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Abstract

Certain technological applications use queuing systems where the service

time of entering entities cannot take any value, it can only be a multiple of

a certain cycle-time. As examples of this, one can mention the landing of

aeroplanes and the optical buffers of internet networks. Servicing an entering

customer can be started immediately, or, if the server is busy, or there are

waiting customers, the new customer joins a queue, moving along a closed

path which can be completed within a fixed cycle-time of T units. Applica-

tions in digital technology induce the investigation of discrete systems. We

give the mathematical description of systems serving two types of customers,

where inter-arrival times follow a geometric distribution, and service times are

distributed uniformly. A Markov-chain is defined and the generating func-

tions of transition probabilities are calculated. The condition of ergodicity is

established and the equilibrium distribution is given.

Keywords: discrete retrial systems, Lakatos-type queuing system

1 Introduction

The system investigated in the paper was originally based on a real problem con-
nected with the landing of aeroplanes, but later many other applications emerged
which are strongly related to information technology. We use the original problem
to provide an initial description.

Consider an airport where aeroplanes come to land. The airport can serve only
one plane at a time. Hence, if the runway is used or there are other planes waiting
to land, the incoming plane has to wait. Unlike in classic queuing systems, special
conditions prevail here, which result in significant differences from an ordinary
system. We assume that a plane planning to land approaches the runway in the
optimum position, and, if it is possible, it starts landing immediately. If the plane
is forced to wait, then it starts a circular manoeuvre and can issue further requests
to land only when reaching the original starting point of its trajectory. We assume
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that completing each full cycle takes equal time, T , thus the possible instants of
starting to land can differ from the moment of arrival by integer multiples of T .
Because of possible fuel shortage it is natural to use the first-come-first-served
(FCFS) discipline.

We can model the above problem by investigating a retrial system, where the
service of an incoming customer can be started upon arrival if the system is in
free state, otherwise – if the server is busy or there are other entities waiting – the
incoming customer joins a queue and its service is started at the nearest possible
instant differing from the arrival by a multiple of the cycle-time T . The FCFS rule
is obeyed. Different service time distributions lead to various problems, these were
broadly investigated by Lakatos. In [9], service time distribution is exponential,
whereas in [10] it is uniform. In the light of technical applications, it is important
to consider discrete models. In this case the cycle-time is divided into n equal
time-slices, which form the basis of the discrete distributions. A typical application
in digital technology is the use of an optical buffer, which is a device capable of
temporarily storing light (or rather, data in the form of light). As light cannot be
frozen, a typical optical buffer is realised by a single loop, in which data circulate
a variable number of times, and thus n can be the measure of the cycle-time in
clock cycles. The model was investigated by Rogiest, Laevens et al. in [8, 14].
The involved optical buffers are implemented as a set of N + 1 Fiber Delay Lines
(FDLs), with lengths that are typically multiples of a basic value D, called the
granularity. This results in a degenerate waiting room with waiting times 0, D,
2D, . . ., ND. The problem is investigated from the point of view of the customers,
i. e. their waiting time. Lakatos and myself chose a different approach, the problem
is described from the aspect of the server, i. e. the number of waiting customers,
which is more significant for determining the number of necessary FDLs. The
time elapsed between two arrivals was geometrically distributed and service times
of customers were geometric and uniform in [11] and [12], respectively. The two
different approaches to describe these systems coincide in the condition of ergodicity
and the probability of free state; this was shown in [13]. A numerical investigation
was carried out in [2].

It was Kovalenko’s suggestion to generalise the problem for two different types
of customers. Only one customer of the first type can be present in the system.
Such a customer can be accepted for service only in the case of a free system, in
all other cases its request is turned down. There is no such restriction for the
customers of the second type; they are serviced immediately or join a queue, when
the server is busy. This type of system was examined with different continuous
distributions in [4, 5, 6]; simulation results were also included in [6]. In [7] this type
of system using relative priorities was investigated with geometric inter-arrival and
service time distributions. In the present paper the same system is considered
with discrete uniform service time distributions. The endpoints of the interval of
the uniform distributions are presumed to be multiples of the cycle-time T . This
assumption does not restrict the generality of the theory, but without it formulae
are much more complicated.

There are several aspects which can be treated just exactly in the same way as in
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the case of continuous distributions. However, there are some differences between
discrete and continuous systems. One such significant phenomenon is collision.
With continuously distributed service times the probability of the appearance of
two different types of customers at the very same instant is zero, but in discrete
systems different types of customers do appear during the same time-slice with
non-zero probability. There are several ways to deal with collisions, we suggest
three methods for treating these, numbered I., II., and III.

The aim is to determine generating functions of transition probabilities, as well
as to establish the condition of ergodicity.

2 Results

Consider a Lakatos-type queuing system serving two types of customers. The cycle-
time T is divided into n equal time-slices. The probability of the appearance
of a customer of type j during a certain time-slice is rj , and there is no entry
with probability 1 − rj , i. e. inter-arrival times are geometrically distributed with
parameters rj (j = 1, 2). Service times are uniformly distributed in the interval
[γj , δj ], (where γj and δj are multiples of T ), i. e. the probability that the service
time of a customer of type j is in this interval is qj = T

n(δj−γj)
.

For the description of the system we are going to use the embedded Markov-
chain technique. Let us consider the number of customers in the system at the
moment just before the service of a new customer begins. In other words, if tk
denotes the moment when the service of the k-th entity starts, we consider the
sequence, whose states correspond to the number of customers at tk − 0. For the
sake of definiteness, at t = 0 let the system be free. To see that the process is
Markovian we refer to the same argument as in [6], and the memoryless property
of the geometric distribution.

For this chain we introduce the following transition probabilities:

aji: the probability of the appearance of i customers of the second type at the
service of a type j customer (j = 1, 2), if at the beginning there is only one
customer in the system;

bi: the probability of the appearance of i customers of the second type at the
service of a second type customer, if at the beginning of the service there are
at least two customers in the system;

ci: the probability of the appearance of i customers of the second type in a free
state.

As the process runs, the busy period can start with a customer of either type.
During the service of this customer only second type customers are accepted for
service, they join the queue. Requests of first type customers are refused. This
explains the need for introducing ci, the value of which will be determined using aji,
depending on the type of customer being serviced. If there are no other requests
present when the service of the next customer begins (which is obviously of the
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second type), the system turns into state 1, and the probabilities of turning into
other states from this one are given by a2i. The probabilities of all other transitions
are bi. The corresponding generating functions of all these probabilities are

Aj(z) =
∞
∑

i=0

ajiz
i, B(z) =

∞
∑

i=0

biz
i, and C(z) =

∞
∑

i=0

ciz
i.

Collision disciplines. As far as collisions are considered, three different methods
will be applied:

Method I. In the case of a collision, both types of customers are refused.

Method II. In the case of a collision, the first type customers are accepted for
service, but the second type ones are refused.

Method III. In the case of a collision, customers of both types are accepted for
service, but the ones of the first type are served first. When applying this
method, in addition to previously defined transition probabilities, new ones
have to be introduced. Let a12i denote the probability of the appearance of
i customers of the second type at the service of a first type customer, if the
service process started with the simultaneous appearance of customers of both
types; the generating function of these probabilities is A12(z) =

∑

∞

i=0 a12iz
i.

Let us now summarise the properties of the system and introduce some notation.
Consider a discrete cyclic-waiting system serving two types of customers in which
inter-arrival time distributions are geometric with parameters rj , whereas service
times are uniformly distributed in the intervals [γj , δj ] (j = 1, 2), respectively. The
service of an entering customer may start immediately on arrival if the server is free,
but in case of a busy server or waiting customers, first type customers are refused,
and second type customers join the queue. The service of queued customers may
start at times differing from their arrival times by multiples of the cycle-time T ,
which is divided into n equal time slices; these form the units of the geometric and
uniform distributions. The states of the corresponding embedded Markov-chain
are identified with the number of customers in the system at moments just before
starting the service of a customer.

Theorem 1. The matrix of the transition probabilities of the defined chain has the
form:















c0 c1 c2 c3 . . .

a20 a21 a22 a23 . . .

0 b0 b1 b2 . . .

0 0 b0 b1 . . .
...

...
...

...
. . .















. (1)
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The elements of the matrix are determined by their generating functions below.

Aj(z) =
qj

r2

[

(1 − r2)
γj
T

n+1
− (1 − r2)

δj
T

n+1

]

+

+ zqj

[

(1 − r2)
γj
T

n
− (1 − r2)

δj
T

n

]

+ zqj

[

(1 − r2)
γj
T

n
− (1 − r2)

δj
T

n

]

×

×
1 − (1 − r2)

n

r2 (1 − r2)
n (1 − r2 + r2z)

n
1 −

(

1−r2+r2z
1−r2

)

γj
T

n

1 −

(

1−r2+r2z
1−r2

)n +

+ zqj (1 − r2 + r2z)
n



n
(1 − r2 + r2z)

γj
T

n
− (1 − r2 + r2z)

δj
T

n

1 − (1 − r2 + r2z)
n −

− (1 − r2)
δj
T

n 1 − (1 − r2)
n

r2 (1 − r2)
n

(

1−r2+r2z
1−r2

)

γj
T

n

−

(

1−r2+r2z
1−r2

)

δj
T

n

1 −

(

1−r2+r2z
1−r2

)n









, (2)

A12(z) = znq1
(1 − r2 + r2z)(

γ1

T
+1)n

− (1 − r2 + r2z)(
δ1
T

+1)n

1 − (1 − r2 + r2z)
n , (3)

B(z) =
r2q2

1 − (1 − rn
2 )

(1 − r2 + r2z)
γ2

T
n
− (1 − r2 + r2z)

δ2
T

n

1 − (1 − r2 + r2z)
n ×

×

[

(

(1 − r2 + r2z) − (1 − r2 + r2z)
n+1

)

×

×

(

1 − (1 − r2)
n

(1 − r2 + r2z)
n

(1 − (1 − r2) (1 − r2 + r2z))
2 −

n (1 − r2)
n

(1 − r2 + r2z)
n

1 − (1 − r2) (1 − r2 + r2z)

)

+

+ n (1 − r2 + r2z)
n+1 1 − (1 − r2)

n
(1 − r2 + r2z)

n

1 − (1 − r2) (1 − r2 + r2z)

]

(4)

and C(z) depends on collision policies:

I. C(z) = r1(1−r2)
r1+r2−r1r2

A1(z) + r2(1−r1)
r1+r2−r1r2

A2(z) + r1r2

r1+r2−r1r2

, (5a)

II. C(z) = r1

r1+r2−r1r2

A1(z) + r2(1−r1)
r1+r2−r1r2

A2(z) , (5b)

III. C(z) = r1(1−r2)
r1+r2−r1r2

A1(z) + r2(1−r1)
r1+r2−r1r2

A2(z) + r1r2

r1+r2−r1r2

A12(z) . (5c)

Proof. Because of the definitions, the construction of the matrix of transition prob-
abilities is straightforward. However, we draw the attention of the reader to the fact



686 Péter Kárász

that probabilities a1i do not appear in it explicitly, as customers of the first type
can only be accepted when the system is free. These probabilities are represented
through probabilities ci.

First we determine aji. In this case only one customer is present at the be-
ginning of a service (the one whose service is about to start). Time units are of
length T

n
, and all time intervals are measured using this unit. The service time of

the actual customer is denoted by u, and the next one appears v time units after
the servicing of the first customer started. In order to get aji, the distribution of
u − v must be known. Two separate calculations have to be carried out.

If 0 < l ≤
γj

T
n:

P (u − v = l) =

δj
T
∑

k=
γj
T

n+1

qj (1 − r2)
k−l−1

r2 = qj

[

(1 − r)
γj
T

n−l
− (1 − r)

δj
T

n−l

]

;

and if
γj

T
n < l ≤

δj

T
n:

P (u − v = l) =

δj
T
∑

k=l+1

qj (1 − r2)
k−l−1

r2 = qj

[

1 − (1 − r)
δj
T

n−l

]

.

The waiting time can be determined on the basis of these probabilities. If
u − v = 0 (the next customer appears in the time-slice in which the service of
the present customer is completed), then the service of the next customer can be
started immediately, the waiting time is 0. If u−v is in 1, n1, then the waiting time
is T , i. e. n units; if it is in n + 1, 2n, then the waiting time is 2n; and in general
if u − v takes some value from (i − 1) n + 1, in, then the waiting time of the next
customer is in.

The probability that the waiting time of the second customer is in (i. e. u − v

is in (i − 1) n + 1, in) is the following.

If 0 < i ≤
γj

T
:

P
(

(i − 1) n + 1 ≤ u − v ≤ in
)

=
in
∑

l=(i−1)n+1

qj

[

(1 − r2)
γj
T

n−l
− (1 − r2)

δj
T

n−l

]

=

= qj

[

(1 − r2)
γj
T

n
− (1 − r2)

δj
T

n

]

1 − (1 − r2)
n

r2 (1 − r2)
n

1

(1 − r2)
(i−1)n

.

The generating function of the number of customers appearing in a time slice
is 1− r2 + r2z, hence, the generating function of the number of customers entering

1Notation a, b is used for integer intervals, i. e. a, b = [a, b] ∩ Z.
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during the waiting time is:

γj
T
∑

i=1

qj

[

(1 − r2)
γj
T

n
− (1 − r2)

δj
T

n

]

1 − (1 − r2)
n

r2 (1 − r2)
n

(1 − r2 + r2z)
in

(1 − r2)
(i−1)n

=

= qj

[

(1 − r2)
γj
T

n
− (1 − r2)

δj
T

n

]

×

×
1 − (1 − r2)

n

r2 (1 − r2)
n (1 − r2 + r2z)

n
1 −

(

1−r2+r2z
1−r2

)

γj
T

n

1 −

(

1−r2+r2z
1−r2

)n . (6)

If
γj

T
< i ≤

δj

T
:

P
(

(i − 1) n + 1 ≤ u − v ≤ in
)

=
in
∑

l=(i−1)n+1

qj

[

1 − (1 − r2)
δj
T

n−l

]

=

= qjn − qj (1 − r2)
δj
T

n 1 − (1 − r2)
n

r2 (1 − r2)
n

1

(1 − r2)
(i−1)n

,

and the generating function of entering customers is:

δj
T
∑

i=
γj
T

+1

[

qjn − qj (1 − r2)
δj
T

n 1 − (1 − r2)
n

r2 (1 − r2)
n

1

(1 − r2)
(i−1)n

]

(1 − r2 + r2z)
in

=

= qjn (1 − r2 + r2z)
n (1 − r2 + r2z)

γj
T

n
− (1 − r2 + r2z)

δj
T

n

1 − (1 − r2 + r2z)
n −

− qj (1 − r2)
δj
T

n 1 − (1 − r2)
n

r2 (1 − r2)
n (1 − r2 + r2z)

n

(

1−r2+r2z
1−r2

)

γj
T

n

−

(

1−r2+r2z
1−r2

)

δj
T

n

1 −

(

1−r2+r2z
1−r2

)n .

(7)

The probability that the waiting time is zero (which happens when the next
customer enters during the last time-slice of the service of the previous one) is:

δj
T

n
∑

k=
γj
T

n+1

qj (1 − r2)
k−1

r2 = qj

[

(1 − r2)
γj
T

n
− (1 − r2)

δj
T

n

]

, (8)

while the probability that there is no entry at all is:

δj
T

n
∑

k=
γj
T

n+1

qj (1 − r2)
k

=
qj

r2

[

(1 − r2)
γj
T

n+1
− (1 − r2)

δj
T

n+1

]

. (9)
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Bearing in mind that we examined those possibilities when a customer enters obli-
gatorily, generating functions (6), (7), and (8) have to be multiplied by z, then
added to (9), which yields (2).

If the third method of collision treatment is applied, then A12(z) has to be
determined. In this case the service starts with the simultaneous arrival of two
customers of different types, and the one of the first type is served first. The
duration of its service can take any value between γ1

T
n + 1 and δ1

T
n with equal

probability q1 = T
n(δ1−γ1)

, so

P
(

(i − 1) n + 1 ≤ u ≤ in
)

=

in
∑

l=(i−1)n+1

q1 = q1n

for all γ1

T
< i ≤ δ1

T
.

Taking into account that one customer of the second type is already present at
the start of the service of the first type customer, the generating function is:

A12(z) = z

δ1
T
∑

i=
γ1

T
+1

nq1 (1 − r2 + r2z)
in

=

= znq1
(1 − r2 + r2z)(

γ1

T
+1)n

− (1 − r2 + r2z)(
δ1
T

+1)n

1 − (1 − r2 + r2z)
n ,

which is identical to (3).
The probability of the appearance of at least one customer of any type in a

time-slice is

1 − (1 − r1) (1 − r2) = r1 + r2 − r1r2.

The busy period can start with the arrival of a first type customer alone with the

probability r1(1−r2)
r1+r2−r1r2

, with the arrival of a single second type customer with the

probability r2(1−r1)
r1+r2−r1r2

, and with the arrival both customers, with the probability
r1r2

r1+r2−r1r2

. These easily explain (5c) (collision discipline III.). In the case of
collision treatment method I., customers of both types are lost if they arrive during
the same time-slice, and this may be interpreted as a service of zero length (the
system stays in the free state with this probability), which results in the generating
function (5a). If collision discipline II. is applied, then the busy period can start
with the service of a first type customer with the probability r1

r1+r2−r1r2

(no matter
whether there was a refused customer of the second type at the same time), and

starts with the service of a second type customer with the probability r2(1−r1)
r1+r2−r1r2

,
which explains (5b).

Finally, we are going to determine the transition probabilities bi. In this case,
when the service of the actual customer begins, the next one is already present. Let
x = u −

⌊

u−1
n

⌋

n, i. e. x is the service time mod n (1 ≤ x ≤ n), and let y denote
the inter-arrival time mod n (1 ≤ y ≤ n). The time elapsed between the starting
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moments of services of these two consecutive customers will be:

t0 =

{

⌊

u−1
n

⌋

n + y, if x ≤ y;
(⌊

u−1
n

⌋

+ 1
)

n + y, if x > y.

Now, let us fix y, and consider the usual set of integers in + 1, (i + 1) n. If the
service is completed until in + y (inclusive), then the time in question is in + y.
The probability of this event is yq2. If the service finishes later than in+y, then the
time difference between starting services is (i + 1)n+y with probability (n − y) q2.
Summation has to be extended over all possible values of service times, therefore,
the generating function of the number of entering customers on condition that
inter-arrival time mod n is equal to y is:

δ2
T

−1
∑

i=
γ2

T

[

q2y (1 − r2 + r2z)
in+y

+ q2 (n − y) (1 − r2 + r2z)
(i+1)n+y

]

=

= q2 (1 − r2 + r2z)
y
[

y + (n − y) (1 − r2 + r2z)
n
]

×

×
(1 − r2 + r2z)

γ2

T
n
− (1 − r2 + r2z)

δ2
T

n

1 − (1 − r2 + r2z)
n .

The random variable of y has truncated geometric distribution with probabilities
(1−r2)

k−1r2

1−(1−r2)
n (k = 1, 2, . . . , n). The previously calculated sum has to be multiplied

by (1−r2)
y−1r2

1−(1−r2)
n , and summed up for y, from 1 to n. Expanding this sum we finally

receive (4).

Theorem 2. The generating function of ergodic distribution of this chain is:

P (z) =

∞
∑

i=0

piz
i =

p0

(

zC(z) − B(z)
)

+ p1z
(

A2(z) − B(z)
)

z − B(z)
, (10)

where p0 and p1 are the first two probabilities of the equilibrium distribution. They
are connected with the relation p1 = 1−c0

a20

p0, and

p0 =
1 − B′(1)

1 − B′(1) + C ′(1) + 1−c0

a20

(

A′

2(1) − B′(1)
) , (11)

where

A′

j(1) = −aj0 +
T

δj − γj

[

(1 − r2)
γj
T

n
− (1 − r2)

δj
T

n

]

(1 − r2)
n

1 − (1 − r2)
n +

+
nr2

T

γj + δj + T

2
,
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A′

12(1) = 1 +
nr2

T

γ1 + δ1 + T

2
,

B′(1) =
nr2

T

γ2 + δ2 + T

2
, (12)

and C ′(1) depends on collision policies:

I. C ′(1) = r1(1−r2)
r1+r2−r1r2

A′

1(1) + r2(1−r1)
r1+r2−r1r2

A′

2(1) ,

II. C ′(1) = r1

r1+r2−r1r2

A′

1(1) + r2(1−r1)
r1+r2−r1r2

A′

2(1) ,

III. C ′(1) = r1(1−r2)
r1+r2−r1r2

A′

1(1) + r2(1−r1)
r1+r2−r1r2

A′

2(1) + r1r2

r1+r2−r1r2

A′

12(1) .

Proof. The matrix of transition probabilities has the form (1). Using this we can
determine the probabilities of the equilibrium distribution denoted by pl. They
satisfy the equations















p0

p1

p2

p3

...















=















c0 c1 c2 c3 . . .

a20 a21 a22 a23 . . .

0 b0 b1 b2 . . .

0 0 b0 b1 . . .
...

...
...

...
. . .















T 













p0

p1

p2

p3

...















,

i. e.

p0 = p0c0 + p1a20, (13a)

pl =

l+1
∑

k=2

pkbl−k+1 + p0cl + p1a2l (l ≥ 1) , (13b)

from which we receive the following expression for the generating function:

P (z) =
∞
∑

l=0

plz
l = p0C(z) + p1A2(z) +

∞
∑

l=1

l+1
∑

k=2

pkbl−k+1z
l =

= p0C(z) + p1A2(z) +
∞
∑

k=2

∞
∑

l=k−1

pkbl−k+1z
l−k+1zk−1 =

= p0C(z) + p1A2(z) + B(z)

(

P (z)

z
−

p0

z
− p1

)

,

which yields (10). From (13a)

p1 =
1 − c0

a20
p0.

To determine p0, the condition P (1) = 1 is used, from which (11) is obtained.
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Lemma 1. The expression C ′(1)+ 1−c0

a20

(

A′

2(1)−B′(1)
)

is always positive, for any
values of the parameters, and for any collision discipline.

Proof.

1 − c0

a20

(

A′

2(1) − B′(1)
)

=

= (1 − c0)

[

−1 +
T

a20 (δ2 − γ2)

(

(1 − r2)
γ2

T
n
− (1 − r2)

δ2
T

n
) (1 − r2)

n

1 − (1 − r2)
n

]

.

Substituting a20 = T
n(δ2−γ2)

1−r2

r2

(

(1 − r2)
γ2

T
n
− (1 − r2)

δ2
T

n
)

in the formula, we

get:

1 − c0

a20

(

A′

2(1) − B′(1)
)

= (1 − c0)

(

−1 +
nr2

1 − r2
·

(1 − r2)
n

1 − (1 − r2)
n

)

.

Next, C ′(1) is transformed in the following way:

C ′(1) =
∞
∑

i=0

ici =
∞
∑

i=0

ci − c0 +
∞
∑

i=2

(i − 1) ci = 1 − c0 +
∞
∑

i=2

(i − 1) ci.

Substituting all in, we obtain:

C ′(1) +
1 − c0

a20

(

A′

2(1) − B′(1)
)

=

∞
∑

i=2

(i − 1) ci + (1 − c0)
nr2

1 − r2

(1 − r2)
n

1 − (1 − r2)
n .

From the formula rewritten in this form, it is obvious that

C ′(1) +
1 − c0

a20

(

A′

2(1) − B′(1)
)

> 0.

Theorem 3. The condition of the existence of ergodic distribution is the fulfilment
of the following inequality:

nr2

T

γ2 + δ2 + T

2
< 1. (14)

Proof. As the embedded Markov-chain is irreducible and aperiodic, the condition
of the existence of ergodic distribution is 0 < p0 < 1. Applying Theorem 2 and

Lemma 1, p0 = 1−B′(1)
1−B′(1)+K

, where K is a positive constant. Thus, the condition

simplifies into

1 − B′(1) > 0,

which – together with (12) – gives (14).
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3 Conclusions

We investigated a special queuing system which serves two types of customers:
customers of the first type are accepted for service only if the system is free; cus-
tomers of the second type – if not serviced immediately – join a queue and can start
their service after a multiple of the cycle-time has elapsed. Inter-arrival time dis-
tributions were geometric, service times were uniformly distributed; three collision
treatment methods were considered.

By applying exact methods we gave formulae for transition probabilities and
established the condition of ergodicity (14). One remarkable thing about (14) is
that it does not depend on the customers of the first type, i. e. such customers
have no effect on the ergodicity of the process. Moreover, the formula expressing
the condition has a clear probabilistic interpretation. Considering that T

n
1
r2

is the
average inter-arrival time, the condition rewritten in the form

γ2 + δ2

2
+

T

2
<

T

nr2

expresses the constraint that the sum of the average service and average idle times
(on average T

2 time is needed for the next customer in the queue to reach the
starting position) should be less than the average inter-arrival time.

Although the model was motivated by a real problem, it certainly is only a
simplified version of it, which affects its applicability. For instance, it is assumed,
without any statistical investigation of real data, that arriving entities form Poisson-
processes. Presumably, even if they really do so, the Poisson-processes cannot be
homogeneous, almost certainly. The FCFS rule is often broken in real life, too;
normally the plane reaching the starting position first is to commence landing.
Nevertheless, this simplified model provides exciting tasks to solve, and it can be
modified later to fit the real case more precisely.
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