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Abstract

Although reinforcement learning is a popular method for training an agent

for decision making based on rewards, well studied tabular methods are not

applicable for large, realistic problems. In this paper, we experiment with a

factored version of temporal difference learning, which boils down to a lin-

ear function approximation scheme utilising natural features coming from

the structure of the task. We conducted experiments in the New Ties en-

vironment, which is a novel platform for multi-agent simulations. We show

that learning utilising a factored representation is effective even in large state

spaces, furthermore it outperforms tabular methods even in smaller problems

both in learning speed and stability, because of its generalisation capabilities.
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1 Introduction

Reinforcement learning (RL) [16] is a framework for training an agent for a given
task based on positive or negative feedback called immediate rewards that the agent
receives in response to its actions. Mathematically, the behaviour of the agent is
characterised by a Markov decision process (MDP), which involves the states the
agent can be in, actions the agent can execute depending on the state, a state
transition model, and the rewards the agent receives.

For small, discrete state spaces well-studied tabular methods exist for solving
the learning task. However, real world tasks include many variables, often contin-
uous ones, for which the state space is very large, or even infinite, making these
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approaches inapplicable. Consider a sequential decision problem with m variables.
In general, we need an exponentially large state space to model it as an MDP.
Thus, no matter if the solution time is polynomial in the number of states, scaling
is exponential in the size of the task description (m). Fortunately, by exploiting
state space structure, it is possible to drastically reduce the time needed for solving
large MDPs. It is often the case that the transition model for a given variable
depends only on a few other variables. Also, rewards may be associated with only
a small number of variables. In such situations, factored MDPs (fMDPs) offer a
more compact representation by taking the state space as the Cartesian product of
m variables: X = X1 × X2 × . . . × Xm. This gives rise to learning in a factored
manner, by separating variables as much as possible, taking into account (a priori
known) dependencies among them and circumventing combinatorial explosion.

One popular method for solving MDPs is based on value functions that represent
long term utilities that can be collected starting from a given state. The agent’s
behaviour, also called policy, is then defined by acting greedily according to this
value function, i.e. selecting actions that result in next states with highest possible
value. For factored problems one may be able to define the value function as the
sum of local scope functions, i.e. functions that depend only on a small number of
variables. This way, both the memory capacity needed to store the value function,
and the learning time might be reduced by an exponential factor.

Many algorithms exist for solving factored MDPs. For the value iteration
method convergence proof for factored MDPs has been provided recently [17]. In
this paper, we experiment with the more flexible temporal difference learning (TD)
method, in which the agent updates state values it actually observes during inter-
acting with the world, as opposed to value iteration, which iteratively updates all
state values synchronously. The advantage of our method is known; value iteration
requires a model, whereas no model is required for TD learning.

The rest of the paper is structured as follows: in Section 2 we review the ba-
sics of reinforcement learning, especially value iteration and TD learning, motivate
factored MDPs and derive our factored TD learning algorithm. Section 3 provides
an overview of other approaches to learning in factored MDPs. In Section 4 we
show simulation results utilising the newly introduced factored TD learning algo-
rithm. Section 5 discusses some decisions in the choice of our agent architecture
and experimental setup, and finally Section 6 concludes the paper.

2 Factored Reinforcement Learning

2.1 Value-function based Reinforcement Learning

Consider an MDP characterised by the tuple (X,A,P,R, γ), where X is the (finite)
set of states the agent can be in, A is the (finite) set of actions the agent can
execute, P : X ×A×X → [0, 1] is the transition probability model, i.e. P (x, a, x′)
is the probability that the agent arrives at state x′ when executing action a in state
x, R : X × A → R is the reward function, and γ is the discount rate on future
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rewards.
A (Markov) policy of the agent is a mapping π : X ×A→ [0, 1] so that π(x, a)

tells the probability that the agent chooses action a in state x. For any x0 ∈ X,
the policy of the agent determines a stochastic process experienced through the
instantiation

x0, a0, r0, x1, a1, r1, . . . , xt, at, rt, . . .

where ri is the reward received after executing action a in state xi. In value-function
based reinforcement learning the agent maintains a value function V : X → R,
which reflects the expected value of the discounted total rewards collected by start-
ing from state x and following policy π:

V π(x) := E
(

∞
∑

t=0

γtrt

∣

∣

∣
x=x0

)

.

Let the optimal value function be

V ∗(x) := max
π

V π(x)

for each x ∈ X. If V ∗ is known, it is easy to find an optimal policy π∗, for which
V π∗

= V ∗. Value functions satisfy the famous Bellman equations:

V π(x) =
∑

a

∑

x′

π(x, a)P (x, a, x′)
(

R(x, a) + γV π(x′)
)

(2.1)

and

V ∗(x) = max
a

∑

x′

P (x, a, x′)
(

R(x, a) + γV ∗(x′)
)

. (2.2)

An optimal policy can be defined by acting greedily according to V ∗, that is, by
selecting actions that maximise V ∗(x′), the value of the next state:

a∗(x) ∈ arg max
a

∑

x′

P (x, a, x′)
(

R(x, a) + γV ∗(x′)
)

.

One may also define a function of state-action values, or Q-values, expressing
the expected value of the discounted total rewards collected by starting from state
x and executing action a and following policy π onwards:

Qπ(x, a) =
∑

x′

P (x, a, x′)
(

R(x, a) + γV π(x′)
)

.

Action selection then becomes a∗(x) = arg maxa Q(s, a). It is also true that the
optimal policy satisfies the following equation:

Q∗(x, a) =
∑

x′

P (x, a, x′)
(

R(x, a) + γarg max
a′

Q∗(x′, a′)
)

. (2.3)
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There are many alternatives to this setting. For example, one may use a reward
function R(x, x′) depending on the current state x and the next state x′, but not
on the action executed. Also, one may replace action a by desired next state
xd, provided that there is an underlying sub-policy (not necessarily optimised) for
reaching state x′ from state x in one step [18].

Most algorithms that solve MDPs build on the Bellman equations [1]. In the
following, we shall concentrate on the value iteration and the temporal difference
learning algorithms. In tasks when the transition model P and the reward function
R are not known a priori, the agent also needs to learn them on its own.

2.2 Value Iteration and Temporal Difference Learning

Value iteration uses the Bellman equations (2.2) as an iterative assignment. Start-
ing from an arbitrary value function V0 (represented as a table) it performs the
update

Vt+1(x) := max
a

∑

x′∈X

P (x, a, x′)
(

R(x, a) + γVt(x
′)

)

for all x ∈ X. As it is well known (see e.g. [1]), the above update converges to a
unique solution, and the solution satisfies the Bellman equations (2.2).

As this method updates all states at the same time, it is considered a syn-
chronous algorithm. One sampled, incremental version of the algorithm can be
obtained by updating only the values (by a small amount) of the states actually
observed by the agent during its interaction with the environment, according to the
following formula:

Vt+1(x) := (1− α)Vt(x) + α
(

R(x, a) + γVt(x
′)

)

= Vt(x) + α
(

R(x, a) + γVt(x
′)− Vt(x)

)

= Vt(x) + αδt ,

where α is an update rate and δt is the difference between the currently approxi-
mated value of the state x and its approximation based on the next state and the
current reward, hence the name temporal difference. This is the so called temporal
difference (TD) learning method.

The formula presented here is called the TD(0) method, as it only takes the
immediate next state into account when updating the value of a state. It has been
proven that this sampled version of the value function update is convergent. The
method can be extended to longer time spans by means of the so called eligibility
traces (TD(λ)) [16]. Note however, that TD learning is a policy evaluation method,
thus it converges to the value function of a fixed policy, while value iteration con-
verges the optimal value function. TD learning can be combined with optimistic
policy iteration to guarantee convergence to the optimal value function (see [16]).

If the model parameters P and R are not known, they must also be learned
from interaction with the environment; these functions are naturally sampled as
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the agent interacts with the world. Estimation of the transition probabilities P

can be performed by frequency counting, whereas the reward function R can be
estimated by averaging if these quantities are represented as tables; i.e. separately
for each state. Also, it is straightforward to rewrite the above update rules for Q

values.
Unfortunately, despite their attractive convergence property, tabular methods

are not applicable for real world tasks, where the state space is very large. The
problem is that memory requirement grows exponentially with the number of the
Cartesian variables and thus learning is slow. There is hope though: many of the
states are similar from the point of view of the long term cumulated reward and
one might try to generalise for similar states.

To this end, RL methods have been extended from tabular methods to function
approximation to represent the value function (for an excellent introduction, see,
e.g., [16]). For example, the value function can be expressed as linear combination
of basis functions that characterise the states, or by more sophisticated techniques,
including multi-layer neural networks. Unfortunately, convergence results are rare
for function approximators: convergence can be proven for linear function approx-
imators under certain conditions. Also, the quality of the function approximation
heavily depends on the basis functions also called ‘features’.

One thus prefers features that enable linear function approximation for the value
functions and take advantage of the factorised nature of the state space. The value
of a state variable in the successive time step is conditioned on the previous values
of possibly a few other variables and the action taken. The reward function usually
depends on a couple of variable combinations, i.e. the actual reward can be given by
the actual value of a few variables. Knowledge about these dependencies enables
us to construct relevant features for value function approximation, as it will be
described in the next section.

2.3 Factored Markov Decision Processes

Consider a sequential decision process with m variables. In general, we need an
exponentially large state space to model it as an MDP, thus the number of states
is exponential in the size of the description of the task. Factored Markov decision
processes offer a more compact task representation.

In the fMDP case one assumes that X is the Cartesian product of m smaller
state spaces, corresponding to individual discrete variables having arbitrary (but
finite) number of possible values:

X = X1 ×X2 × . . .×Xm .

Continuous valued variables may also be fit into this frame by discretising them,
and substituting with a discrete variable having as many possible values as the
number of (disjoint) intervals used in the discretisation. The actual value of the
new discrete variable become the index of the interval that the continuous value
falls into.
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Furthermore, let us call a function f a local scope function on X if f only
depends on a (small) subset of the variables {Xi}. For the ease of notation, let
us denote a set of variables by X[I] and their corresponding instantiation by x[I],
where I ⊂ {1, . . . ,m} is an index set.

Now, let us assume that we have an MDP on state space X. Then, the transition
model of the factored MDP can be defined in a more compact manner than that of
an MDP with states having no internal structure. The transition probability from
one state to another can be obtained as the product of several simpler factors, by
providing the transition probabilities for each variable Xi separately, depending on
the previous values of itself and the other variables. In most cases, however, the
next value of a variable does not depend on all of the variables; only on a few.
Suppose that for each variable xi there exist sets of indices Γi such that the value
of xi in the next time step depends only on the values of the variables x[Γi] and the
action a taken. Then we can write the transition probabilities in a factored form:

P (x, a, x′) ≡ P (x′ | x, a) =
m
∏

i=1

Pi(x
′

i | x[Γi], a)

for each x, x′ ∈ X, a ∈ A, where each factor is a local-scope function

Pi : X[Γi]×A×Xi → [0, 1] for all i ∈ {1, . . . ,m}. (2.4)

By contrast, in the non-factored form, the probabilities of the components of x′ can
not be computed independently from subsets of all variables. Assuming that the
number of variables of the local scope functions is small, then these functions can
be stored in small tables. The size of these tables is a sharp (exponential) function
of the number of variables in the Γi sets. These tables are essentially conditional
probability tables of a dynamic Bayesian network (see e.g., [3]) of m variables.

The reward model of the factored MDP also assumes a more compact form
provided that the reward function depends only on (the combination) of a few
variables in the state space. Formally, the reward function is the sum of local-scope
functions:

R(x, a) =

k
∑

j=1

Rj(x[Ij ], a),

with arbitrary (but preferably small) index sets Ij , and local-scope functions

Rj : X[Ij ]×A→ R for all j ∈ {1, . . . , k}.

The functions Ri might also be represented as small tables. If the maximum size
of the appearing local scopes is bounded by some constant and independent of
the number of variables m, then the description length of the factored MDP is
polynomial disregard of the number of variables m.

To sum up, a factored Markov decision process is characterised by the parame-
ters

(

{Xi}
m
1 , A, {Γi : Pi}

m
1 , {Ij : Rj}

k
1 , γ

)

.
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The optimal value function can be represented by a table of size
∏m

i=1
|Xi|,

one table entry for each state. To represent it more efficiently, we may rewrite
it as the sum of local-scope functions with small domains. Unfortunately, in the
general case, no exact factored form exists [8], however, we can still approximate
the function by means of local scope functions:

V̂ (x) =

n
∑

j=1

Vj(x[Jj ]) . (2.5)

The local scope functions Vj can be represented by tables of size
∏

i∈Jj
|Xi|, which

are small provided that the sets Jj are small, i.e., they involve only a few number
of variables. The question is, how can we provide index sets Jj that are relevant
for the approximation of the value function. If the local scopes Γi and Ij for the
transition model and the reward model are known (which might be easy to define
manually having sufficient knowledge about the task and the variables involved),
we may use the following reasoning to deduce scopes for the value function: the
value function is the long-term extended version of the reward function (whose
index sets Ij are known). If we want to come up with an index set Jj of a local
scope value function Vj which reflects long term values one step before reaching
rewarding states, we need to examine which variables influence the variables in the
set Ij . We can go on with this recursively to find ancestors of the variables in the
set Ij , and iteratively determine the sets of variables that predict values on the long
term. This process is called backprojection through the transition model [8].

We may rearrange the terms of the value function and redefine the linear ap-
proximation as follows. The table entries represent weights corresponding to binary
features. Consider a local scope index set Jj , which means that the local value func-
tion Vj depends on the variables {Xi : i ∈ Jj}. Let Nj =

∏

i∈Jj
|Xi|. We introduce

binary features of the form Fl(x) = δ(
∧

i∈Jj
xi = vli) for each possible value com-

bination {(vl1 , . . . , vl|Jj |
) , l = 1, . . . , Nj} of the variables {Xi : i ∈ Jj}. Function

δ is the indicator function for condition c; δ(c) = 1 if condition c is true, and 0
otherwise. That is, each table defines as many binary features as the size of the
table. Then the value function approximation can be rewritten as:

V̂ (x) =

N
∑

l=1

wlFl(x), (2.6)

where N =
∑n

j=1
Nj , by reindexing the features Fl to run from 1 to N .

This form enables us to employ reinforcement learning techniques developed
for linear function approximators. In this paper, we use (2.6) and apply tempo-
ral difference learning to factored Markov decision processes. The update of the
parameters w is based on gradient descent utilising the temporal difference δt:

wt+1 = wt + αδt∇wV (xt) = wt + αδtF (xt) , (2.7)

where F (xt) is the vector of binary feature values for state xt, α is the update
rate. Eligibility traces and TD(λ) learning techniques are also applicable to linear
function approximation (see [16] for an introduction).
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It has been shown that the synchronous version of factored value iteration is
convergent [17]. Moreover, when sampling is applied, the algorithm requires only
a number of samples polynomial in the number of variables m (which can be much
smaller than the number of states) to approximate the value function well with
high probability. We expect – based on the close relationship between factored
value iteration and factored temporal difference learning – that tabular temporal
difference learning is also convergent, although we can not prove at the moment
that convergence results for factored value iteration could be transferred to factored
temporal difference learning.

When the factored model parameters, i.e. local scope functions Pi and Ri are
unknown, they can be approximated from experience. The conditional probability
tables corresponding to the local scope functions Pi can be updated separately by
frequency counting for all variables and actions when observing state-to-state tran-
sitions. The factored reward function R can also be thought of as a linear function
approximator, for example R(x, a) =

∑

l ulGl(x, a) or R(x, x′) =
∑

l ulGl(x, x′)
based on some binary features Gl and parameters ul (similarly to the value func-
tion), and can be updated using standard gradient descent techniques.

3 Related work

The exact solution of factored MDPs is infeasible. The idea of representing a large
MDP using a factored model was first proposed by Koller and Parr [9]. More
recently, the framework (and some of the algorithms) was extended to fMDPs with
hybrid continuous-discrete variables [10] and factored partially observable MDPs
[13]. Furthermore, the framework has also been applied to structured MDPs with
alternative representations, e.g., relational MDPs [7] and first-order MDPs [14].

There are two major branches of algorithms for solving fMDPs: the first one
approximates the value functions as decision trees, the other one makes use of linear
programming.

Decision trees (or equivalently, decision lists) provide a way to represent the
agent’s policy compactly. Algorithms to evaluate and improve such policies, ac-
cording to the policy iteration scheme have been worked out in the literature (see
[9] and [2, 3]). Unfortunately, the size of the policies may grow exponentially even
with a decision tree representation [3, 11].

The exact Bellman equations (2.2) can be transformed to an equivalent linear
program with N variables {V (x) : x ∈ X} and N · |A| constraints. In the approxi-
mate linear programming approach, we approximate the value function as a linear
combination of basis functions (see, (2.5)), resulting in an approximate LP (ALP)
with n variables {wj : 1 ≤ j ≤ n} and N · |A| constraints. Both the objective func-
tion and the constraints can be written in compact forms, exploiting the local-scope
property of the appearing functions.

Markov decision processes were first formulated as LP tasks by Schweitzer [15].
The approximate LP form is a work of Farias [4]. Guestrin [8] shows that the
maximum of local-scope functions can be computed by rephrasing the task as a non-
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serial dynamic programming task and eliminating variables one by one. Therefore,
the ALP can be transformed to an equivalent, more compact linear program. The
gain may be exponential, but this is not necessary in all cases. Furthermore, the
cost of the transformation may scale exponentially [5].

The approximate LP-based solution algorithm was worked out by Guestrin [8].
Primal-dual approximation technique to the linear program is applied by Dolgov
[6], and improved results on several problems are reported.

The approximate policy iteration algorithm [9, 8] also uses an approximate LP
reformulation, but it is based on the policy-evaluation Bellman equation (2.1).
Policy-evaluation equations are, however, linear and do not contain the maximum
operator, so there is no need for the second, costly transformation step. On the
other hand, the algorithm needs an explicit decision tree representation of the
policy. Liberatore [11] has shown that the size of the decision tree representation
can grow exponentially.

4 Experiments

4.1 The scenario

The experiments reported in this paper were performed in a grid-world environ-
ment. This environment is part of an EC FET project, the ‘New Ties project’,
which is a novel platform for multi-agent simulations. In the present simulations
we experimented with single agents in order to evaluate our learning mechanisms,
but the factored technique enables us to consider multi-agent scenarios in the fu-
ture: agents can compute optimal behaviour by approximating other agents as
additional factors.

The rectangular grid world contained two groups of food items at the far ends
of the world. The task of the agent was to learn to consume food appropriately to
survive: keep its energy level between two thresholds, that is, avoid being hungry,
but also avoid being too much full; it received punishment for having the energy in
the wrong ranges. Table 1 summarises the rewards of the agent depending on its
energy level.

energy level ∆E < 0 ∆E = 0 ∆E > 0
below lower threshold -1 -1 ∆E

in appropriate range ∆E 0 0
above upper threshold −∆E -1 -1

Table 1: Numerical values of the rewards. ∆E : change in the agent’s en-
ergy. Additional component of the reward: cost for the agent’s distance from home
changed linearly in the range [0, 0.1].

The agent had a so called metabolism, so that it was better for the agent to
consume both kind of food items, that is, if the agent consumed only one kind of
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food, then its energy did not increase after a while. Also, we augmented the task
with punishments for being far away from home, where home of the agent was its
starting position in the grid world.

The agent was only able to observe the world partially, i.e. it had a cone of sight
in front of it with a limited range. The agent moved on an 8-neighbourhood grid;
it was able to turn left or right 45 degrees, and move forward. It had a cone of
sight of 90 degrees in front of itself. It had a ‘bag’ of limited capacity, into which
it was able to collect food items, and later consume the food from the bag. The
primitive observations of the agent were food items in its cone of sight, its own
level of energy and the number of food items in its bag of each type. The primitive
actions were ‘turning left/right’, ‘moving forward’, ‘picking up food to the bag’,
and ‘eating food from the bag’.

4.2 Agent architecture

Since reinforcement learning in a heavily partially observable environment is very
difficult in general and because the Markovian assumption on the state description
is not met, we augmented the agent with high level variables and actions in order to
transform the task and improve its Markovian properties. We note that there are
formal approaches to tackle the problem of partial observability that aim to trans-
form the series of observations automatically into a Markovian state description via
belief states (see, e.g., [12] and the references therein), we did not choose to utilise
the framework in the present study for the following reasons. First, we aimed to
separate the factored MDP approach in a demanding scenario from the demands
of partial observability. Second, the generation of high level features (state vari-
ables) from low level observations is a great challenge for artificial intelligence and
is far from being solved in general and we wanted to gain insight into this problem
through the scenarios. We do not list our negative experiences here, although they
might be as important as the solution that we describe below.

The predefined high level variables were calculated from the history of observa-
tions and formed the variables of the state space of the factored MDP. The history
of observations were stored using so called long term memory maps, for example
one containing entries about where the agent has seen food items of a certain type
in the past. Also, high level action macros were manually programmed as a series
of primitive actions to facilitate navigation at a higher level of abstraction.

Figure 1 shows our agent architecture that makes use of high level variables and
actions, and the factored architecture for value function approximation.

A sketch of the functioning of the agent architecture is shown in Algorithm 1. In
the core of the algorithm is temporal difference learning with function approxima-
tion, for which memory maps serve as a preprocessing step to generate the current
state of the agent from the history of observations. The agent also performs state
transition and reward model learning.

Table 2 enumerates the high level variables and action macros that we used. In
most cases the macros are related to variables; they can be chosen by the agent to
alter the values of the variables, thus they are shown side by side in the table.
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Observations

High level features: factored state

Factor1 Factor2 Factor3 Factori Factorn

... ...

Possible values Current value

Predict next value of a factor

depending only on a few

other factors (P)

Long term memory maps: compact

representation of past observations

Value function (V)

Sum of local scope functions

+ +...

Reward function (R)

Sum of local scope functions

+ +...

Action macro selection: a* = argmax P(x,a,x’) [ R(x,x’) + V(x’) ]a x’S g

Figure 1: Agent architecture. The history of observations is summarised by
long term memory maps. Based on these past and present observations, high
level variables are generated, which form the variables of the factored MDP. The
transition model (P) is learned as the product of local scope functions, and the
reward (R) and value functions (V) are learned as the sum of local scope functions.
Utilising these functions, action macro selection is accomplished in a greedy manner.

To make the description complete, we also need to provide the scopes of the
local scope functions used. For the transition probabilities, this means providing the
variables each state variable depends on, considering its next value when executing
an action. For most variables, its next value depended only on its own previous
value and the action taken, except for the energy level, which depended on itself, and
the food history features as well. The reward function had factors depending on the
energy level and the distance from home. The value function, which expresses long
term cumulated rewards, had factors depending on the energy level, the number of
food items in the bag, food consumption history, and the distance from home.

4.3 Experimental results

We compared three kind of reinforcement learning techniques to test the benefits
of factorisation:

1. Q-table based learning (SARSA(λ)), no factorisation, only state-action values
are learned, which implicitly incorporate transition probabilities.
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Algorithm 1 : Agent life cycle. The agent applies temporal difference learning
with linear function approximation extended with (factorised) model learning and
memory map based preprocessing to generate states from observations

inputs:
state variables {Xi}

m
1 , actions A,

local function scopes (index sets) {Γi}
m
1 , {Ii}

k
1 and {Ji}

n
1 for

transition probabilities, reward function and value function

1: for each time step t do

2: collect primitive observations, update long term memory maps
3: observe reward rt for previous action or state transition
4: generate current state xt (high level variables) using memory maps
5: update value approximation according to Eq. 2.7 or using TD(λ):

wt+1 = wt + α F (xt)[rt + γV (xt)− V (xt−1)]
6: update transition model parameters based on the observed state transition:

increase frequency counts for variable values in xt−1 → xt upon at−1,
recalculate probability values from frequency counts

7: update reward function approximation:
ut+1 = ut + α G(xt−1, xt)[r −R(xt−1, xt)]

8: choose next action:
at = arg maxa

∑

x′ P (xt, a, x′)[R(xt, x
′) + γV (x′)]

9: t← t + 1
10: end for

2. V-table based learning (TD(λ)) along with the estimation of transition proba-
bilities (P) and reward function (R) utilising tables. This step of factorisation
separates state values form state transitions, i.e. from the effect of actions.

3. Factored learning (factored TD(λ)), where the V, R and P functions are
factored utilising local scope functions.

Surprisingly, the state space described above already proved to be too large
for the table based methods to make progress in learning in a reasonable amount
of time. To make comparison possible, we had to reduce the state space to a
minimal size; we reduced the number of discretisation intervals for some variables,
and dismissed the feature ‘distance from home’ and the macro ‘go back home’.

To show the learning process of the various methods, we calculated certain
learning curves or performance curves: at each time step when the agent made
a decision, we examined its energy level, and derived a series containing 1s and
0s, 1 meaning the energy level was between the two thresholds, 0 meaning it was
not. By moving window averaging this series, this learning curve should tend to 1,
provided that the agent learns to keep its energy between the two thresholds in a
stable manner. We conducted the following experiments:

• We compared the energy curves of the agents during and after learning to ex-
amine how stable the behaviour of the agent was utilising the various methods.
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High level variables
Intervals
or values

Notes Action macro

energy level 5
lowest and highest
values are meant to

be avoided

eat food, for each
food type

number of food
items in the bag

0-3 for each food type
collect food, for
each food type

consumption
history of food

items
5

what fraction of
the food consumed

in the past few
steps was of type t,
for each food type

wait for a few time
steps

distance to the
nearest food item

5
for each type of

food

explore; move in a
random direction

and amount

distance from home 5 go back home

Table 2: High level variables and action macros used. With these variables,
(i) size of the state space is 5×42×52×52×5 = 250, 000, (ii) size of the state-action
space is 5× 42 × 52 × 52 × 5× 7 = 1, 750, 000.

• We compared the learning curves of the various learning methods, to see how
smooth the learning processes were, depending on the learning method.

• We tested how the various methods scale with the state space size.

• We tested the factored learning method in a slightly more complex setting,
when we enabled the ‘distance from home’ feature and the ‘go back home’
macro. Also, in this setting the agent got penalised for being far from home,
thus it had to optimise its behaviour according to two opposing objectives

In Figure 2 in the upper row, we show how the energy of the agent varies
between the minimum and maximum values during a typical run for the three kinds
of learning methods. The lower row shows the corresponding learning curves with
a slight temporal smoothing. It can be seen that the factored model outperforms
the table based methods both in learning speed and in its stability. The learning
curve corresponding to the factored model goes up quickly to 1 right at the very
beginning and stays there. The curve is smooth, demonstrating that the energy
of the agent is kept between the two thresholds (which are 0.2 and 0.8). On the
other hand, curves corresponding to table based methods rise towards 1 much more
slowly and are much less stable, since the energy levels of the agents often exceed
the thresholds. This comes from the fact that the factored model generalises very
well, but table based models have no means to generalise, and need to learn the
right actions for every possible combination of state variables.
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Figure 2: Typical energy levels and learning curves for the three learning

methods. The energy is the most stable for the factored model, for which learning
is fastest and smoothest due to generalisation.

We also tested how the various methods scale with the state space size. To show
the benefits of the factored approach, we increased the state space from minimal
to a point until all methods could have been tested. In Figure 3, the curves are
averaged over 10 runs and smoothed so that the learning trends could be seen. It
can be seen that the learning time of the factored model is virtually not effected
as the state space is increased, however, for table based methods, learning time
increases greatly.

To see how the factored method behaves in a slightly more complex setting, we
enabled the ‘distance from home’ feature and the ‘go home’ macro, and the agent
also got punished based on its distance from home, to encourage it to stay near
home, if possible. Note, that in this setting the agent had to optimise multiple
criteria acting in opposite directions: to survive, it needs to get far from home, in
order to get food, while at the same time it should spend as little time far from
home as possible.

We examined the distribution of the agent’s distance from home and concluded
that it successfully learns to spend its time near home whereas it spent equal time
at the two food areas when the feature was not enabled. In Figure 4(a) it can be
seen, that if the agent is not punished for being far from home, it spends much time
at the two ends of the world, which correspond to being close to home (one end of
the world with one of the food sources) and being far from home (the other end
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Figure 3: The effect of varying state space size. Bar plots: averaged perfor-
mances and corresponding standard deviations of the methods after 20,000 steps
for state space sizes 1,620; 3,645; 6,480; 11,520; 20,480; 32,000; 50,000; 112,500;
381,024; 1,075,648; 2,654,208 corresponding to the bars from left to right. Upper
figures: corresponding learning curves up to 100,000 steps. The factored model is
barely effected by the increase in the state space size. Learning time of the table
based methods increases steadily, especially for V tables.

of the world with the other food source), and it spends medium amount of time in
the area between the two ends. On the other hand, if it gets punished for being far
from home, it spends much time near home, and it spends much less time at the
other end of the world (b). Although the agent must occasionally visit the other
end of the world in order to obtain the other kind of food, it can also be seen that
the time spent in the middle of the world also gets lower, which suggests that the
agent learned to quickly rush to the other end, get some food, and return home.

5 Discussion

We have investigated a learning model based on factored Markov decision process
in a task which is real world-like in two ways. First, our agent lives in grid world
in which it observes only a small neighbourhood of its environment. This partial
observability usually entails the fact that the decision process related to the ob-
servations is not Markovian, i.e. past observations are also required to make the
appropriate decisions. Second, the space of observations is overtly large. So in
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 0 max

(a) Locations w/o ‘home’

 0 max

(b) Locations with ‘home’

Figure 4: Locations of the agent, shown by distance from home. The agent
should go to the far end to optimise for the metabolism. It learns to spend less
time at the far end and by ‘travelling’ if it is penalised for being further away.

a sense, there are too many observations which are still not informative enough.
To enable decision making, the agent needs to form a Markovian description of
its state. To do so, we have utilised hand coded high level variables for spatial
and temporal integration of observations based on long term memory maps. These
variables build up the state of the agent.

However, such a state space is still too large for tabular RL methods even for
the simple task described in this paper. This points to the need for methods of
other type that can take advantage of the structure of the state space. The factored
model builds exactly on the characteristics that the state space is generated as the
Cartesian product of state variables. We have compared the factored method to
traditional table based RL methods. In real-world tasks the agent usually needs to
learn the model of the task, i.e. the state transition probabilities and the reward
function as well. Q-table methods, on the other hand, naturally incorporate model
learning. In our studies, we investigated how the separation of those learning
subtasks effects learning speed. Thus, we compared (i) Q-table based learning to
(ii) V-table based learning augmented with model learning, and to (iii) factored
value-learning augmented with factored model learning.

The experiments demonstrated that the separation of model learning from value
learning in the tabular case corrupts performance, i.e. the V-table based methods
augmented with model learning were always worse than the Q-table based methods
that incorporate model learning into (state-action) value learning. This is probably
due to the fact that the Q-table based method needs to learn a much smaller num-
ber of parameters, because it does not rely on transition probabilities. Transition
probability tables scale quadratically with the size of the state space, and these pa-
rameters are elegantly cumulated into a much fewer number of Q values. However,
when the model is factored, the number of parameters describing the transition
probabilities and the state values becomes much less, and it becomes beneficial to
separate the model from the values; learning speeds up because of generalisation.
Our experiments show that the factored model learns very quickly and becomes
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stable very soon, since it is able to generalise knowledge learned in one state to an
other.

6 Conclusion

We have experimented with a factored version of temporal difference based rein-
forcement learning. The partially observable nature of the task was diminished by
hand crafted features, which generated the factored state space. We have shown
that factored learning is faster and more stable as compared to tabular methods.
Furthermore, the factored method is also applicable to large state spaces since it
does not suffer from combinatorial explosion. The capability that transition prob-
abilities can be learned for the factored case opens the way for planning in complex
situations, such as the environment of the New Ties project, including the devel-
opment and the execution of joint plans about desired future states. This makes
this method promising for realistic applications.
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