriate conversions where necessary
(e.g. atoms converted to Prolog goals).

Hook predicates should never fail but should signal malformed syntax (such as
an unrecognised attribute) by throwing an exception.8 This guarantees that the
document is syntactically well-formed at the end of the preprocessing phase.

In order to better comprehend the preprocessing phase, we compare the xml
term representation of our example document in Figure 7 with its preprocessed
version in Figure 8.

In the case of the root element html, the two representations are identical,
except for the attribute logic-module. This attribute binds a conventional Prolog
module (application logic or presentation code-behind) to the Prosper document.
The exact location of the module source file is either directly specified in the logic-
module attribute as an absolute path, or it may be a relative path, in which case
it is searched for w.r.t. the module repository. Any predicates that occur in the
document are auto-qualified with the name of this module during the preprocessing
phase.

The first notable difference is psp:assign, which has been converted into an
extension/2 term. assign expression is the name of a predicate that computes an
expression language (EL) term and assigns its value to a (server page) variable.
The scope of the variable is the enclosed contents of the psp:assign element. The
function http get in the EL term returns the string value of a query string variable,
while atom number, as its name suggests, converts its operand to a Prolog number.
Just as documents, EL expressions are preprocessed, yielding an execution plan,

8The rationale behind throwing an exception is that simple failure prevents extracting the
context of the actual error, which is necessary in order to print the proper error message.

Prosper: Developing Web Applications Strongly Integrated with Prolog 573

which is not shown in Figure 8. The execution plan is a compound term that
contains

1. the uninstantiated variables in the expression, and

2. the module-qualified names of the Prolog functions to call to compute the
result.

The representation of the special element psp:for-all has also changed substan-
tially. The atom in its attribute called function has been converted into a real Prolog
term augmented with a list of uninstantiated variables in it. for all(Function-Insts,
Variable) is a predicate that instantiates variables in Function and calls it, returning
results in a local variable. Subsequent solutions are obtained through backtracking.
Note the number of arguments to between/3 (the third, output argument is absent
and is appended automatically) and the auto-qualification.

For the sake of higher performance, Prosper caches preprocessed documents.
If a document is available in the cache, the loading and preprocessing phases are
skipped.

Request context assertion. Context information available in Prosper docu-
ments and logic modules is loaded in the request context assertion phase. The
primary goal of this phase is to expose http request context (such as request pa-
rameters and session variables) to EL functions and logic module predicates in
a natural manner without having to propagate an extra argument encapsulating
the context. Predicates in the module psp store context information by means
of thread-local blackboard primitives [15]. Whenever a mutable (session) value is
modified while the request is served (e.g. a session variable is assigned to), changes
are recorded in a (thread-global) dynamic fact database at the end of the subse-
quent evaluation phase. Hence, no particular thread is associated with any session
and any worker thread may serve any request. Worker threads load current values
from the dynamic fact database into blackboard primitives before the evaluation
phase and record new values when evaluation ends.

Logic modules have access to context by calling predicates exported by the
module psp. For instance, the http get/2 and session/2 predicates retrieve the
value of a get and a session variable, respectively, and the predicate session set/2
assigns a value to a session variable.9 For maximum conformance to the Prolog
execution model, they all support backtracking, i.e. assignments to session variables
are undone upon failure in a logic module predicate.10

Evaluation phase. In the last major phase, evaluation,11 the preprocessed doc-
ument is transformed w.r.t. the available request context. By the end of the evalu-
ation phase, the document has been transformed into a term representation whose
string equivalent is ready to be sent back directly to the client as response.

9For a full list, see exported predicates in module psp [13].
10swi-Prolog provides backtrackable destructive assignment on blackboard primitives.
11Implemented in term to elements/3 in module prosper extensions [13].

574 Levente Hunyadi

From a declarative point of view, each IT element represents an (evaluation-
time) transformation rule, influenced by

1. term contents,

2. asserted http request- and session-related data that is globally accessible in
the entire document, and

3. local variables assigned by outer special elements (i.e. that encapsulate the
element to which the rule corresponds) such as psp:assign.

In the case of element/3 terms, the (recursive) transformation rule is trivial:
transformation rules are applied to each child element with the same context as
for the parent element and the evaluated form of the parent element comprises of
the combined results of these transformation rules. For extension/2 terms, recall
that the first argument corresponds to a hook predicate assembled in the prepro-
cessing phase: this is what represents the transformation rule. From a procedural
point of view, in fact, the IT representation is traversed top-down, at each depth
invoking hook predicates or the trivial transformation rule, where hook predicates
may introduce new local variables before processing the children of the term they
correspond to.

Local variables are means to store and reuse calculated data within server page
documents. In contrast to globally available data (loaded into the thread-local
module psp in the context assertion phase), they are accessed as Prolog variables
rather than predicates and they are confined to the server page document in which
they are introduced and may not be directly used in presentation code-behind
or application logic files. More precisely, the scope of local variables is always
restricted to the descendants of the element in which they are assigned and are
hidden by variables of the same name. Server page local variables have similar
semantics as Prolog or xslt variables in the sense that they can be assigned only
once. Contrary to Prolog, however, variables cannot remain uninstantiated and are
unified immediately in the element in which they are introduced.

Figure 9 shows the evaluated version of the preprocessed document in Figure 8.
The result should not be surprising. For the elements html, h1 and li, the trivial
transformation rule has been applied and they are intact except for their recursively
processed contents. The IT equivalents of special elements psp:assign, psp:for-all
and psp:insert are absent from the output but their effect is apparent. The local
variable E, which is introduced by assign expression, has been used to instantiate
unbound variables in the function between(1, E), and the iteration variable N of
for all has been used multiple times to call the function factorial(N). N behaves as
expected, taking a different value for each loop of the iteration.

From the perspective of the framework, local variables are in fact Name=Value
members in an association list. The association list is initially empty for the root
element but may be extended with further members by any transformation rule, in
which case the recursively processed descendant elements see the extended list. In
our example, the evaluation-time transformation rule associated with the psp:assign

Prosper: Developing Web Applications Strongly Integrated with Prolog 575

elem(html, [], [

elem(h1, [], [’Factorial example’]),

elem(li, [], [’1’]),

elem(li, [], [’2’]),

elem(li, [], [’6’])

])

])

Figure 9: The evaluated form of the example document.

element prepends the variable E to the name-value list, while the rule related to
psp:for-all does so with N.

6 Implementation

Prosper is implemented mainly in swi-Prolog and partially in C. The most notable
swi-specific extra services utilised by the framework are xml document parsing
and generation, blackboard primitives, multi-threading and basic thread commu-
nication.

The framework comprises of the following major components:

1. The server module implements Prolog Web Container.

2. The core module manages the lifecycle of a Prosper page. In particular, it
imports pages on demand, initiates context assertion, page preprocessing and
evaluation, and outputs error documents.

3. The context module asserts and retracts thread-local data via blackboard
primitives to expose request, session and user preference values, all of which
are manipulated through dedicated predicates of the module psp.

4. The extension module contains predicates essential to special element imple-
mentors. It includes helper predicates to aid xml attribute parsing and the
predicates element to terms/3 and term to elements/3, which realise page
preprocessing and evaluation, respectively. The latter two predicates are
called by transformation rule hooks to recursively process child elements.

5. The built-in elements module contains the predefined set of special elements,
including simple and compound conditionals, iteration constructs, variable
assignment and insertion.

6. The expression language module is responsible for expression language exe-
cution plan generation and expression evaluation.

7. The FastCGI foreign language module, written in C, implements the Fastcgi
protocol.

576 Levente Hunyadi

Table 1: Comparative performance of various frameworks.

Development tool Application model small large intensive

SICStus Prolog 3.12.5 CGI, saved state 165.78 225.33 n.a.
SWI-Prolog 5.5.33 CGI, saved state 39.47 60.17 n.a.
PrologBeans.NET ASPX 6.297 7.781 91.91
Prosper (PWC + PSP) multi-threaded FCGI 2.688 8.719 5.828
Prosper (PWC only) multi-threaded FCGI 1.938 6.953 n.a.
SWI-Prolog 5.6.27 standalone server 1.266 6.313 n.a.
static html content 0.875 1.406 n.a.

While primarily designed to increase designer and programmer effectiveness, the
proposed architecture is comparable to other Prolog-based technologies in terms of
speed. In a loopback scenario (i.e. server and client were running on the same
machine), different configurations were polled by http requests with get param-
eters. All configurations parsed the query string, computed a simple arithmetic
expression based on query parameters, and displayed results in a web page. cgi
and Fastcgi-based applications (Prosper inclusive) connected to Apache/2.0.54,
.net applications ran on the built-in web server provided with Visual Studio 2005.
Benchmarking was performed by ApacheBench 2.0.41 on an AMD Athlon64 3000+
running Microsoft Windows XP Professional SP2.

Table 1 shows cumulative response times in seconds for 1000 requests with 2
concurrent threads. In test cases small and large, responses of about sizes 1kB and
50kB were requested with few embedded Prolog calls. In test case intensive, the
architectures had to call about 50 Prolog predicates in application logic to produce
a result of about 3kB in size. n.a. indicates that there is no overhead of a Prolog
call-intensive setup (i.e. presentation and application logic are not separated and
both are in Prolog) or it is not meaningful for the test case. Static html content
is included for reference, and is meant to indicate the absolute lower bound for
response time as (unlike the other scenarios) it requires no extra overhead owing
to context evaluation.

Three cases are of special interest. The standalone multi-threaded http server
shipped with swi-Prolog can serve as the basis for comparing the performance of
Prolog-based frameworks. It provides convenience tools for http reply generation
but intermixes presentation and application logic. The difference in speed between
Prosper with Prolog Web Container and swi’s standalone server gives an estimate
of the cost of using an intermediary Fastcgi transmission. The extra overhead of
Prosper with the Prolog Server Pages document model shows the relative cost of
having a separate presentation and application logic layer. The careful reader may
also notice that Prosper is slower than PrologBeans.net when large documents with
few Prolog calls are served. This is attributable to the greater efficiency asp.net
handles strings than Prolog handles atoms in a multi-threaded environment.

Prosper: Developing Web Applications Strongly Integrated with Prolog 577

7 Summary, perspectives for future work

In this paper, a framework that facilitates developing web-oriented Prolog applica-
tions has been presented. With a persistent multi-threaded architecture, an xml-
based document model and a set of reusable transformation rules, it provides an
efficient yet convenient way to create web applications in Prolog. Code changes re-
quired in existing Prolog modules for the sake of web presentation are minimal and
web pages constituting the presentation layer can be composed with a declarative
way of thinking in any arbitrary xml editor. Presentation and application logic are
clearly separated, thus application logic can be debugged and maintained indepen-
dently. Lastly, the framework integrates well in existing web server scenarios and
is open to extension.

As seen in the factorial example, the current implementation of Prosper gener-
ates content by traversing a term that constitutes some transformed version of the
presentation source document. Compilation of these source documents into Prolog
predicates could contribute to increased performance, especially in the case of long
documents that have considerably large tree equivalents.

Besides dynamic content generation based on Prolog application code, web ser-
vices offer another approach to integrate Prolog into complex information systems.
As Prosper provides a straightforward way to parse and generate markup content,
consuming and producing soap envelopes corresponding to Prolog calls and solu-
tions seems a natural future extension.

Acknowledgements

The author acknowledges the support of the Hungarian NKFP Programme for the
SINTAGMA project under grant no. 2/052/2004.

References

[1] Achour, Mehdi, Betz, Friedhelm, Dovgal, Antony, Lopes, Nuno, Richter,
Georg, Seguy, Damien, Vrana, Jakub, et al. PHP Manual. PHP Documenta-
tion Group, 2007. http://www.php.net/manual/en/.

[2] Armstrong, Eric et al. The J2EE 1.4 Tutorial (For Sun Java System Appli-
cation Server Platform Edition 8.1 2005Q2 UR2). Sun Microsystems, June
2005.

[3] Bray, Tim et al., editors. Extensible Markup Language (XML) 1.0. World
Wide Web Consortium, 4th edition, August 2006. http://www.w3.org/TR/

2006/REC-xml-20060816/.

[4] Brown, Mark R. FastCGI specification. Open Market, Inc., April 1996. Doc-
ument Version: 1.0.

578 Levente Hunyadi

[5] Cabeza, Daniel and Hermenegildo, Manuel. The PiLLoW Web Programming
Library. The CLIP Group, School of Computer Science, Technical Univer-
sity of Madrid, January 2001. http://www.clip.dia.fi.upm.es/Software/
pillow/pillow.html.

[6] Fielding, R. et al. Hypertext Transfer Protocol – HTTP/1.1. Network Working
Group, The Intenet Society, June 1999. RFC 2616.

[7] Henderson, Fergus et al. The Mercury Language Reference Manual. University
of Melbourne, 2006. Version 0.12.2.

[8] Hunyadi, Levente. Prosper: A framework for extending Prolog applications
with a web interface. In Dahl, Verónica and Niemelä, Ilkka, editors, Proceedings
of the 23rd International Conference on Logic Programming, Logic Program-
ming, pages 432–433, Porto, Portugal, September 2007. Springer. LNCS 4670.

[9] Hurwitz, Dan and Liberty, Jesse. Programming ASP.NET. O’Reilly, 3rd edi-
tion, October 2005.

[10] Johnston, Benjamin. Prolog server pages. http://www.benjaminjohnston.

com.au/template.prolog?t=psp, 2007.

[11] Nuzzo, Mauro Di. Prolog Server Pages: A server-side scripting language based
on Prolog. http://www.prologonlinereference.org/psp.psp, April 2006.

[12] Pemberton, Steven et al. XHTML 1.0 The Extensible HyperText Markup Lan-
guage. World Wide Web Consortium, 2nd edition, August 2002.

[13] Prosper hosted at SourceForge.net. http://prospear.sourceforge.net/.

[14] Swedish Institute of Computer Science. SICStus Prolog Users Manual,
May 2007. Release 4.0.1 http://www.sics.se/sicstus/docs/latest/html/

sicstus/PrologBeans.html.

[15] Wielemaker, Jan. Native preemptive threads in SWI-Prolog. In Palamidessi,
Catuscia, editor, Practical Aspects of Declarative Languages, pages 331–345,
Berlin, Germany, December 2003. Springer Verlag. LNCS 2916.

[16] Wielemaker, Jan and Anjewierden, Anjo. An architecture for making object-
oriented systems available from Prolog. In WLPE, pages 97–110, 2002.

