
Acta Cybernetica 19 (2009) 159–175.

Filter Bank Design for Melody Recognition

Zoltán Gera∗

Abstract

Recognizing different features of a waveform to later recompose the music
that was originally present in the signal is a difficult task. There are nu-
merous fields of application where these techniques are known to be useful
including music authoring, digitizer design, automatic music transcription.
There are many different methods that can be used for this purpose giving
somehow inadequate quality regarding noise, polyphony or time- / frequency
localization compared to the human auditory system. In this article, I will
show a new filter design method specifically designed to be aware of human
perception features. I will also show the way how a complete filter bank can
be assembled and used for melody recognition in real time. Finally, I will
point out the benefits of this filter design compared to other methods.

Keywords: DSP, melody recognition

1 Introduction

1.1 Main Objectives

Melody recognition is a process where different features are extracted from a wave-
form to later form music data. These features, such as pitch, note length and
loudness, are high-level, subjective and abstract psychological perceptions [9] that
are hard to deal with. Recognizing rhythm and melody simultaneously should
involve an analyzation process both in time- and frequency domains [14]. This
resolution should have special requirements compared to other conventional signal
processing techniques. Examining these requirements makes us possible to reach
superior quality over standard methods [1, 15, 20].

Time resolution must have an adequate separation property. Separation avoids
blurring sounds together that were audible as two distinct notes. It should also
give continuity in a way that it does not leave short but significant sounds out
of processing. These requirements, together with their exact parameters, can be
derived from psychoacoustic measurements [9].

The frequency resolution should fit the exponential scale of music [13]. It should
give correct state information about every note along the scale regarding the note

∗ELTE IK, Budapest, E-mail: gerazo@elte.hu

DOI: 10.14232/actacyb.19.1.2009.11



160 Zoltán Gera

is sounded or not. Neighboring notes should be clearly distinguishable from each
other. Every sound that has significant harmonic content should be classified along
the melodic scale as one note. These requirements are related to music theory [13]
and psychoacoustics [1, 9, 15].

Our computational load expectancies aim not less than real-time performance.
Running the recognition process in real time is a key to give us numerous new ways
of utilization creating revolutionary techniques in digital music authoring.

1.2 Idea of Filter Bank

Every note of the melodic scale is now considered as a frequency interval or channel.
We should create individual filters which fulfill our time domain requirements at one
particular channel. These filters do their work with their own channel data only,
they do not interfere with others, so the whole bank will also fulfill the frequency
domain requirements as well. It is easy to find out that these filters should be
bandpass filters with a well-defined passband. Having the scale of western music
[13] where an octave difference is a multiplication by 2, an octave has 12 different
notes and a convention exists where A-4 note means frequency 440Hz, we get the
following center frequencies for notes:

440 · 2n/12 (1)

where n is the note number relative to A-4. We want to have whole octaves in our
range of investigation, so the interval from C-1 to B-9 is n ∈ [−45..62] which covers
the full audible frequency spectrum. That is only 108 filters with the following
passbands:

[

440 · 2(2n−1)/24, 440 · 2(2n+1)/24
]

(2)

Every filter will be used to measure note state on a channel at a particular
point of the input signal. Note state comes from a measurement that gives us some
kind of value connected to perceptual loudness [9]. The time interval of different
measurements should be short enough to fulfill separability criteria. This interval
also depends on frequency. The higher the pitch is, the shorter the interval should
be. (simple outcome of period length) However, a filter need not to be used at every
point of the input data because far less work also gives adequate time domain
resolution [8]. It would be also a waste of processing power. This means that
only FIR (Finite Impulse Response) filters are good for this purpose because IIR
(Infinite Impulse Response) filters can only be computed along an interval, rather
than at a single point, because of their recursive nature. Filter length and every
other parameter should be individually computed for every note, and separate filters
should be designed for all notes.

Filters should be created to give constant quality on every channel, so delivering
the same attenuation features with every note. This idea has the same concept as
the classic method called constant-Q transform (CQT) [18]. However, CQT and all
derived methods [3] lack general using of psychoacoustic principles apart from the
fact that they also operate with non-linear scale. This is the explanation why CQT



Filter Bank Design for Melody Recognition 161

can be computationally more intensive than FFT, even if CQT produces less data
and lacks reversibility features of FFT [18]. Our constructed filters will form a filter

bank. Under certain circumstances, the bank can produce analysis with adequate
quality. I will show the details in the next section.

2 Filter Design

2.1 Creating a Filter

We need a specifically designed bandpass filter which attenuates (suppresses) every-
thing outside passband, but gives perceptual loudness inside. According to the ex-
periments of Fletcher and Munson [5], equal-loudness contours (or Fletcher-Munson

curves) show the characteristics of how the human auditory system responds to
different sound pressure levels at different frequencies. To have our filter produce
perceptual loudness values rather than absolute levels, the filter’s passband should
fit the reciprocal of the mentioned curves called weightings. Different weighting
functions do exist. We will use A-weighting in our work because it is designed to
work well on harmonic waveforms. Other weightings perform better on noise-like
waves. They could be used for special, rhythm intensive recognition tasks.

Using a weighting function to get perceptual loudness instead of simple vol-
ume level is a key to be able to later compare different peaks and choose dominant
harmonics. It is quite common that the detection or transcription of various instru-
ments give false results because the underlying algorithm uses absolute measure-
ments and direct physical values when dealing with abstract, cognitive parameters.
There are more good approximations of the A-weighting. We will use one of them.
The ideal filter for one channel and the A-weighting is shown in Figure 1.

10
2

10
3

10
4

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference

Figure 1: Ideal filter and A-weighting in frequency domain

Creating the impulse response of this filter is easy for any arbitrary note n.



162 Zoltán Gera

To realize this representation on computer, we choose a number ld as the design

length of the filter. Because the filter designing is an off-line procedure (no real-time
requirements), we choose ld to be large. The filter representation is

f(x) =

[ld440·2(2n+1)/24/s]
∑

i=[ld440·2(2n−1)/24/s]

cos

(

x · 2πi

ld

)

· 10
wA(i/ld·s)

20 (3)

where f is the vector with length ld, x ∈ [0..ld − 1], the [. . . ] operator rounds to
the nearest integer, wA is the A-weighting function and s is the sample rate in Hz
which defaults to 44100. The multiplication after the cosine applies the weighting
function to the result.

One interesting feature of the resulting vector that its significant coefficients are
all near the two ends. It can be proven that whenever we add cosines with near
frequencies, specially frequencies from a narrow interval, cosine functions are always
in phase at the beginning and end of the interval giving the biggest coefficients there.
We change the phase of the resulting vector to have the largest coefficients at the
center of the vector.

f ′ =

[

f

(⌈

ld

2

⌉)

, . . . , f (ld − 1) , f (0) , . . . , f

(⌈

ld

2

⌉

− 1

)]

(4)

This allows us to later apply window functions with smaller information loss.
The impulse response of this quasi-ideal filter for note n is shown in Figure 2.
(The filter is quasi-ideal, because it is discretized now, but is still in long-length
representation.)

0 2000 4000 6000 8000 10000 12000 14000 16000

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Figure 2: Quasi-ideal filter in time domain

The quasi-ideal filter has still perfect characteristics, but it is far too long to
be used in real time. We need to chop insignificant parts off the vector to have a
short and real-time applicable filter. Fortunately, we can do this because significant
coefficients are in the center of the vector.



Filter Bank Design for Melody Recognition 163

Chopping is best done through applying a window function. If we use a compact
function for this purpose, we can keep the good features previously mentioned.
Applying a window function on a filter can have further positive effects on the
final result. Our goal is to reduce the power of crosstalk coming from outside the
passband, so using Kaiser window which maximizes the ratio of the mainlobe energy
to the sidelobe energy seems to be a good choice. Later we will also determine the
parameters of this window. If g(x) is the final filter with length lf (a parameter
to be discussed later), f ′(x) is our current filter with length ld (design length),
the window function is w(x) also lf long, then chopping and applying the window
function on filter f ′(x) is simply the following

f ′′ =

[

f ′

(⌈

ld

2

⌉

−

⌈

lf

2

⌉

+ 2

)

, . . . , f ′

(⌈

ld

2

⌉

+

⌊

lf

2

⌋

+ 1

)]

(5)

g(x) = f ′′(x) · w(x) (6)

Filter design through manipulating different window functions is told to be an
art, because many times, there are no direct methods of getting the best values.
Several experiments are required to find a close-to-the-best solution. This is def-
initely our case. The previously mentioned windowing step uses a window that
is a combination of a standard rectangular window (for chopping) and a Kaiser
window (for tuning up characteristics). It is possible to further improve our filter
with more window functions combined into our windowing step. No matter how
fancy our window composition is, this windowing step is done in one step only at
design time. Figure 3 shows the impulse response of the filter after the windowing
step.

0 50 100 150 200 250
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 3: Final impulse response of the filter

Finally, we should normalize the passband response of the filter to have ex-
actly the same attenuation as the A-weighting has at the center frequency of the
passband. The easiest way to do this is to use the filter on a sine wave of center



164 Zoltán Gera

frequency, and measure the SPL (Sound Pressure Level) of the resulting wave to
have the correct coefficient to be multiplied on the filter. This way, we have gained
the desired response properties implicitly compensating the power distortion effect
of the windowing step and the filter length difference between different channels.

t(x) =

lf−1
∑

i=0

cos

(

(x− i) · 2π ·
440 · 2(2n−1)/24 + 440 · 2(2n+1)/24

s

)

· g(lf − i) (7)

where g is the unnormalized filter, lf is the final filter length and the length of g,
t is the filtered wave. The length of t should not be too small to have adequate
precision. Let this length be lp (we are still in design time), so variable will go
x ∈ [0..lp − 1]. The SPL of t is the quadratic mean

SPL =

√

∑lp−1
i=0 t(i)2

lp
(8)

so the final filter h will be g multiplied by a constant:

h(x) = g(x) ·

√

1
2 · 10

(

wA

(

440·2(2n−1)/24+440·2(2n+1)/24

2

)

/20

)

SPL
(9)

10
2

10
3

10
4

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference

Figure 4: Frequency response of the final filter

Figure 4 shows the frequency response of the final filter. The ripples are the
results of giving the filter a short discretized form to fit in a short vector. This is
the cost of filtering real-time compared to the ideal filter world.



Filter Bank Design for Melody Recognition 165

2.2 Evaluating the Design

Our choice was the Kaiser window as a window function. We can use different
β parameters for the window. Zero equals the rectangular window. There are
some experiments in Table 1 where different window parameters were used with
our design method.

Increasing β lowers sidelobes which reduces crosstalk from stopband, but widens
the mainlobe giving smoother transition between stopband and passband. In clas-
sical filter design, wider mainlobe is to be avoided. For us, wider mainlobe is not as
harmful as crosstalk, because its effects can be reduced by post-processing between
neighbors on the final data. This also happens in the human auditory system
where auditory nerves apply inhibition on neighboring nerves and cells [15, 16].
This choice is also a key to mimic perceptual functions better.

Evaluating the filter is important. We should know how good it is, what quality
does it have. Evaluating a filter is done in frequency domain, in our case, with a
logarithmic scale in both directions (frequency and amplitude level). Our design
assures good approximation of the weighting function in the passband even in the
worst case, so evaluating is mostly necessary in the stopband.

An error function will be created to rate the filter. The stronger the attenuation
is in the stopband, the smaller error value the filter will get. There should be an
attenuation threshold called the ideal attenuation which is adequate to our needs.
Beyond this threshold, no error value is given for the filter to the specific frequency
point. The errors of different frequency points are cumulated to form the final error
value for the filter.

e =

p
∑

i=1&a(i)>ai

(a(i)− ai) (10)

where a is the frequency response of the filtering with p precision (length) having
the attenuation values for different frequencies. These can be calculated the same
way we did at the normalization procedure. The spectrum is calculated only for
the audible interval, namely 20Hz− 20kHz. Coefficient ai is the ideal attenuation.
Setting it to a reasonable value like constant 60 dB gives good results.

As was mentioned before, our design ensures good features in the passband.
The frequency response of the whole stopband is quantifically interesting and we
use it in our error function. But the accurate frequency response of the stopband
has no importance.

This is not the case with the passband. The passband will let through peaks
of the original signal which should be later compared to each other perceptually in
both time- and frequency domains. The passband for this reason should be strictly
fit to the weighting function. This is not a general criterion for all the passbands
of different channels, but should specifically apply to all the individual passbands
on their own. This causes that even the smallest ripples are not allowed inside the
passband. Otherwise, small vibratos or other artistic techniques could cause level
change in the output of a filter which was not present in the original signal at all.



166 Zoltán Gera

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference Filter length: 2289 Kaiser beta: 0 

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference Filter length: 2187 Kaiser beta: 1 

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference Filter length: 1788 Kaiser beta: 2 

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference Filter length: 1285 Kaiser beta: 3 

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference Filter length: 790 Kaiser beta: 4 

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference Filter length: 425Kaiser beta: 5 

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference Filter length: 419 Kaiser beta: 6 

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

A
m

pl
ifi

ca
tio

n 
(d

B
)

Filter characteristics & weighting reference Filter length: 370 Kaiser beta: 7 

Table 1: Filter design with different Kaiser β parameters



Filter Bank Design for Melody Recognition 167

This is a key feature to have a stable and steady output when the note is inside
the channel of concern.

The conclusion is that comparing our filter design to other filter design meth-
ods has little use. The error function itself also does not serve this purpose. For
example, the Parks-McClellan optimal equiripple filter design method reduces the
number of filter coefficients by introducing ripples in the passband. While this tech-
nique turns out to be quantifically better than ours under normal circumstances
(evaluating error along a linear scale in both passband and stopband), our method
is superior with the mentioned special error function (evaluating along logarithmic
scale and only in stopband). Our method introduces ripples only in the stopband re-
ducing the number of coefficients without disturbing the important features gained
in the passband.

The length parameter of our filter design is still undetermined, so we get basi-
cally random error values after evaluating. Our error function will be used in the
following to create an algorithm to determine the optimal filter for every note. This
way, we will gain good performing filters on all channels specifically tailored to our
needs.

3 Filter Banks

3.1 Filter Bank Assembly

A filter bank consists of many filters. It may contain more than one filter for a note.
Our filter design method has many different parameters. We have determined what
parameters have optimal values independent of frequency, so these parameters can
be the same when designing filters that belong to different notes. However, the
most important parameter, the final filter length is still a question. Figure 5 shows
different quality measurements of a design of every filter along the scale using
constant length parameters.

Obviously, the final filter length parameter cannot be a constant. It will always
depend on the note we are designing. The quality measurement of a filter introduced
in the previous section is a good point to start from. We should design filters for
every note with constant quality (constant error value). We need an algorithm to
locate an optimal filter length parameter for every note. Optimality is reached here
when the resulting filter’s error value is below a preset threshold, and the filter is
as short as possible. The pseudo-code of this process should be something like this:

1. Set parameters to their defaults and set length parameter to a really small
value

2. Design the filter with current parameters

3. Evaluate the filter (using the error function)

4. If the error is below the quality threshold, but it is close to it, stop procedure



168 Zoltán Gera

−50 0 50 100
0

1

2

3

4

5

6
Error in passband

Note relative to 440Hz

E
rr

or

−50 0 50 100
−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000
Error in stopband

Note relative to 440Hz

E
rr

or

−50 0 50 100
0

5

10

15

20

25

30
Quadratic error in passband

Note relative to 440Hz

E
rr

or

−50 0 50 100
−7

−6

−5

−4

−3

−2

−1

0
x 10

5 Quadratic error in stopband

Note relative to 440Hz

E
rr

or

Figure 5: Filter evaluation along the full scale with constant length parameters

5. If the error is smaller then the quality threshold, decrease length parameter
by a small amount, go to step 2

6. If the error is bigger then the quality threshold, increase length parameter by
a bigger amount, go to step 2

As we have seen, the error values are not monotonic in the function of length.
However, the trend of the function is monotonic, only small ripples cause the loss of
strict-sense monotonicity. The above algorithm can be implemented as a modified
logarithmic search, so determining the exact step amount at the increase/decrease
phases is easy. (This exact step amount will be reduced as we get closer according
to the original logarithmic search.)

Because this filter design method is not optimized for real time at all (it will run
in design time), a search where the design and evaluation phases are repeated many
times can be quite time consuming. We do not need to have the best parameter,
we only need to get a close approximation. That’s the reason of the uncommon
stop condition in step 4. The logarithmic search will find a near optimal length
value. Choosing smaller steps can improve quality and degrade performance. The
bigger step toward longer filters favors quality over length on the long run.

The whole procedure finding optimal filters along the scale with this search
algorithm using various error thresholds, extreme small step values and really close
stop condition (to reach the ideal optimum and to be able to see the best result
with worst performance) runs only some hours long on a common computer (test
was done on Celeron 900MHz) in Matlab. This covers running the search algorithm
for every channel along the scale multiple times to gain filters for all channels with



Filter Bank Design for Melody Recognition 169

different quality parameters (5 filters per channel in this experiment). Because the
Matlab testbed was using only basic calculations (own DFT to be able to modify
also some parameters inside), recoding the whole procedure in a real programming
language should give a drastic speedup to the process. (The same can be run under
less than a minute.) Figure 6 shows the lengths of the resulting filters along the
scale.

−40 −30 −20 −10 0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Note relative to A−4 (440 Hz)

F
ilt

er
 le

ng
th

Figure 6: Lengths of filter results

3.2 Filter Bank Usage

Let vector f be the final filter of length lf for a specific note, and let x be the input
waveform. The filtered wave y is then

y(i) =

lf−1
∑

j=0

x(i− lf + 1 + j)f(j) (11)

Our task is to determine the loudness level of the original signal in different
points of time via calculating the SPL of y at some points using the smallest number
of calculations possible. The above equation allows finding values of y in one
arbitrary point. We know that y only contains sines around the center frequency
of the note that belongs to the filter. The basic unit of our real-time calculations,
the perceptual loudness measurement at point i for the filter of note n with s as
sample rate is as follows.

z(i) =

√

y

(

i−

⌈

s

440 · 2n/12
·
1

8

⌉)2

+ y

(

i+

⌊

s

440 · 2n/12
·
1

8

⌋)2

(12)

This is a straightforward consequence of the equation sin2 x+ cos2 x = 1.



170 Zoltán Gera

This measurement is only accurate when we measure a signal containing only the
center frequency. Other frequencies can also be present in y. These are frequencies
near the center frequency, because we are using a well-defined passband filter.
Taking the center as unit, these are 2−1/24 . . . 21/24 away from the frequency of
center which means −2.85% . . .2.93% fluctuation in frequency. This maximum
3% fluctuation level gives the measurement inaccuracy sin2 x+ cos2 (x+ 2π · 0.03)
under the period of the center frequency shown in Figure 7.

100 200 300 400 500 600

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Figure 7: Perceptual loudness measurement inaccuracy through 1 period of center
frequency

The fluctuation of inaccuracy is two times faster then the change of the waveform
level itself, so it is enough to do the loudness measurement once per period changing
the exact phase a bit randomly, and average the last measurements to suppress the
fluctuation and get the real perceptual loudness level. According to psychoacoustic
considerations, we even do not have to do the measurement once per period. It is
adequate to do it rarelier, but still the random phase change and averaging logic
should be used.

Summing up the consequences, we only have to do the loudness measurement
rarely, at most once per period (or rarelier if psychoacoustic features allow this).
This only takes using the filter twice to calculate two distinct points of y. The func-
tion y is never fully computed. The random phase change in choosing the discrete
points of y to be computed is not a simple smoothing technique. It is necessary to
compensate for slightly out of tune instruments, but first of all, to compensate for
inharmonic content of instruments. Dealing with inharmonic content is the most
important factor of this kind of smoothing, because inharmonicity is there even in
the most harmonic real-world instruments. Inharmonicity is also an organic part
of rhythm instruments.

It is obvious, that the measurement rate is proportional to the center frequency,
so the note to which the filter belongs. Figure 8 shows the ratio between the filter
length and the period length of the center frequency.

This result is really interesting, because not only does it show that the longer
filter length at low frequencies are compensated by the fact that these filters should
be applied less, but it also turns out that using the method is cheaper on lower



Filter Bank Design for Melody Recognition 171

−40 −30 −20 −10 0 10 20 30 40 50 60

2

4

6

8

10

12

14

16

18

20

Note relative to A−4 (440 Hz)

F
ilt

er
 le

ng
th

 / 
P

er
io

d 
le

ng
th

Figure 8: Filter length per period length ratio on scale

notes.

It is possible to construct more filter banks with different quality threshold
values. This would give the possibility to the real-time method to use extra com-
putational power on better machines, and still give adequate results on low-end
ones. It is also possible to dynamically and adaptively change the used filter bank
to have good time- and frequency resolution as well. This trick can be used to
virtually get rid of the Heisenberg uncertainty principle similar to what happens in
the human brain as supposed by biologists [17].

3.3 Comparing to Other Methods

Finally, we do some comparisons. First, we compare our method to a trivial solution
of our problem that uses FFT. Special comparing is needed in case of real-time
applications. A method running in real time is better described by the number of
operations per second than the asymptotic number of operations in the function of
input data (especially because the input rate is constant). However, our calculations
will still be estimations under certain circumstances. We will investigate the basic
case of the two algorithms, but we will focus on comparing the two with parameters
having similar quality features. This quality will be really high to be able to see
the significant differences, if there are any.

We start with our method. Using the filter on one point according to

y(i) =

lf−1
∑

j=0

x(i− lf + 1 + j)f(j) (13)

takes

2 · lf (14)



172 Zoltán Gera

operations. A perceptual loudness measurement at a point according to

z(i) =

√

y

(

i−

⌈

s

440 · 2n/12
·
1

8

⌉)2

+ y

(

i+

⌊

s

440 · 2n/12
·
1

8

⌋)2

(15)

takes
4 · lf + 8 (16)

operations.
Figure 6 gives us the exact lf (n) filter length values for every note. We also

know the center frequency fc(n) of note n. For simplicity, we use only one filter
bank, but we make a measurement on every period of the center frequency. This
gives the total number of operations per second as follows:

63
∑

n=−45

fc(n) · (4lf (n) + 8) ≈ 250, 475, 000 (17)

This 251 million operations per second need a high-end machine to accomplish.
Of course, the 60dB attenuation threshold can be lowered to give still adequate
results with relaxed computational needs.

Now, we create a similar method using FFT to reach the same high quality
resolution. We use a simple method of FFT overlapping windows and calculate the
number of operations for this method. For simplicity, we omit the use of window
functions (which is obviously a cheat to help FFT).

The center frequency of the two lowest notes are 32.703Hz and 34.648Hz, there-
fore the minimal required resolution of FFT is approximately 2Hz. At sample rate
44100Hz, this means a window length of 22050. The first applicable window length
for FFT is therefore 215 = 32768. Using conventional radix-2 FFT with bit reversal
in the beginning, the number of operations for one FFT is

32, 768 + 15 · (5 · 32, 768) = 2, 490, 368 (18)

To reach the desired time resolution as well, separate FFTs should be calculated
according to the center frequency of the highest note. This is 16, 744Hz, therefore
the total number of operations per second is

2, 490, 368 · 16, 744 = 41, 698, 721, 792 (19)

and the ratio between the two methods is

41, 698, 721, 792

250, 475, 000
≈ 166 (20)

Our algorithm is significantly faster than trivial FFT algorithm for the same
task. In the investigation above, we have set all parameters to get the same quality
from both methods. FFT turned out to be much slower. This also means, that with
the same performance (same number of operations), FFT gives much lower quality



Filter Bank Design for Melody Recognition 173

(which is inadequate for our special task) or on the other hand, our new algorithm
delivers far higher quality than FFT with the same number of operations.

Our special requirement is a frequency resolution using logarithmic scale. Using
wavelet-like methods introduced in [14] would give high performance with extreme
poor quality, because the octave frequency resolution is far not enough for a 12-
degree scale (Wavelet transforms are reversible, so dividing an octave into 12 parts
would be a waste according to the wavelet philosophy).

Methods that use linear scale can deliver adequate quality, but perform worse
than ours. This means lower quality with same performance (number of operations),
or much lower performance with the same quality, simply because linear scale does
not fit our task. This is the case using FFT (as shown above) and FFB according
to [3]. FFB (Fast Filter Bank) uses basically the same frequency resolution as
FFT does, but uses more sophisticated filters for tuning up individual channel
characteristics. The cost is also more operations per second which further lowers
performance.

The original CQT introduced in [18] uses pure logarithmic frequency resolution
fit to the music scale. The strange property of CQT is that it needs far more
computations than FFT according to the original [18] results. There are more
papers about faster methods of calculating CQT, the most recent is [3], but none
of them could be faster than FFT. This is the simple result of CQT’s original
concept, that it wants to deliver continuous signal output as FFT does. While this
can be useful for some special off-line analyzation purposes (examining classical
big orchestral music in printed paper), it was shown above that general melody
recognition does not need this feature as the human brain also lacks this huge
precision of resolution. My method can be faster than CQT only because I use
psychoacoustic features which are not used by previous works.

The other remarkable result of [3] is the CQFFB (Constant Quality Fast Filter

Bank), which also uses the filter tuning trick on CQT to deliver better separation
properties. While this further lowers performance but raises quality compared
to CQT, the main problem with this is that the individual filters are still not
constructed according to the features of music perception. They rather form a
consistent bank of filters with similar passband limits, but passband frequency
responses are not designed intentionally. CQFFB also lacks deep psychoacoustical
design so inherits the weaknesses of CQT regarding low performance (high number
of operations).

It should be also mentioned that both CQT and CQFFB [3] methods have accel-
erated versions (BQT and BQFFB). These bounded-Q methods gain performance
by using only one bank for an octave instead of using banks for all channels as the
original versions did. This trick makes the frequency separation worse. Different
notes have slightly different filters and passbands (because inside an octave, the
frequency resolution is linear), so it is impossible to design filters with as strict
criteria as we did. My method designs filters specifically for all individual notes,
and only one filterbank is constructed which can be applied much faster delivering
the expected frequency responses.



174 Zoltán Gera

References

[1] Aslan, A. Music Perception as a Topic of Cognitive Psychology. Doguş Uni-
versitesi Dergisi. 8(2):117-127, 2007.

[2] Bohn, D. Audio Specifications. Rane Corporation, 2000.

[3] Diniz, F. C. C. B., Kothe, I., Netto, S. L., Biscainho, L. W. P. High-Selectivity
Filter Banks for Spectral Analysis of Music Signals. EURASIP Journal on

Advances in Signal Processing, Volume 2007:1-12, 2007.

[4] Fitch, J., Shabana, W. A Wavelet-based Pitch Detector for Musical Signals.
Department of Mathematical Sciences, University of Bath, 1999.

[5] Fletcher, H., Munson, W. A., Loudness, its definition, measurement and cal-
culation. Journal of the Acoustical Society of America, vol.5, 1933.

[6] Gera, Z. Dallamfelismerés és kottázás valós időben. Master Thesis, ELTE,
2004.

[7] Hacihabiboglu, H., Canagarajah, N. Instrument Recognition Based Wavelet
Packet Trees in Audio Feature Extraction. International Symposium on Mu-

sical Acoustics, Digital Music Research Group, Department of Electrical and
Electronic Engineering, University of Bristol, 2001.

[8] He, X., Scordilis, M. S. Psychoacoustic Music Analysis Based on the Discrete
Wavelet Packet Transform. Research Letters in Signal Processing, Volume
2008:1-5, 2008.

[9] Iakovides, S. A., Iliadou, V. T., Bizeli, V. T., Kaprinis, S. G., Fountoulakis,
K. N., Kaprinis, G. S. Psychophysiology and psychoacoustics of music: Per-
ception of complex sound in normal subjects and psychiatric patients. Annals

of General Hospital Psychiatry, 3:6:1-4, 2004.

[10] Jun, Z., Lei, G., Deyun, Z. A High-performance Psychoacoustics Approach to
Speech Quality Evaluation. Information Technology Journal, 5(3): 485-488,
2006. Asian Network for Scientific Information

[11] Liu, K. J. R., Wu, A., Raghupathy, A., Chen, J. Algorithm-Based Low-Power
and High-Performance Multimedia Signal Processing. IEEE, 1997.

[12] Mannell, R.H., The perceptual and auditory implications of parametric scal-
ing in synthetic speech. Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1994.

[13] Mendel, A. Pitch in Western Music since 1500. A Re-Examination. Acta

Musicologica, 1978.

[14] Meyer, Y. Wavelets, Algorithms & Applications. Society for Industrial and
Applied Mathematics, Philadelphia, 1993.



Filter Bank Design for Melody Recognition 175

[15] Obleser, J., Elbert, T., Eulitz, C. Attentional influences on functional mapping
of speech sounds in human auditory cortex. BMC Neuroscience, 5:24:1-9, 2004.

[16] Okamoto, H., Kakigi, R., Gunji, A., Pantev, C. Asymmetric lateral inhibitory
neural activity in the auditory system: a magnetoencephalographic study.
BMC Neuroscience, 8:33:1-6, 2007.

[17] Poeppel, D. The Analysis of Speech in Different Temporal Integration Win-
dows: Cerebral Laterization as Assymetric Sampling in Time. Speech Com-

munication Volume 41, Issue 1, 2003.

[18] Brown, J. C., Puckette, M. S. An efficient algorithm for the calculation of a
constant Q transform. Journal of the Acoustical Society of America, vol. 92,
no. 5, 1992.

[19] Slaney, M., Lyon, R. F. A Perceptual Pitch Detector. International Conference

on Acoustics Speech and Signal Processing, 1990.

[20] Todt, D. From birdsong to speech: a plea for comparative approaches. Anais

da Academia Brasileira de Ciencias, 76(2):201-208, 2004.

Received 22nd August 2007


