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Abstract

The paper presents a plagiarism detection framework the goal of which is

to determine whether two programs are similar to each other, and if so, to

what extent.

The issue of plagiarism detection has been considered earlier for written

material, such as student essays. For these, text-based algorithms have been

published. We argue that in case of program code comparison, structure

based techniques may be much more suitable. The main idea is to transform

the source code into mathematical objects, use appropriate reduction and

comparison methods on these, and interpret the results appropriately.

We have designed a generic program structure comparison framework and

implemented it for the Prolog and SML programming languages. We have

been using the implementation at BUTE to successfully detect plagiarism in

homework assignments for years.
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1 Introduction and motivation

Comparison of essays and other written materials has been in focus in recent
years [27]. Detecting plagiarism in written materials is an issue in education as
well as in law procedures. World wide public polls show that two-thirds of univer-
sity students have used other people’s ideas in an impermissible way at least once
during their studies. Law disputes include the SCO-IBM debate over the allegedly
unauthorised use of portions of the AIX operating system in Linux.

Regrettably, several sites on the Internet provide free or low cost, quick and
efficient access to written materials of many types. Unbelievably, sites such as
CheatHouse1 or SchoolSucks2 proudly provide tons of essays, dissertations, re-
ports, etc. for students looking for an easy way to have their assignment of some
sort fulfilled. We do agree that it is a good idea to get acquainted with the area one
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is interested in by reading similar materials. However inspiring someone to cheat
is a different issue.

In case of programming assignments, it is important to detect the duplication
of programs or parts of these. Students attending the course “Declarative Program-
ming” at BUTE are expected to hand in a major programming assignment at the
end of the semester. This means mass amount of program sources year by year.

Checking these programs by hand seems to be beyond possibility. Having n

programs we should check n∗(n−1)
2 pairs to have all the cases covered. Notice, that

we really should check all of the pairs, because the relation “P1 is similar to P2”,
where P1 and P2 are programs, is not transitive. This practically means that even
if we know that source A is similar to source B and source B to source C we cannot
draw any direct conclusion about the similarity degree of sources A and C.

Luckily, in our particular case several assignments can be excluded from the
whole set. For example, we do not care whether two bad solutions are similar or
not (a solution is bad if it does not solve a certain percentage of the given test
cases). However we still have O(n2) pairs to test manually, where n is often greater
than 100.

Our aim was to develop methods and tools to assess the similarity of programs
in order to narrow down the need for manual testing to an acceptable amount. We
have defined the notion of a similarity degree which reflects how much two programs
match. For the methods to be generic and flexible enough we have developed a multi
phase comparison framework.

The actual comparison is performed between mathematical entities where the
meaning of similarity can be formally specified. These entities are generated from
the programs to be compared. The procedure may vary for different programming
languages, so separate front-end modules should be developed for each language.
Naturally, the mathematical entities must be generic and powerful enough to be
applicable to different languages. We have chosen directed, labelled graphs for this
purpose. Now, the comparison of source programs is actually reduced to calculat-
ing the similarity measure of graphs. Notice, that this way it is also possible to
determine the similarity degree of two programs written in different languages.

The framework is customisable, so that it remains usable under varying circum-
stances. For instance, in case of shorter programs a different similarity threshold
may be more appropriate than in the case of bigger ones. Moreover, we found that
applying certain well selected simplifying graph transformations, called reductions,
has favourable effects on the efficiency of the approach. Such reductions include
removing specific nodes and edges and thus creating higher level, more abstract
views of the programs.

The structure of the paper is as follows. In Section 2 we give a brief comparison
of our approach with other ongoing research work. Next, we describe what we
expect from a plagiarism detection framework, i.e. what are the types of student
tricks it should be resistant to. In Section 4 we give an overview of the proposed
framework and introduce the main concepts. Following this, we describe the three
components of the framework: the Front-end module, the Simplifier and the Com-
parator. Section 5 describes the prototype implementation of the framework for
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Prolog and SML programs. Next, we evaluate the system and show execution
results. Finally, we give a summary of our work.

2 Related work

Several solutions exist for detecting plagiarism in written documents (like iThen-
ticate [16], FindSame [15], CopyCatch [14], SCAM [26] or the new Hungarian portal
from the Computer and Automation Institute of the Hungarian Academy of Sci-
ences called KOPI [5]). However, this is not the case for program sources. A reason
for this may be that it is widely believed that detecting plagiarism in programs is
much easier than in free text. This is because programming languages are formally
defined and, as opposed to the case of free text, it is generally assumed that people
use only a few tricks to hide the fact of plagiarism.

Alan Parker and James Hamblen in [23] explicitly say that copied software is
“a program which has been produced from another program with a small number
of routine transformations”. These routine transformations include modifying the
comments, changing the names of the variables or (in the worst case) changing the
control structures (e.g. using while instead of for). The suggested technique for
comparing programs is the following:

1. Get rid of every comment in the source codes.

2. Get rid of every useless new line, white space, etc.

3. For each pair of source programs use a normal UNIX diff program, which
compares the files line by line.

4. Examine the results.

In [8] J. A. Faidhi and S. K. Robinson suggested a scale which defines the level
of plagiarism (L0-L6) based on what kind of modifications the cheater used. For
example, we obtain L1 from L0 by modifying the comments, L2 from L1 by further
modifying the variable names as well, etc. This scale is often used by programs for
plagiarism detection to “position” themselves.

Most existing software solutions are based on statistical or lexicographic ap-
proach where, for example, they compare identifiers with identifiers to determine
how similar the source programs are. Such systems are the DUP [2], SIM [9], SIFF
[3] or Bandit [28].

On the other hand, approaches based on structural properties were already
proposed several decades ago. For example, in [4] J. M. Bieman and N. C. Debnath
suggested building program graphs, while T. J. McCabe proposed [20] to compute
a characteristic numeric value, a metric, for each program code according to its
complexity (which was based on the number of computation paths available within
the program). This metric is widely known today as cyclomatic complexity.

Further programs that support structure comparison include the Plague [29],
the YAP (Yet Another Plague) series [30], and the Moss (Measure Of Software
Similarity) [25] program. Plague builds so called structure profiles for source codes
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and compares them. The YAP programs implement a two phase approach. First
they convert the source programs into a more unified form, e.g. removing comments,
translating upper-case letters to lower case. In the second phase (depending on the
actual YAP version) they apply algorithms, such as Heckel’s isolation technique
[12], that are resistant to specific structural changes, e.g. changing the order of
independent statements or replacing a procedure call by the procedure body. The
authors of Moss have developed a general algorithm for calculating a so called
fingerprint from an arbitrary document which they claim to be especially precise
in case of source programs.

Paper [21] introduces an XML-based model called XPDec (XML Plagiarism
Detection Model) suitable for programs written in a procedural language such as
C or Pascal. XPDec uses XML to represent structural properties of the source
programs and is useful for detecting common forms of reordering plagiarism. An
extended version of this approach is presented in [22] which takes also into account
the structure of the control sequences in the source programs.

Plagiarism detection is also closely related to code duplication detection. Here,
the idea is to detect when developers use previously existing code which solved a
problem similar to the one they are currently trying to solve. This may indicate a
design problem as the duplicated code is difficult to maintain (e.g. fixing bugs must
be done in several places). Although most of the existing solutions for duplication
detection are based on the lexicographic approach, some of them use the structural
properties of the source codes [24, 18].

Our approach introduced in this paper belongs to the group of program plagia-
rism systems utilising the structural properties of the source programs. However,
instead of providing sophisticated comparison techniques that are resistant to the
most common tricks we apply so called reduction steps to create more abstract
views of the programs. These views are then compared by using relatively sim-
ple comparison algorithms. We argue that this approach makes our system fairly
efficient and easy to customise.

3 Goals

We now discuss the most significant student tricks we believe a plagiarism de-
tection framework should be resistant to. To illustrate such tricks in a language
independent way we use pseudo-language examples below. We realise that there
exist tricks only applicable for specific programming languages. Handling these is
the task of the concrete implementation of such a framework (cf. Section 4).

Changing the names of identifiers and variables is the most common trick. A
piece of source code which contains only single letter variable names may look rather
confusing and tangled. However, it can be easily transformed into a program which
uses talkative names. For humans, sometimes only this is enough to hide the fact of
plagiarism. A similar trick is to change the natural language in which the program
identifiers are formulated: use English names in one program and use another
language in the other. It is also possible to change not just the variable, but the
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function and/or predicate names, too. For example, it is very easy to transform
the function

void solve_the_problem(Input_data, Results) {...}

. . . to the following:

void do(Input, Output) {...}

One can also change the number of arguments (the so called arity) of the func-
tions, without affecting the code. For example one can use dummy parameters,
which are set to something irrelevant at call time. If one changes not only the
name of a function, but also its arity, it may become really difficult for the human
to recognise that it is semantically equivalent to some other function.

Sometimes it is profitable for students to cut the code into several pieces and
place them into separate files using the module system of the given language. Sim-
ilarly, reordering the sequence of the function definitions in a source file is an easy,
but often effective trick. Students also like to change the order of statements in the
body of a function if these statements do not depend on each other: for example,
two independent variable assignments can be switched. In case of logic program-
ming languages, this kind of trick is very common as a body of a predicate is the
logical conjunction of so called goals. This means that these goals can often be
reordered freely without effecting the execution of the program.

Putting useless functions into the code may also be used to disguise plagiarism.
For example we can “borrow” some code from another program which has nothing
to do with the current programming assignment. Computer based methods may
find this disturbing, because this technique introduces new variables and functions,
changes the size of the file, etc. Sometimes one can recognise this trick by doing
static source code analysis and detecting that these functions are never called, but
this is not true in general.

Consider the following example, where the procedure calculate will never be
called. This procedure can be anything, most likely a piece of some big code, with
the only aim to conceal the fact that the original source code for
solve_the_problem was made by some other individual.

int solve_the_problem(A, B) {

if (A > 0) {

...

X = A + 35;

...

if (X < 0) // X cannot be negative here

calculate(X, B);

else

X = 2;

...

}

...

}



196 Gergely Lukácsy and Péter Szeredi

In the general case those parts of the program which are never called can only
be detected at run time. Unfortunately, even if we detect such code fragments it
does not mean that we found an instance of plagiarism. Sometimes such code is
simply the result of programming errors, which even the author of the program is
not aware of.

Analogously to placing useless procedures in the program code one can place
useless calls in the body of a procedure without changing its task. In the following
example we show two totally useless lines inserted into a function, not changing
the execution of the program:

...

C = 2; A = 3-C; // A = 1

...

if (C == A+1) { // check if C = 2

...

Finally, we show two tricky, but easily implementable types of program trans-
formation. The first we named call-tunneling, while the second call-grouping. Call
tunneling is based on the idea that instead of letting function A to call function C

directly, we insert an intermediate function B. In this new scenario A calls B and
B calls C. If function B returns what it got from C without any modification, then
the transformed program will be equivalent to the original one. Call-tunneling is
very hard to detect, because, for example, function B is actually called during the
execution, therefore it seems to be an important part of the program.

Call-grouping is a simple technique to significantly modify the structure of a
program even if one does not really understand what the code actually does. The
main idea is very similar to that of call-tunneling: if there is a function which calls
several others, we can regroup these calls into some new functions to produce a
totally different code structure. Let us consider the following piece of code:

int original_function(A, B) {

T = call1(A);

Q = call2(B, T);

E = call3(Q);

Z = call4(A, E);

return call5(Z);

}

Using call-grouping one can transform it to the following equivalent program.

int groupped_function(A, B) {

E = temp1(A, B);

return temp2(A, E);

}
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int temp1(A, B) {

T = call1(A);

Q = call2(B, T);

return call3(Q);

}

int temp2(A, E) {

Z = call4(A, E);

return call5(Z);

}

Notice that functions call1,. . . ,call5 are invoked in the same way as in
original_function, but two new grouping functions are also introduced.

4 The framework

The proposed framework consists of three main components which are handled
by independent program modules:

1. Front-end : performs source code to model mapping

2. Simplifier: carries out model reduction

3. Comparator: does model comparison

The Front-end creates a mathematical entity — which we call a model or an ab-

stract view — from the source program to be examined. Subsequently, these
views can be reduced in many ways by the Simplifier, creating different abstrac-

tions of the original model. Having the abstractions of two source programs, we use
the Comparator to compare models on the same abstraction level and determine a
similarity degree (a number between 0 and 1). As the abstraction becomes higher,
the similarity of the abstract views is less and less indicative of the similarity of the
original programs. Therefore we assign a factor (again a number between 0 and
1) to each abstraction level, with which we multiply the similarity degree obtained
earlier.

Figure 1 shows the overview of the proposed framework. Here we start from
two source programs source A and source B. The Front-end maps these sources to
two models, model A and model B. Higher and higher abstractions of these models
are produced by reductions, using the Simplifier. Finally, the models on the same
abstraction levels are compared with each other.

In the following subsections we discuss in detail the main parts of the framework.

4.1 Source code to model mapping

In general, the entity to which a program source is mapped can be chosen
arbitrarily. For example, let us consider the size of the program source (e.g. in
terms of characters used) as an abstract entity characterising the program, and
consider the advantages and disadvantages of this choice. It is true that if we
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Figure 1: Overview of the proposed framework

examine two entirely identical programs, then the comparison of their abstract
views will signal match (the sizes of the programs will be the same). It also sounds
feasible to consider the two program instances suspicious, if their size, in terms
of characters, is exactly the same. However, if the programs are similar, but not
identical, then the program size abstraction cannot give any hint on their similarity.

A further issue is that of simplifying transformations. When a program is
characterised by its size, practically no further simplifications can be applied. The
only, very weak option is to make further abstractions by rounding the size, e.g.
using 1 kbyte instead of 1324 bytes.

Therefore, the abstract view must be more sophisticated (to allow diverse ab-
straction levels) and, more importantly, it must be possible to draw conclusions on
the similarity of the programs from the similarity of the abstract views.

Therefore we suggest the use of directed, labelled graphs as the abstract views
characterising the programs. Here the meaning of nodes, edges and their labels
may vary from implementation to implementation. For example, the abstraction
may be the program call graph, the data-flow graph of an execution, or — in case of
object-oriented languages — the graph describing the object structure. The labels
are used to describe the properties of the nodes and edges, e.g. to express that a
node represents a built-in entity and not a user function.

Note that we suggest to ignore the labels in graph comparison, as we would like
the similarity measure to focus on the graph structure. A further benefit of this is
that it makes the comparison algorithms simpler and faster. However, the reduction
steps do use the information stored in labels. This may result in somewhat strange
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effects: two graphs, that are considered isomorphic on one abstraction level, become
non-isomorphic on the next level, provided the given reduction step uses the labels.

The graph representation is general enough to describe any kind of entity. As
an extreme, even our first example, the program size abstraction, can be described
as a labelled graph (with a single node whose label is the size).

4.2 Model reduction techniques — abstraction levels

One can envisage some kind of perfect mathematical models, that contain every
bit of information present in the program source code. In this case we can be sure
that, when two such perfect models are isomorphic, the corresponding program
source code is the same. Of course, such a model is nothing else, but the source
code itself in a different representation.

For any programming language and for any specific piece of source code, the
lowest abstraction level, which we call level 0, could be considered to contain per-
fect models only. At first, one may think that the best one could do is to directly
compare such perfect models. However, this may require a very sophisticated com-
parison algorithm, which is on one hand fast and easy to customise, and on the other
hand resistant to the possible cheating methods mentioned in Section 3. Instead,
we decided to follow a different approach using a series of views with increasing
abstraction levels.

We thus propose to use several abstraction levels (as shown in Figure 1) and use
relatively simple and fast comparison algorithms between models on the same level.
Higher abstraction levels are built from lower ones (possibly utilising the labels in
addition to graph structure) using certain transformations, called reduction steps.
Our task is to transform the initial perfect models to ones which are more and more
resistant to specific tricks, and which still represent the original program sources
as much as possible.

Naturally, reduction steps are destructive operations: with every bit of dropped
information we widen the gap between the perfect model and the model in ques-
tion.3 Because of this, a perfect match (isomorphism for example) between two
models on a high abstraction level “means less” than the same type of match on a
lower level. To handle this, we assign a factor to each abstraction level in question,
with which we multiply the similarity degree achieved on that level.

We define the similarity of two programs as

max
1≤i≤n

FiSi (1)

where n is the number of abstraction levels in the concrete implementation of the
framework. Fi is the factor assigned to abstraction level i (a number between 0
and 1) and Si is the actual similarity degree obtained on abstraction level i (also a
number between 0 and 1). We require that Fi+1 < Fi holds for any i, i.e. the factors

3In theory we may end up in a point where every model becomes a singleton graph (a graph
consisting of a single node): on this level every pair of models is isomorphic.
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1. i = 1,Max = 0

2. compare the two models on abstraction level i, i.e. calculate Si

3. calculate Max = max(Si ∗ Fi,Max )

4. in case of isomorphism (Si = 1), exit with the output value Max

5. if Max ≥ Fi+1, exit with value Max , otherwise i = i+ 1 and goto step 2

Figure 2: The algorithm for determining the similarity degree of two programs

assigned to the abstraction levels form a strictly monotonic decreasing sequence.
However, we do not pose any restrictions on the values Si and Si+1.

To determine the maximum, we may simply calculate expression (1). For ex-
ample, let us assume we have two abstraction levels, level 1 and 2 with factors 1
and 0.9 respectively. If our models are assigned a 98% similarity on level 1 and
are isomorphic on level 2, the algorithm calculates the values 0.98 ∗ 1 = 0.98 and
1 ∗ 0.9 = 0.9 respectively. The final result is the larger of these, namely 0.98.

We can optimise this naive algorithm in the following way. Whenever we detect
that the maximum value we may obtain in the next abstraction level (which is Fi+1

as Si+1 ≤ 1 holds) is less or equal than the current maximum value Max , we can
stop. This is because the factors are decreasing, thus for every j = i + 1, . . . , n
it holds that Fj ∗ Sj ≤ Max . This trivially means that if we detect isomorphism
between two models at abstraction level i we can immediately finish execution.
When we stop, the final result (i.e. the similarity degree of the source programs in
question) is the current maximum Max . This algorithm is shown in Figure 2.

4.3 Model comparison algorithms

In Section 4.1 we argued that directed, labelled graphs are good mathemati-
cal constructs for describing models of programs. Considering this, the concrete
comparison algorithms are most likely related to graph theoretical algorithms.

In general, our task is to define in what extent are two graphs similar to each
other. Let us first consider the problem of graph isomorphism as an extreme case
of graph similarity.

4.3.1 Graph isomorphism

The problem of graph isomorphism is the following. Given two graphs, G and
H , we look for bijection f between the nodes of the graphs, so that (x, y) is an edge
in G if and only if (f(x), f(y)) is an edge in H .

The graph isomorphism problem belongs to the class of NP problems, but we
still do not know if it is NP-complete [1]. However, in special cases we know the
complexity exactly or at least we can produce algorithms which run with acceptable
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To calculate the code C(T ) of tree T :

1. determine the child subtrees of the root of T , N1, N2, . . . , Nk

2. determine the codes for N1, N2, . . . , Nk

3. sort the codes C(N1), C(N2), . . . , C(Nk) into ascending order using their
binary values for ordering. Assuming the concatenation of these produces
a sequence S, return the sequence 1S0 as the code assigned to T

Figure 3: The algorithm for calculating the code of a tree.

speed. For example we know polynomial algorithms for planar graphs as well as
for graphs where the maximum vertex degree is bounded [7].

In case of trees a more straightforward approach is applicable [17]. Namely, it
is possible to construct a code in linear time for two trees T1 and T2, which fulfils
the following two criteria:

1. if T1 is isomorphic to T2, then the code of T1 equals to the code of T2

2. if the code of T1 equals to the code of T2, then T1 is isomorphic to T2

Actually creating a tree code is nothing more than applying a geometrical trans-
formation that maps a 2D tree to a one dimensional sequence of two characters.
One can use the digits “0” and “1” or the parentheses “(” and “)” as the elements
of the sequence, and accordingly the code of a leaf is “10” or, when parentheses are
used, “()”. Let T be the tree to be encoded and let C(T ) denote the code assigned
to the tree T . Now, the recursive algorithm presented in Figure 3 assigns a binary
number to any tree T .
Two examples of such encoding are given in Figure 4. We note that sometimes
it is useful to apply a special notation for the leaves, to distinguish these from
the code corresponding to other parts of the tree. We will use letter L for this
purpose. Accordingly, the codes in Figure 4 can be written as 1LL0 and 1L1LL00,
respectively.

It is important that the algorithm in Figure 4 can also be used for DAGs (Di-
rected Acyclic Graphs), i.e. directed graphs, not containing directed circles. In this
case, in addition to a DAG, the algorithm requires that a “root node” is specified,
which serves as a starting point for the algorithm. An example of such a graph
(the starting node is denoted by R) and its code can be seen in Figure 5.

Note that the code of a DAG can also be obtained by first transforming the
DAG into a tree, and then taking the code of this tree. The transformation takes
a vertex a with n > 1 incoming edges and replaces it by n new vertices, each with
a single incoming edge (and each new vertex inherits all the outgoing edges of the
original one). By repeating this transformation step we can eliminate all vertices
with multiple incoming edges and thus obtain a tree from the DAG. The right hand
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Code: 110100 Code: 1101101000

Figure 4: Two examples for the coding scheme

side of Figure 5 shows the result of this transformation process, when applied to
the DAG on the left hand side.

RR

CCC
Code: 11L01L00

Figure 5: A DAG and the corresponding tree with its code

4.3.2 Graph similarity

Checking isomorphism is usually not enough by itself. The reason is that we
cannot expect (at least on the lower abstraction levels) that the program graphs
will be totally isomorphic, even with the most sophisticated source code to model
mappings and reduction techniques. Actually we would like to detect if two graphs
of hundreds of nodes (which are very typical for the programs we use) at a given
abstraction level are nearly identical.

The general approach we use is to check how it is possible to transform one
DAG code to another. For example, let us consider the following two sequences
that correspond to the codes in Figure 4.

First sequence (F ): 1L1LL0

Second sequence (S): 1LL0
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The transformation steps we need to e.g. convert the first sequence into the second
one can be described as follows: “remove 1 and then L from position 3 and 4 in
sequence F ”. Such transformation steps can be constructed by e.g. using algorithms
solving the so called longest common subsequence (LCS) problem [13]. Let us denote
by ∆(A,B) the transformation steps between two arbitrary sequences A and B.
∆(A,B) is a set, containing pairs. The first part of such a pair can be 0, 1 or L,
the element to be added or removed. Each of these elements is preceded by either
a plus(+) or a minus(-) sign, corresponding to element addition and removal. The
second part of a pair is an integer, describing the position the specific transformation
step should be applied at. In our case, ∆(F, S) is the set {(-1, 3), (-L, 4)}.

To determine the similarity degree of two arbitrary codes we assign penalties to
the specific transformation steps. For example, we may say that the removal of a
leaf (i.e. a -L in the transformation set) reduces the similarity by a certain amount,
let us say by 0.01. Using the penalties we calculate Ω(A,B), the discrepancy
function describing to what extent codes A and B are different:

Ω(A,B) = min



1,
∑

(E,...)∈∆(A,B)

P (E)



 (2)

Here P is the penalty function that assigns a value to a given type of transformation
step. Using Ω(A,B) we define the similarity degree of graphs A and B as:

1− Ω(A,B) (3)

Let us note that what we actually calculate here is a variant of the so called
Levenshtein and edit distances. The Levenshtein distance [19] between two strings
is the minimal number of operations needed to transform one string into the other.
By operation we mean an insertion, deletion, or substitution of a single character.
The edit distance [6] is a generalisation of the Levenshtein distance in that the
operations have costs assigned to them, similar to the costs we have defined above.

4.3.3 Distinct paths in the graphs

Unfortunately, in a special case very similar graphs are considered to be far
from each other according to the similarity degree introduced above. The reason
for this is the way how DAG codes are built. We have seen in Figure 5 that the
code corresponding to node C appears in the code of the whole DAG twice (i.e. we
have two L characters in the code, although the original DAG has only one leaf).
In general, for any DAG G, the code of a node v appears in the code of G exactly
m times, where m equals to the number of distinct paths from the root to v.

Let us assume that the DAGs corresponding to programs A and B differ only
slightly in a single node, which is, however, accessible from the root along many
distinct paths. Because of the reasons outlined above, the DAG codes corresponding
to A and B will differ significantly.

We suggest two ways to overcome this shortcoming, both of which are used
in our prototype system described in the next section. First, we suggest to use
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reduction steps which decrease the number of distinct paths from the root, thus
making the graphs more “tree like”. For example, filtering multiple edges in a graph
(cf. Section 5.2) reduces the number of distinct paths significantly.

As a second solution we suggest to introduce a slight modification of the sim-
ilarity degree as defined in (3). This modification relies on identifying nodes with
numerous incoming edges (let us call these nodes popular)4. Using structural de-
composition we suggest to calculate a variant of the discrepancy function Ω specified
in Equation 2, called Ω′. The final similarity degree will thus be 1− Ω′(A,B).

We now describe how to compute the value of Ω′(A,B) for arbitrary two graphs
A and B. We assume that a popular node N in A can be associated with its
counterpart M in B. In our implementation we use a very simple heuristics for
this: we pair those popular nodes whose number of incoming edges and number
of arguments are the closest (proving the mathematical properties of this heuristic
is a future work). If such a pairing is not possible (if at most one of the graphs
contains popular nodes) then Ω′(A,B) simply equals to Ω(A,B). If a pairing is
possible then we first apply our algorithm recursively to the subgraphs rooted at
N and M , i.e. we calculate the value L = Ω′(N,M). Next, we create DAGs A′

and B′ from the original ones by replacing N and M by single nodes, having no
outgoing edges. The modified discrepancy is then calculated recursively as

Ω′(A,B) = Ω′(A′, B′) + L (4)

The algorithm introduced above is summarised in Figure 6. In our implementation
we offer the user a choice of the discrepancy function (Ω or Ω′) through the graphical
user interface (see Section 5.5).

Ω
′(A,B) =

if pairing_popular_nodes_possible(A,B) then

(N,M) = pair_popular_nodes(A,B);

A’ = reduce(A, N);

B’ = reduce(B, M);

return Ω
′(A’,B’) + Ω

′(N,M);

else

return Ω(A,B);

Figure 6: The DAG discrepancy algorithm with popular nodes.

5 The prototype implementation

In the following we present our test implementation of the framework, the Match
plagiarism detection tool. The current version of Match supports two Front-ends,

4In our implementation (see Section 5) nodes with at least 10 incoming edges are considered
popular.
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for Prolog and SML, as we teach these two languages as part of a Declarative
Programming course, and major assignments must be written in these languages.
In this paper we describe the Prolog Front-end only, more about the SML interface
can be read in [10].

In the following we discuss the implementation details of the relevant parts of the
comparison framework (Front-end, Simplifier and Comparator), then we describe
the graphical user interface of the system.

5.1 Mapping source code to a model

We chose call graphs as the models of Prolog programs. A call graph is a graph
where the nodes correspond to the Prolog predicates and the edges to the calls. If
in the body of predicate A there is a call to predicate B then an edge between the
nodes A and B is present in the graph. When there are multiple calls, multiple edges
are present. We decided to exclude the built-in predicates (such as is/2) from the
graph, because they do very elementary tasks and would increase the graph size
considerably, without increase in the precision of the model. The graph includes,
however, the library predicates and also reflects implicit meta calls, made by using
findall/3, for example.

Furthermore we made some simplifications to our model: we remove from the
call graph the self-loops, which correspond to recursive calls. This is because ex-
plicit recursion is so common is Prolog that for us it does not contain valuable
information. We also remove back edges (i.e. edges which point to an already vis-
ited node during a depth-first search) in order to avoid cyclic graphs, so that we
can work with DAGs instead of general graphs. Although this means that simple
reordering tricks can change the resulting graph (as they change the order in which
a depth-first search visits the nodes) we do not consider this a problem. This is
because in our model, circles actually correspond to so called mutual recursion (for
example when A calls B and vice versa). Our experience, however, is that mutual
recursion is very rarely used by students and so neglecting it does not effect the
final similarity measure in a significant way.

Finally, those predicates to which there was no reference in the source code are
not included in the graph, i.e. the call graph consists of a single component.

Call graphs are well suited for Prolog programs. This is because the only control
structure of Prolog is the predicate invocation, it lacks while, for, goto or any
other “usual” imperative control elements.

The call graph is built from the program source code by using static source code
analysis. For this we slightly modified the xref package of SICStus Prolog.

5.2 Model reduction techniques

For the comparison of Prolog programs we have defined four reduction steps,
which are applied in succession. This means that the comparison can be performed
on five abstraction levels. To each reduction step we have assigned a similarity
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factor as introduced in Figure 1. These factors were chosen empirically. The actual
reduction steps and their similarity factors are the following:

1. non-called predicates: we remove those predicates which were not called dur-
ing a test call. The test call is provided by the tester. Test calls are usually
simple tests which are easily solvable by the programs. The assigned similar-
ity factor is 0.95.

2. library or dynamic predicates: here we omit the library and dynamic predi-
cates from the call graphs. The similarity factor is 0.9.

3. multiple edges : we remove multiple edges from the call graph and only keep
one edge between any given two predicates. This helps handling the popular
node problem presented in Section 4.3.3. We set the similarity factor to 0.8.

4. topological isomorphism: we remove those vertices from the call graphs which
have a degree of 2 (one incoming and one outgoing edge). This helps to detect
the call-tunneling trick. The similarity factor here is 0.7.

Actually the user of the plagiarism detection system can decide to skip some of
the reductions steps (cf. Section 5.5), which results in less than 5 abstraction levels.
In this case the factors can be different from the ones shown above, as the value of
a factor is usually set in a “context sensitive” way, considering what other reduction
steps have been done previously. For example, in our concrete implementation, if
we use the first, second and fourth reduction step, but we do not filter multiple
edges, the factor for the highest abstraction level (the one corresponding to step
four above) is set to 0.85. Thus step 4 when applied after steps 1 and 2 is considered
to be slightly less “destructive” than step 3 in the same context (the corresponding
factors being 0.85 and 0.8, respectively). Our experience is that using step 3 and 4
simultaneously has significant cumulative effect, justifying the similarity factor of
0.7, when all the above reduction steps are applied.

5.3 Model comparison algorithms

In our system the comparison of models is based on the coding technique and the
similarity degree introduced in Section 4.3. We have chosen this approach because
we found that comparing codes often gives a good intuitive characterisation of the
similarity of the programs.

For example, if the codes match the corresponding models are trivially the same.
If one of the codes contains the other as its subsequence, then it can be suspected
that one student got the other’s program and added some new structure to it.

Call grouping can also be detected from the codes5. For example if predicate
P calls T which calls four other predicates, the corresponding code will be ( L (

L L L L ) ), where parentheses represent binary values and L represents a leaf as
described in Section 4.3. If we apply call grouping, for example T will call Q and W,
each of which will call two other predicates, then the code takes the form ( L ( (

5We will use parenthesis in the codes below, instead of binary digits, as this makes call nesting
more apparent.
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L L ) ( L L ) ) ). Here the second, third, fourth and fifth parenthesis has to be
removed in order to get the original code.

We use the widely available UNIX diff program to actually enumerate the
differences between the codes A and B, i.e. to calculate ∆(A,B). The diff program
uses a variation of the LCS algorithm (cf. Section 4.3.2). The way we make use of
diff is the following. First we make two files corresponding to the two codes we
would like to compare. The way we create the content of such a file is the following:
each (, ) and L in the tree code is put on a separate line. For example the file
corresponding to the code (LL) shown in Figure 4 will contain four lines:

(

L

L

)

Next, we let the UNIX diff utility calculate how these files can be made equal,
i.e. to produce the instructions on which leaves and nodes should be added or
removed to make call graphs A and B isomorphic. Actually we always try to modify
the bigger graph (i.e. the graph with longer code) and check what transformations
we can use to obtain the smaller one.

By analysing the information given by the diff utility we assign a similarity
degree to the pair of codes. As we described in Section 4.3, we start with degree 1
and for each difference we subtract a “penalty” fraction, which reflects how much
we should “punish” the given modifications of the code sequences. This corresponds
to calculating equation (3) in Section 4.3.2. We found that the penalties shown in
Table 1 are very usable6:

Type of modification Penalty

removal of a leaf 0.01

addition of a leaf 0.03

removal of a node 0.02

addition of a node 0.06

Table 1: Penalties used by the Match system.

Accordingly, if we need to remove one leaf from our bigger call graph to make
it identical to the smaller one, then the similarity degree is 0.99. As one can see,
addition is always penalised more than removal. This is because of our experience
that cheating students usually try to copy and modify the work of a fellow student

6Note that the addition and removal of a node actually corresponds to two differences, one for
the opening and the other for the closing parenthesis.
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while keeping the original parts intact. This way the original program will be part
of the resulting (bigger) program. So, our assumption is that in case of plagiarism
the bigger graph can be reduced to the smaller one by applying node and edge
removals.

According to this assumption, we actually offer to use the diff program in
two different modes. The mode named sdiff (simple diff) means that we only
consider those transformations that require only node or edge removals from the
bigger graph. Otherwise we conclude that no plagiarism happened. In the other
mode, called fdiff (full diff), we make no such assumption. This results in more
false positive results, but it also increases recall significantly (see Section 6).

Having explained the concrete implementation, we reiterate the issue of abstrac-
tion levels. Let us consider two graphs which differ only in the multiplicity of the
edges. In the absence of abstraction levels, using diff alone, we could easily get a
similarity degree of 0, provided there is a sufficient number of multiple edges in the
graph. However, when the multiple edge removal abstraction is applied we get a
similarity of 0.9, which may be more appropriate. This shows that the introduction
of abstraction levels is a useful extension, in addition to the diff algorithm.

We have also made a further improvement in the calculation of the similarity
degrees, as discussed in the following subsection.

5.4 Generating mappings between predicates

Although by calculating the similarity degree of the source programs and pre-
senting the user the most promising pairs we have already fulfilled our original
goal, it greatly helps the user of the system if we present some kind of a “proof”
of cheating as well. We produce such a “proof” in the form of a mapping between
the predicates of the two programs. In this mapping a predicate of one program is
paired with the predicate of the other program which is most similar to it. This is
a very useful guide to the user when she verifies the results manually.

These mappings are generated by a systematic deterministic traversal of the
codes in question. We start from the nodes corresponding to the root predicate
(i.e. a predicate which is the entry point of all the student programs). These nodes
are paired with each other. Then we visit the neighbours of the starting nodes and
pair them using their codes. We continue this algorithms recursively. Whenever
there is ambiguity, e.g. we are examining two nodes with multiple neighbours having
the same codes, we use a heuristic: those nodes will be paired whose number of
arguments differ the least. Note that the mappings are actually derived from the
models belonging to the abstraction level where the maximal similarity degree was
found. An example mapping is shown in Figure 8.

As mentioned above, the “quality” of the mapping is also taken into consider-
ation when calculating the similarity degree. In the current implementation we
actually decrease the similarity degree of the programs by 0.005 for each pair of
predicates mapped to each other, which have different arities.
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5.5 The graphical user interface

Match offers a graphical user interface (GUI) where the user can customise the
parameters of the comparison and can view the results.

A screenshot of the main window can be seen in Figure 7 (it shows the state of
the system right after a successful execution)7. On the top of the window we find
four buttons. The first one called “Make info” invokes the Front-end, i.e. it creates
the models from the source codes. This practically means that Match searches for
source programs in the given directory and for each source code it creates a special
file containing the labelled call graph.

These files are loaded by the second button named “Load info”. In the bottom
of the window we can see that in this specific example we loaded 32 such graphs.

Figure 7: The Graphical User Interface of the Match system

The third button called “Analyse” starts the comparison process based on the
parameters the user specified by using the check boxes located in the “options” and
“advanced” areas. These options basically tell Match what kind of reduction steps it
should apply, whether it should use the diff algorithm8 and what is the similarity
threshold (i.e. only hits with similarity degree greater than the threshold will be
presented). In the example shown in Figure 7 we selected all the reduction steps,

7Note that we changed the name of the students because of privacy issues.
8If this option is disabled, then isomorphism is used instead of similarity, i.e. the similarity

degree of the models is considered to be a binary value: 1 means that the models are isomorphic,
0 means they are not.
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asked Match to use diff, take special care of the popular nodes (called famous in
the GUI) and set the threshold to 60%.

Figure 8: A mapping between predicates proving the fact of plagiarism

When we use the diff algorithm, we can also set the penalties (in units of 0.01)
the Match program should use to determine the similarity of the two graphs. In
this example the penalties are set to the ones described in Section 5.3.

After a successful execution the suspicious pairs of programs are shown in the
middle of the screen under the title “Results”. In Figure 7 we have 15 such pairs.
If we select one of these pairs, Match displays the predicate mapping between the
two source programs. Namely, we can see which predicate in one program matches
which predicate in the other, as shown in Figure 8. In this concrete mapping we
can see that, for example, predicate kul corresponds to predicate kulonb, both of
them having 3 arguments. We can also see that the similarity of these programs
is calculated to be 68.5%, and that this was found on abstraction level 4. The
next line, “Type:”, indicates that even on this abstraction level the codes were only
“similar”, i.e. non-isomorphic.

6 Evaluation

Below we first reiterate our goals presented in Section 3 and examine how they
are fulfilled by the Match system. Next, we present real life execution results
showing that the framework convincingly detects plagiarism in student programs.

Table 2 summarises the student tricks we have described in Section 3 and for
each gives a brief explanation of how the given trick was handled in the implemen-
tation of the plagiarism detection framework.

We now proceed to discuss the performance evaluation of the Match system.
We were lucky enough to have abundant amount of Prolog source programs to test
the prototype on. Moreover, several students were kind enough to provide us with
some hints on what cases were they cheating (after they completed the course and
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Student trick Preemptive measure

changing the names of the identifiers we do not store names in our models

changing the arity of the functions arity is not used in model comparison

splitting the program into several
modules

module boundaries are not taken into
account

reordering the function definitions the call graph is not affected

reordering the statements within a
function

the call graph is not affected

putting useless functions in the pro-
gram

using the “non-called predicates” re-
duction step

putting useless calls in a function using the “non-called predicates” re-
duction step

call-tunneling using the “topological isomorphism”
reduction step

call-grouping using the diff algorithm

Table 2: Our goals and the way how they are achieved.

were promised full amnesty). So we had the minimal expectation that the Match
system should at least mark those assignments as matched pairs.

The 73 source programs9 were evaluated against 4 different similarity thresholds.
For example, the 60% threshold means that our system shows pairs of source codes
which have similarity degree at least 60% percent. For every threshold, the system
was run with 18 different parameter variations. These include the most useful
settings in practical cases. These 18 variations are based on the following 6 basic
variants:

variant B: all options are disabled (base case)
variant N: filtering non called predicates
variant NL: N + filtering library/dynamics predicates
variant NLM: NL + filtering multiple edges
variant NLT: NL + topological isomorphisms
variant NLMT: NLM + topological isomorphisms

In the first six cases we do not use diff, i.e. we only consider graph isomorphism

9We had actually 92 submitted Prolog homework, but from these we excluded those programs
that either do not compile or do not solve the required number of test cases.
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between the models at different abstraction levels. The next twelve variations are
obtained by applying diff in two different modes, simple and full (cf. Section 5.3).

Execution Compared Hits Relevant Recall Precision

time pairs hits

B 15.40s 2628 6 6 46% 100%

N 20.33s 2628 6 6 46% 100%

NL 30.11s 2628 6 6 46% 100%

NLM 31.50s 2628 6 6 46% 100%

NLT 31.28s 2628 6 6 46% 100%

NLMT 33.40s 2628 16 8 61% 50%

B + sdiff 60.13s 2628 8 6 46% 75%

N + sdiff 78.07s 2628 8 6 46% 75%

NL + sdiff 124.41s 2628 17 8 61% 47%

NLM + sdiff 179.78s 2628 22 8 61% 36%

NLT + sdiff 162.34s 2628 17 8 61% 47%

NLMT + sdiff 364.04s 2628 32 10 76% 31%

B + fdiff 98.2s 2628 48 10 76% 21%

N + fdiff 122.02s 2628 48 10 76% 21%

NL + fdiff 180.78s 2628 65 11 84% 17%

NLM + fdiff 295.6s 2628 70 11 84% 16%

NLT + fdiff 232.60s 2628 65 11 84% 17%

NLMT + fdiff 414.43s 2628 80 13 100% 16%

Table 3: Match results for the threshold of 60%.

For every setting we measured the run time, the number of hits and the ratio of
hits and the relevant hits (precision). To determine the relevant hits we examined
the program pairs manually, and decided if the given case should be considered
plagiarism or not. We also made a serious manual effort to check if there were
any cases of plagiarism that were not found by Match. We concluded that the 13
pairs discovered by the most complex run of Match were the only cases where one
program code was derived from the other one.
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Assuming that the number of all hits is 13, we calculated the so called recall
which is the ratio of the number of relevant hits returned by the program and the
number of all hits.10

The results for threshold 60% are listed in Table 3. The test were run under
Linux on Intel Celeron 450Mhz processor with 128 MByte of RAM.

From our tests we can draw several conclusions. First, we found that students
do not often use sophisticated tricks. This can be seen from the fact that adding
more reduction steps does not significantly improve the effectiveness of Match:
most of the cheaters are caught already at the lower levels. At the same time
further reduction steps do result in new hits, so higher abstraction levels are by no
means useless. For example, 80% percent of the cheaters found in the second block
were already uncovered after two reduction steps (variant NL). These included the
programs of a pair of students who claimed they worked on the modifications for
more than 5 hours, and in spite of this, their similarity degree was nearly 90%.

We can also see that although precision drops back significantly as we use more
and more abstraction levels, the results are still acceptable. In the worst case (here
the precision is 16%) one in six pairs of codes is a proper hit among 70 suspicious
pairs. Although this requires some effort from the person verifying the results of
Match, the amount of manual work is still almost two magnitudes less than that
required when the plagiarism detection framework is not used (over 2500 cases).

We can also conclude that both the abstraction mechanism and the similarity
degree calculated in (3) are needed. There were cases when the plagiarism was
detected with a high degree of similarity due to the fact that only minor differ-
ences were found on abstraction level 1, for example. Without considering graph
similarity, we would have needed to use more reduction steps to make these models
isomorphic, resulting in a smaller similarity degree. This shows how useful the
technique introduced in (3) can be. However, the opposite situation also occurred.
Namely, we could find programs (relevant hits) which were isomorphic on a rela-
tively high abstraction level, but calculating (3) on the previous level gave much
lower similarity. This shows the significance of using reduction steps.

Our approach is very fast. For 73 programs, checking of all the pairs took
between 15.4s (no diff and no abstraction levels) and 414s (when all of the reduction
steps were applied and the full diff algorithm was used).

7 Future work

Our future plans include the integration of the most promising statistical and/or
lexicographic approaches in the framework. This way we can use hybrid comparison
techniques which we hope can be more efficient than the pure structural approach
in some cases.

We would also like to develop Front-ends for further programming languages.
In case of procedural languages, such as C, Pascal or several script languages, the

10Precision and recall are measures widely used for evaluation information retrieval techniques,
see e.g. in [11].
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control structures are the main bearers of information. When dealing with object-
oriented languages, C++ or Java for example, the class hierarchies should also be
properly represented in the models.

The heuristics used by the Match system can also be improved. These include
the heuristics used when pairing popular nodes and predicates between two models.
Furthermore, the user interface lacks some functionality. For example, it is often
the case that a larger group of students submit similar assignments. In such a case
Match returns all pairs within the group as suspicious. It would help the person
verifying the results, if the group of cheaters was identified, as a whole.

Beside homeworks, we would also like to measure the performance of the frame-
work for really large source programs (e.g. millions of lines of codes) as well.

Finally, it would be interesting to extend the Match system with adaptive
penalty weights, i.e. to let the system automatically determine the penalty function
based on certain properties of the given source programs (size, complexity, etc).

8 Conclusions

In the paper we have presented a plagiarism detection framework which is capa-
ble of calculating a similarity degree for a pair of program sources. The framework
uses directed, labelled graphs to represent the structural information extracted
from the programs. Instead of using sophisticated comparison algorithms our ap-
proach combines the use of relatively simple comparison techniques together with
simplifying graph transformations, called reduction steps.

We have presented the three main components of the generic framework: the
Front-end which converts programs to graphs, the Simplifier, which carries out
the reduction steps and the Comparator, which calculates a similarity degree for
the graphs. We have described the implementation of the framework, the Match
system, which has been successfully used to detect plagiarism in homework assign-
ments for years. We have also presented a detailed performance evaluation of the
system.

We believe that the novel architecture of our approach, based on simplifying
graph transformations and straightforward comparison algorithms, has proved to
be a viable technology for plagiarism detection in source programs.
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