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Abstract

We review a family of closely related query learning algorithms for un-
weighted and weighted tree automata, all of which are based on adaptations
of the minimal adequate teacher (MAT) model by Angluin. Rather than pre-
senting new results, the goal is to discuss these algorithms in sufficient detail
to make their similarities and differences transparent to the reader interested
in grammatical inference of tree automata.

Keywords: algorithmic learning, grammatical inference, tree automaton,
tree language, tree series

1 Introduction

This article discusses a family of algorithms for grammatical inference of unweighted
and weighted tree automata. Traditionally, the area of grammatical inference stud-
ies the problem of learning a formal (string) language L by automatically inferring
an explicit automata-theoretic or grammatical description A of L from examples
or some other type of information about L. In other words, the aim is to come
up with a learner, an algorithm that exploits a source S of information about L in
order to construct A. Different so-called learning models are obtained by specifying
(a) which source S of information the learner is provided with, (b) how the learner
gets access to this information, and (c) what the exact criterion of success is.

The three most well-established categories of learning models in grammatical
inference are Gold’s learning from examples with identification in the limit [23],
Valiants probably approximately correct (PAC) learning [39], and Angluin’s query
learning [4].

Here, we focus on query learning. This model, which is also called active learn-
ing, gives the learner access to a teacher, an oracle able to answer certain types of
queries. Suppose that L is a regular string language and the goal is to construct
a corresponding finite-state automaton A. The most well-studied type of teacher
is the so-called minimal adequate teacher (MAT) [3]. The MAT will answer two
different sorts of queries regarding L. The first is the membership query, in which
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the learner passes the teacher a string u, and the teacher checks whether u ∈ L.
In the second type of query, the equivalence query, the learner passes the teacher a
proposed automaton A′, and the teacher checks whether A′ correctly describes L.
If so, A′ is accepted and the learning process terminates. Otherwise, the teacher
returns a counterexample to the learner, i.e., an element of the symmetric difference
of L and the language described by A′.

A learning model closely related to MAT learning is learning from representative
samples and membership queries [2]. Here, the learner has access to a weaker
teacher who will only answer membership queries. To compensate for the lack of
equivalence queries, the learner is initially provided with a representative sample,
a set of strings in L, such that every transition of A is used at least once when
processing the strings in the sample.

Here, we want to consider algorithms for learning unweighted and weighted tree
automata rather than ordinary finite-state automata. Why would such extensions
be of interest? Apart from theoretical curiosity and the fact that tree languages
play an important role in many application areas, motivation is provided by the fact
that almost all results regarding the inference of context-free languages are nega-
tive. However, recognizable (or regular) tree languages may be seen as context-free
languages whose strings are enriched with explicit structural information. Thus,
positive results for grammatical inference of recognizable tree languages make it
possible to learn context-free languages if the learner is provided with the addi-
tional structural information (cf. [32]).

If we want to use the learning models described above, they have to be adapted.
This can be done in a straightforward way. In membership queries, trees rather than
strings must be passed to the teacher, and in equivalence queries, tree automata
of the type considered must be checked by the teacher. Similarly, a representative
sample is now a set of trees. Moreover, in the weighted case, membership queries
must be replaced with coefficient queries (i.e., the teacher returns the coefficient
of the tree passed, with respect to the sought tree series), and the counterexample
returned as an answer to an equivalence query must be a tree for which the proposed
automaton computes a coefficient that differs from the one it should compute.

The appropriateness of the MAT model is not undisputed. Obviously, the as-
sumption of having access to an oracle able to answer equivalence queries is strong
and may be considered unrealistic. Moreover, it has been argued in [6] that mem-
bership queries are oversimplified and should be replaced by a type of query yielding
a more informative result, e.g., so-called correction queries. To a certain extent,
this criticism is certainly justified. In particular, future research should continue to
explore reasonable alternative settings. However, in the author’s opinion, this does
not diminish the value of the algorithms reviewed in the next two sections. In gen-
eral, one should keep in mind that the learning models considered are idealizations
that – as always in Theoretical Computer Science – trade realism for mathematical
elegance and simplicity. Having read this paper, the reader who has never seen
these algorithms before will hopefully acknowledge that they are based on beauti-
ful formal reasonings. In particular, they make elegant use of Myhill-Nerode-like
characterizations of the tree languages and series to be learned.
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Since grammatical inference is an inherently difficult goal, there seem to be only
two ways to achieve positive results whose correctness can formally be proved. One
either has to simplify the goal, e.g., by placing severe restrictions on the concepts
to be learned, or give the learner access to a rather powerful source of information,
such as a MAT. Clearly, both approaches have their advantages and disadvantages.
This paper focuses on the second, because we are interested in the grammatical
inference of unrestricted recognizable tree languages and tree series. For this task,
there do not yet seem to exist many algorithms other than the ones discussed here.
Moreover, these algorithms are all very closely related to each other, which makes
them interesting (in the authors opinion), because it indicates that they are based
on “robust” ideas worth being explored.

As mentioned above, the MAT model is a formal idealization. Therefore, one
cannot expect that learning algorithms based on a formal setting such as the MAT
model can directly be applied to learning tasks in, say, natural language processing.
However, it may be an interesting goal to pursue in future research to identify prac-
tical scenarios in which the teacher can be simulated by, e.g., statistical methods.
Of course, such an approach would no more be guaranteed to yield an affirmatively
correct answer, but it may perform sufficiently well in practice – and hopefully
much better than an ad-hoc approach. In fact, it may then be a theoretically inter-
esting and practically well-motivated question under which assumptions imperfect
teachers give rise to reasonably good results, e.g., in a PAC-like setting.

From what has been said above, it should be clear that this paper is not a
general survey of the large field of grammatical inference. In fact, it does not even
attempt to cover the subarea of grammatical inference of tree languages and tree
series. Readers who wish to obtain a general overview of grammatical inference
are referred to the various existing survey papers [1, 13, 21, 28, 34]. Readers
interested in inference of tree languages, using other methods and models than the
ones discussed here, may also wish to have a look at [33, 27, 20, 29].

In the next section, learners for recognizable tree languages based on (variations
of) the MAT model are discussed. In Section 3, we discuss generalizations of these
algorithms, that learn recognizable tree series. The paper concludes with some final
remarks in Section 4.

2 Learners for Recognizable Tree Languages

As mentioned above, grammatical inference is the task to construct an automaton
or a grammar describing a language L, given certain information about L. For
the moment being, let us consider the string case. Suppose that we are interested
in learning a class L(A) of string languages, where A is a class of automata, and
L(A) = {L(A) | A ∈ A} is the class of languages generated by A. The task of the
learner is to construct, for a given language L ∈ L(A), an automaton A ∈ A with
L(A) = L. For this, the learner needs to have access to information regarding L.
Here, we mainly want to study the case where this information is provided by a
MAT [3]. This oracle that will (correctly) answer two different sorts of queries:
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Membership query Given a string u ∈ Σ∗ (provided by the learner), the mem-
bership query member(u) will be answered by returning 1 if u ∈ L, and 0 if
u /∈ L. (Thus, member computes the characteristic function of L; see below.)

Equivalence query Given an automaton A ∈ A (provided by the learner), the
equivalence query eqQuery(A) will be answered by returning the special token
⊥ if L(A) = L. Otherwise, a counterexample u ∈ L(A)△L is returned, where
the operator △ yields the symmetric difference of sets.

The learner L∗ proposed in [3] learns the class of regular languages from a MAT
in polynomial time, where A is the set of total deterministic finite-state automata.
It makes use of the Myhill-Nerode theorem for regular languages to construct the
canonical finite-state automaton recognizing L.1 To achieve this goal, the learner
maintains a so-called observation table, which can be seen as an adapted version
of the state characterization matrix introduced by Gold [24] for identifying regular
languages from positive and negative examples in the limit. In the following, we
discuss extensions and variations of L∗ that learn tree automata.

Let us first recall a few basic definitions and facts. A ranked alphabet Σ is a
finite set of ranked symbols (f, k), where f is a symbol and k ∈ N, its rank, is a
non-negative integer. We let Σ(k) = {(f, l) ∈ Σ | l = k}. In the following, a ranked

symbol (f, k) will simply be denoted by f , or by f (k) if it is necessary to specify
its rank. The set TΣ of trees over Σ is the smallest set of formal expressions such
that f [t1, . . . , tk] ∈ TΣ, for every f (k) ∈ Σ (k ∈ N) and all t1, . . . , tk ∈ TΣ. Here,
the brackets and commas are special symbols not in Σ. For k = 0, the tree f [] may
simply be denoted by f . For a set T of trees, we let Σ(T ) denote the set of all trees
of the form f [t1, . . . , tk], where f (k) ∈ Σ and t1, . . . , tk ∈ T . The set of all subtrees

of a tree t = f [t1, . . . , tk] is given by subtrees(t) = {t} ∪
⋃k

i=1 subtrees(ti). A tree
language is a set L ⊆ TΣ. The characteristic function of L is denoted by χL. Thus,
for t ∈ TΣ, χL(t) = 1 if t ∈ L, and χL(t) = 0, otherwise.

Definition 2.1. A deterministic bottom-up finite tree automaton (fta) is a tuple
A = (Σ, Q, δ, F ) consisting of a ranked alphabet Σ, a ranked alphabet Q of states
such that Q = Q(0), a transition table δ, and a set F ⊆ Q of final states. The
transition table is a partial function δ : Σ(Q) → Q. This extends to trees in the
canonical way, yielding a partial function δ : TΣ → Q. A tree t ∈ TΣ is accepted by
A if δ(t) ∈ F . The language recognized by A consists of all trees accepted by A, i.e.,
L(A) = {t ∈ TΣ | δ(t) ∈ F}, and is called a recognizable (or regular) tree language.

As usual, an fta is said to be total if the transition table δ is a total function.
We note that δ can also be regarded as a set of transitions f [q1, . . . , qk] → q, where
δ(f [q1, . . . , qk]) = q. In other words, a transition is a pair in Σ(Q) × Q. Since
we consider only the deterministic case, transitions have pairwise distinct left-hand
sides f [q1, . . . , qk]. However, unless the fta is total, not all left-hand sides need to
be present.

1It may be interesting to note that the class of regular languages is not learnable in polynomial
time from membership or equivalence queries alone [5]. This provides some justification for calling
the oracle above a minimal adequate teacher.
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The first extension of L∗ to so-called skeletal tree languages2 was given by Sakak-
ibara [32]. Let us have a look at this learner, which we may call Ltfta

∗ . It constructs
the canonical total fta recognizing the target language L. In the presentation be-
low, we drop the restriction to skeletal tree languages, since it is not important for
the correctness of Ltfta

∗ . In fact, this slight generalization has the advantage that
L∗ may be seen as a special case of Ltfta

∗ , by identifying a string a1 · · · an with the
monadic tree an[· · · a1[ǫ] · · · ]. (The string case can, of course, even be simulated
using skeletal trees, but this seems to require the use of a representation that maps
strings to trees in a non-surjective way, for example, by representing u = a1 · · · an

as tree(u) = ∗[· · · ∗ [a1, a2], · · · an]. As a consequence, if A is a deterministic finite-
state string automaton, an fta recognizing {tree(u) | u ∈ L(A)} will in general
contain more states than A.)

As indicated in the introduction, the idea behind L∗ and all its descendants
is to construct an automaton by exploiting the Myhill-Nerode congruence of the
target language. Let 2

(0) /∈ Σ be a special symbol, and let CΣ be the set of all
trees in TΣ∪{2} with exactly one occurrence of 2, called contexts over Σ. The
concatenation c · t of c ∈ CΣ with t ∈ TΣ ∪ CΣ is the tree obtained from c by
replacing 2 with t. Now, the Myhill-Nerode congruence ≡L on TΣ is given by

t ≡L t′ if and only if χL(c · t) = χL(c · t′) for all c ∈ CΣ.

It is well known that ≡L is of finite index (i.e., its congruence classes are finite in
number) if and only if L is recognizable. The canonical (total) fta At

L recognizing
L can be obtained as usual, by taking the congruence classes [t]≡L

, t ∈ TΣ, as
states and defining δ(f [[t1]≡L

, . . . , [tk]≡L
]) = [f [t1, . . . , tk]]≡L

. By the congruence
property, the choice of the representatives t1, . . . , tk does not matter. A state [t]≡L

is final if t ∈ L.

Now, let us define an equivalence relation ∼C on TΣ by replacing CΣ in the
definition of ≡L with a finite set of contexts. For C ⊆ CΣ, let t ∼C t′ if and only
if, for all c ∈ C, χL(c · t) = χL(c · t′). By definition, ≡L = ∼CΣ

. Moreover, if ≡L is
of finite index, there is a finite set C of contexts such that ≡L = ∼C . The learners
based on L∗ (and, in fact, several other learners as well), discover such a set C and
construct the target automaton from it. Note that, for arbitrary C ⊆ CΣ, ∼C is
not necessarily a congruence.

Following the same idea as L∗, the learner Ltfta
∗ uses membership and equivalence

queries to discover trees representing different congruence classes, together with
suitable separating contexts. The data structure used for this is the previously
mentioned observation table. Its rows are indexed by the trees in Σ(S), for a finite
set S ⊆ TΣ, and its columns are indexed by contexts from a finite set C ⊆ CΣ

containing 2. The cell in row t and column c contains the value χL(c · t), which
the learner obtains by asking a membership query. For t ∈ Σ(S), if the observation
table Ω in question is clear from the context, we let 〈t〉 denote the C-indexed vector
given by the row of t in Ω. For a set T ⊆ Σ(S), we let 〈T 〉 = {〈t〉 | t ∈ T}.

2A tree language L is skeletal if L ⊆ TΣ for a ranked alphabet Σ with |Σ(k)| ≤ 1 for all k ≥ 1.
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We require that S be subtree-closed, meaning that s1, . . . , sk ∈ S for every tree
f [s1, . . . , sk] ∈ S. In other words, S ⊆ Σ(S), which means that Ω even contains
rows for the trees s ∈ S. Note that, for t, t′ ∈ Σ(S), 〈t〉 6= 〈t′〉 implies t 6≡L t′,
because ∼C ⊇ ≡L. Moreover, as observed above, there exists an observation table
for which the converse holds as well. The aim of the learner is to build such an
observation table.

During its run, the learner Ltfta
∗ repeatedly uses the tentative observation table Ω

it has built in order to construct a total ftaAΩ consistent with the observations in Ω.
This fta is passed to the teacher, and if it is not approved, then the counterexample
received is used to enlarge Ω. To be able to construct AΩ from Ω, the following
two properties are needed.

1. Ω is closed, meaning that 〈t〉 ∈ 〈S〉, for every t ∈ Σ(S).

2. Ω is consistent. To define this property, let Σ2(S) = CΣ ∩ Σ(S ∪ {2}). The
observation table Ω is consistent if 〈c · s〉 = 〈c · s′〉, for all c ∈ Σ2(S) and all
s, s′ ∈ S with 〈s〉 = 〈s′〉. Note that 〈c · s〉 6= 〈c · s′〉 would mean that there
is a d ∈ C such that χL((d · c) · s) 6= χL((d · c) · s′), i.e., d · c would be a
context witnessing that s 6≡L s′, despite the fact that 〈s〉 = 〈s′〉. Moreover,
the addition of d · c to C would make the rows of s and s′ different, thus
resolving the inconsistency.

If Ω is both closed and consistent, AΩ can be defined by a construction similar
to the construction of the canonical fta from ≡L. The set of states is 〈S〉, a
state 〈s〉 being final if s ∈ L. For every tree t = f [s1, . . . , sk] ∈ Σ(S), we let
δ(f [〈s1〉, . . . , 〈sk〉]) = 〈t〉. Note that, by the closedness of Ω, 〈t〉 belongs to 〈S〉.
Consistency is needed to ensure that δ(f [〈s1〉, . . . , 〈sk〉]) is uniquely determined.
Moreover, using subtree-closedness, one can easily verify the following lemma by
structural induction on t.

Lemma 2.1. If Ω is a closed and consistent observation table, then δ(t) = 〈t〉 for
all t ∈ Σ(S). In particular, for t ∈ Σ(S), we have t ∈ L(AΩ) if and only if t ∈ L.

The learner Ltfta
∗ starts with the observation table given by S = ∅ and C = {2}.

In its main loop, it first makes sure that Ω is closed and consistent. This is done
by a straightforward procedure complete that adds appropriate trees and contexts
to S and C, resp., until Ω is closed and consistent. Then, Ltfta

∗ constructs AΩ and
passes it to the teacher in an equivalence query. If the teacher accepts it, learning
has been successful. Otherwise, subtrees(t) is added to S and the next iteration
starts. Whenever elements are added to S or C, the required membership queries
are asked to fill the new cells (t, c) of the table with the membership information
χL(c · t).

Below follows the pseudo code of the learner. In this pseudo code, we denote
an observation table by the components S and C:
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procedure Ltfta
∗ where Ω = (S,C)

Ω := (∅, {2})
loop

complete(Ω);
construct AΩ;

t := eqQuery(AΩ); (ask equivalence query)
if t = ⊥ then return AΩ

else S := S ∪ subtrees(t)

procedure complete(S,C)
loop

if ∃c ∈ Σ2(S), s, s′ ∈ S : 〈s〉 = 〈s′〉 ∧ 〈c · s〉 6= 〈c · s′〉 then (table inconsistent)
choose d ∈ C with member(d · c · s) 6= member(d · c · s′);
C := C ∪ {d · c} (add witness to C)

else if ∃t ∈ Σ(S) such that 〈t〉 /∈ 〈S〉 then (table not closed)
S := S ∪ {t}

else return;

Clearly, as long as Ω is not closed and consistent, each iteration of complete

enlarges 〈S〉. In particular, complete terminates, because the index of L is finite.
Now, consider the main procedure of Ltfta

∗ , and let Ω′ be the new observation
table Ω′ obtained by adding subtrees(t) to S (where t is a counterexample). If Ω′

would still be closed and consistent, on the one hand, it could easily be shown that
AΩ = AΩ′ . On the other hand, Lemma 2.1 would apply to AΩ′ , stating that t is
not a counterexample for AΩ′ , contradicting the fact that it is a counterexample for
AΩ. Thus, Ω′ cannot be closed and consistent. By the reasoning above, this means
that the following call of complete enlarges 〈S〉. We conclude that Ltfta

∗ terminates
after at most n executions of the main loop, where n is the index of L.

Theorem 2.1 ([32]). Let At
L = (Σ, Q, δ, F ). The learner Ltfta

∗ returns an fta
isomorphic to At

L, and runs in time polynomial in mr and |δ|, where m is the
maximum size of counterexamples returned by the teacher, r is the maximum rank
of symbols in Σ, and |δ| is the number of transitions.

Note that the number |Q| of states of At
L (i.e., the index n of L) does not occur

in the preceding statement, because the totality of the fta implies that |δ| ≥ |Q|.
Let us have a look at an example.

Example 2.1. Let Σ = {f (2), g(1), a(0)}, and consider the tree language L consist-
ing of all trees in TΣ that do not contain two nodes such that one is a child of the
other and both are labelled with the same symbol.

The learner Ltfta
∗ starts with the table (∅, {2}), which is not closed, because

〈S〉 = ∅ does not contain 〈a〉, but a ∈ Σ(S). Thus, complete adds a to S. The
resulting observation table is the first one shown in Figure 1. Here, the trees in
S are those above the single horizontal line, and the trees in Σ(S) \ S are those
shown below it. The table is obviously closed and consistent, because all trees in
Σ(S) have equal rows. The transitions of the resulting automaton AΩ are shown
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to the left of the rows they result from. Since the state 〈a〉 is accepting (because
a ∈ L, which is signified by the fact that 〈a〉 equals 1 at 2), we have L(AΩ) = TΣ.
Hence, the teacher may give the counterexample t = g[g[a]]. The table resulting
from the addition of subtrees(t) to S is inconsistent, since the two trees shown in
boldface letters have equal rows, whereas the trees they are subtrees of do not.
After the addition of g[2] to C, the table is closed and consistent. The resulting
fta is passed to the teacher in another equivalence query, and the teacher returns a
counterexample. Again, the table needs to be made consistent using complete. As
the reader may check, the fta AΩ obtained from the resulting table is isomorphic
to At

L.

Let us say that a tree t is live (with respect to a recognizable tree language
L ⊆ TΣ) if it occurs as a subtree of at least one tree in L. Otherwise, t is dead.
As a direct consequence of this definition, the set of dead trees forms a congruence
class of ≡L (or is empty). The state of At

L corresponding to this congruence class is
said to be the dead state of At

L (if it exists). The canonical partial fta recognizing
L, denoted by Ap

L, is constructed in the same way as At
L, but taking as its state set

the set {[t]≡L
| t ∈ TΣ is live}, and restricting the transition function accordingly.

In other words, Ap
L is obtained from At

L by deleting its dead state, if it exists, and
is equal to At

L, otherwise. If a computation of At
L reaches the dead state on one

of the subtrees of the input tree, then this input tree cannot be accepted. Hence,
we obviously have L(Ap

L) = L(At
L) = L. We shall now consider a learner that

constructs Ap
L instead of At

L.

The learner Ltfta
∗ has the advantage that it asks at most n equivalence queries,

where n is the index of L. Its major disadvantages are that (a) S potentially
contains a lot of redundant information, since all subtrees of all counterexamples
received end up in S, and (b) the observation table contains |Σ(S)| rows to make
AΩ total. Together, (a) and (b) are responsible for the appearance of mr in Theo-
rem 2.1. Moreover, At

L always contains at least nr transitions, whereas the number
of transitions of Ap

L may be much smaller. The learner Lfta
∗ developed in [18] avoids

these disadvantages at the price of potentially asking a considerably larger number
of equivalence queries.

Even Lfta
∗ uses an observation table. However, rather than indexing the rows by

the trees in Σ(S), they are now indexed by trees in a set T such that S ⊆ T ⊆ Σ(S).
Thus, this set T takes the role of Σ(S), but will typically not contain all trees in
Σ(S). As before, columns are indexed by contexts from a finite set C ⊆ CΣ.

Since S ⊆ T ⊆ Σ(S), both T and S are subtree-closed. In addition to this,
Lfta
∗ maintains the invariant that, for every tree t ∈ T , there is exactly one tree
s ∈ S such that 〈s〉 = 〈t〉. This means that closedness and consistency do not need
to be checked explicitly, because S never contains redundant information. As a
consequence, AΩ = (Q,Σ, δ, F ) can be defined as before, the only difference being
that it is total only if it happens to be the case that T = Σ(S). As the trees in S
have pairwise distinct rows, the correspondences between S and Q and between T
and δ (viewing δ as a set of transitions) are bijections. In particular, each transition
is represented by a unique tree in T .
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2

a 1 a → 〈a〉
g[a] 1 g[〈a〉] → 〈a〉

f [a, a] 1 f [〈a〉, 〈a〉] → 〈a〉

counterexample
−−−−−−−−−−→

g

g

a

2

a 1
g[a] 1

g[g[a]] 0

f [a, a] 1
f [a, g[a]] 1

f [a, g[g[a]]] 0
f [g[a], a] 1

f [g[a], g[a]] 1
f [g[a], g[g[a]]] 0
f [g[g[a]], a] 0

f [g[g[a]], g[a]] 0
f [g[g[a]], g[g[a]]] 0

g[g[g[a]]] 0

complete
−−−−−→

2 g[2]

a 1 1 a → 〈a〉
g[a] 1 0 g[〈a〉] → 〈g[a]〉

g[g[a]] 0 0 g[〈g[a]〉] → 〈g[g[a]]〉
f [a, a] 1 1 f [〈a〉, 〈a〉] → 〈a〉

f [a, g[a]] 1 1 f [〈a〉, 〈g[a]〉] → 〈a〉
f [a, g[g[a]]] 0 0 f [〈a〉, 〈g[g[a]]〉] → 〈g[g[a]]〉

...
...

...
... →

...
f [g[g[a]], g[g[a]]] 0 0 f [〈g[g[a]]〉, 〈g[g[a]]〉] → 〈g[g[a]]〉

g[g[g[a]]] 0 0 g[〈g[g[a]]〉] → 〈g[g[a]]〉

counterexample
−−−−−−−−−−→

g

f

f

g

a

a

a

2 g[2]

a 1 1
g[a] 1 0

g[g[a]] 0 0
f [g[a], a] 1 1

f [f [g[a], a], a] 0 0
g[f [f [g[a], a], a]] 0 0

f [a, a] 1 1
f [a, g[a]] 1 1

f [a, g[g[a]]] 0 0
...

...
...

complete
−−−−−→

2 g[2] f [2, a]

a 1 1 1
g[a] 1 0 1

g[g[a]] 0 0 0
f [g[a], a] 1 1 0

f [f [g[a], a], a] 0 0 0
g[f [f [g[a], a], a]] 0 0 0

f [a, a] 1 1 0
f [a, g[a]] 1 1 0

f [a, g[g[a]]] 0 0 0
...

...
...

...

Figure 1: A run of Ltfta
∗ , showing (partial) observation tables, inconsistencies (in

boldface letters), transitions resulting from the rows of consistent tables (except for
the final table), and counterexamples that the teacher may choose to return.
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Similar to Ltfta
∗ , Lfta

∗ starts with the observation table given by S = ∅ (and, thus,
also T = ∅), and C = {2}. It repeatedly constructs AΩ and asks an equivalence
query. As long as a counterexample t is received, Ω is extended by a tree (and
possibly a context) extracted from t, and the process continues:

procedure Lfta
∗ where Ω = (S, T, C)

Ω := (∅, ∅, {2})
loop

construct AΩ;

t := eqQuery(AΩ); (ask equivalence query)
if t = ⊥ then return AΩ

else Ω := extend(Ω, t)

The heart of Lfta
∗ is the procedure extend, which examines a counterexample in

a bottom-up manner to find out where things go wrong, rather than adding all
subtrees of t to S. The technique used for this was introduced by Shapiro [35] and
is known as contradiction backtracking. The pseudo code looks like this:

procedure extend(Ω, t) where Ω = (S, T, C)
loop

decompose t into t = c · t′ where t′ = f [s1, . . . , sk] ∈ Σ(S) \ S;
if t′ ∈ T then

let s be the unique tree in S with 〈s〉 = 〈t′〉
if member(c · s) = member(t) then t := c · s (case 1a)
else return close(S, T,C ∪ {c}) (case 1b)

else return close(S, T ∪ {t′}, C) (case 2)

Here, the decomposition of t into c · t′ can be done by a simple algorithm that
checks in a bottom-up manner which subtrees of t belong to S, and returns the
first tree t′ encountered which is not in S (but which, therefore, must necessarily
be in Σ(S)). The procedure close is a simplified version of the procedure complete

of Ltfta
∗ , corresponding to the second case in the latter. It checks the trees t ∈ T

one by one, and adds t to S if S does not yet contain a tree s with 〈s〉 = 〈t〉. Let δ
be the transition function of AΩ. If t′ ∈ T , then δ(c · s) = δ(c · t′) = δ(t), because
δ(s) = 〈s〉 = 〈t′〉 = δ(t′). In other words, AΩ returns the same answer if run on t
and c · s. Together with the condition member(c · s) = member(t), this means that
c · s is also a counterexample, in case 1a. In case 1b, we have found a context c
that separates the trees s and t′ that have been equivalent according to Ω. Finally,
in case 2, we have found a missing transition.

The use of contradiction backtracking in extend makes sure that the trees in S
represent pairwise distinct states, those in T represent pairwise distinct transitions,
and the total number of contexts added does not exceed the number of states.
Moreover, it guarantees that no dead tree is ever added to T . Indeed, only case 2
results in the addition of a tree t′ to T . Since the transition represented by t′ is not
in T , we know that AΩ rejects t = c·t′. Hence, t must be a positive counterexample,
which shows that t′ is live.3 These properties make Lfta

∗ quite efficient.

3This fact, showing that c is a so-called sign of life for t′, will turn out to be of some importance
in Section 3.
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Theorem 2.2 ([18]). The learner Lfta
∗ returns an fta (Σ, Q, δ, F ) isomorphic to

Ap
L, and runs in time O(r · |Q| · |δ| · (|Q| +m)), where m is the maximum size of

counterexamples returned by the teacher, r is the maximum rank of symbols in Σ,
and |δ| is the number of transitions.

The algorithm requires |Q|+ |δ|+ 1 equivalence and m+ |Q| · (|δ|+ 1) member-
ship queries. As mentioned above, the number of equivalence queries asked is the
major disadvantage of Lfta

∗ in comparison with Ltfta
∗ . In practice, the number of

equivalence queries used by Lfta
∗ can often be reduced by re-using counterexamples

[17]; see also the following example.

Example 2.2. Let Σ = {f (2), g(1), a(0)} be as in Example 2.1, and consider the
tree language L consisting of all trees of the form c · f [t, a], where c ∈ C{g} and
t ∈ T{g,a}. Thus, the trees in L consist of a chain of gs at the top, followed by a
single f , whose first subtree is a chain of gs (ending in an a), whereas the second
is a single a.

In the first step, the teacher will be given the empty automaton, which accepts
the empty language. Suppose the teacher returns the left-most tree in Figure 2 as
a counterexample. Searching for a subtree in Σ(S) \ S in a bottom-up manner, we
immediately encounter one of the leaves a and observe that it represents a missing
transition (case 2). Therefore, a is added to T (and close adds it to S, because S
does not yet contain any tree whose row is 0). Following Lfta

∗ strictly, we would
now build the new automaton AΩ and ask the teacher a new equivalence query.
However, since the current tree is still a counterexample (it is not accepted by the
new automaton either), we can as well continue using the current tree (see [17]).
We now find the subtree g[a], which represents again a new transition, but not a
new state. In the next iteration (again re-using the counterexample), we find that
g[a] is in T and can be replaced with a without invalidating the counterexample
(case 1a). Thus, we continue with the third tree in Figure 2, and find that f [a, a]
represents a new transition and state. Finally, we also find that g[f [a, a]] represents
a transition. When this has happened, the automaton correctly accepts the tree,
so that we have to ask a new equivalence query.

Suppose the teacher chooses the leftmost tree in the second row of Figure 2. We
find that g[a] cannot be replaced with a once more, because f [a, a] ∈ L (case 1b).
Consequently, f [a,2] is a context that distinguishes between a and g[a].

Finally, when processing the last counterexample, we first discover that g[g[a]]
represents a transition, and then that f [g[a], a] represents another one. Now, an
equivalence query reveals that the resulting automaton is the correct one.

Recently, Besombes and Marion [7] have proposed the learner Lrep
∗ (called Al-

tex in [7]), that avoids the use of equivalence queries. Instead, it exploits a set of
positive examples in which all the transitions of the sought automaton are required
to be represented (see also [2]). Intuitively, there is a close relation between the two
learners, because Lfta

∗ uses equivalence queries precisely in order to discover such
representatives. It may be interesting to try to find out whether there is a deeper
formal relationship.
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f [〈a〉, 〈a〉] → 〈f [a, a]〉
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g[〈g[a]〉] → 〈g[a]〉
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Figure 2: A run of Lfta
∗ , showing the trees inspected, the resulting observation

tables, and the transitions. Steps according to case 1a (preserving the property of
being a counterexample) are indicated by ‘→’, whereas 6→ indicates steps according
to case 1b (yielding a separating context).
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Let us have a coarse look at Lrep
∗ . A set R ⊆ TΣ is a representative sample

for L if subtrees(R) contains, for every live tree t = f [t1, . . . , tk], a tree t′ =
f [t′1, . . . , t

′
k] such that t′1 ≡L t1, . . . , t

′
k ≡L tk. In other words, the transition

f [[t1]≡L
, . . . , [tk]≡L

] → [t]≡L
of the canonical fta is represented by a subtree of

at least one of the trees in R. Now, learning starts with the observation table given
by T = subtrees(R) and C = {c ∈ CΣ | ∃t ∈ TΣ : c · t ∈ R}. The set T is never
going to change, and there is no distinguished subset S of trees representing states.

Somewhat similar to the situation in Ltfta
∗ , and in contrast to Lfta

∗ , Ω may
be inconsistent, which now means that there are trees t = f [t1, . . . , tk] and t′ =
f [t′1, . . . , t

′
k] in T such that 〈ti〉 = 〈t′i〉 for i = 1, . . . , k, but 〈t〉 6= 〈t′〉. It can

be shown that, in this case, there is an inconsistency with ti ≡L t′i for all but
one i ∈ {1, . . . , k}. With this in mind, the situation becomes entirely similar
to Ltfta

∗ : if j is the unique index with tj 6≡L t′j , and d ∈ C is a context sep-
arating t from t′ (which exists because 〈t〉 6= 〈t′〉), then the context d · c with
c = f [t1, . . . , tj−1,2, tj+1, . . . , tk] separates tj from t′j .

The learner can now choose such a separating context d for every inconsistent
pair of trees t and t′ as above, and ask a membership query for each of the trees
d · f [t1, . . . , tj−1, t

′
j , tj+1, . . . , tk] (j ∈ {1, . . . , k}), until the answer differs from the

table entry for t in column d, to find c. In this way, a context d · c that separates
tj from t′j is obtained.4 Having found such a context, Lrep

∗ adds it to C and checks
again whether the observation table is consistent. Since the index of L is finite,
the process must eventually terminate, yielding a consistent table. This table gives
rise to an fta AΩ in a similar manner as before. For a consistent table, using the
fact that every transition is represented in T = subtrees(R), it can be shown by
induction on the size of minimal separating contexts that, for t, t′ ∈ T , if 〈t〉 = 〈t′〉,
then t ≡L t′. From this, it follows easily that AΩ is isomorphic to Ap

L.5

Theorem 2.3 ([7]). The learner Lrep
∗ returns an fta (Σ, Q, δ, F ) isomorphic to Ap

L

in time polynomial in
∑

t∈R |t| (where |t| denotes the size of t).

Let us have a look at an example.

Example 2.3. Let Σ = {f (2), a(0), b(0)} and L = TΣ\(T{f,a}∪{b}), i.e., L contains
all trees over Σ of size greater than one that contain at least one b. The canonical
fta contains states qa, qb, qf , where qf is final. Its transition table is

δ(t) =





qa if t ∈ {a, f [qa, qa]}
qb if t = b
qf otherwise.

The set R of trees shown in Figure 3 is a representative sample. Building the

4Alternatively, following the description in [7], the learner could simply pick any inconsistent
pair t, t′ as above and a separating context d, and add all contexts d·f [t1, . . . , tj−1,2, tj+1, . . . , tk]
to C, because it will eventually also encounter the right one and include it. However, it seems
clear that this may have a negative impact on the efficiency.

5The proof of this fact given in [7, Lemma 5] does not seem to be convincing, but it is easily
corrected by the inductive argument mentioned, showing that 〈t〉 = 〈t′〉 implies t ≡L t′.
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Figure 3: A representative sample R

corresponding initial observation table, we see that ∼Ω divides T = subtrees(R)
into two equivalence classes, namely T \ L = {a, b, f [a, a]} and T ∩ L. The reason
is that, among the contexts in C, only 2 separates any trees at all, because every
c ∈ C \ {2} (i.e., every context obtained from a tree in R by replacing a proper
subtree with 2) contains a b, which means that χL(c · t) = 1 for all t ∈ TΣ.

Thus, we should be able to find a pair of trees in T revealing an inconsis-
tency. Indeed, there are three, obtained by combining f [a, b], f [b, a], f [b, b] ∈ L
with f [a, a] /∈ L. This gives rise to the context f [a,2] separating a from b. Of
course, f [2, a] would do as well, but it may be interesting to note that neither
f [2, b] nor f [b,2] does (see also footnote 4). As the reader may wish to verify, the
table Ω′ enlarged by this context is consistent, and AΩ′ is isomorphic to Ap

L.

3 Learning Tree Series

It is now a natural step to wonder whether learning of recognizable tree series
is possible as well. The number of papers addressing this problem is still rather
small. One may roughly divide them into two categories. The first deals with
the special case of stochastic tree automata, weighted tree automata (wta) with
weights in [0, 1] that compute a probability distribution on TΣ. This case is of
particular interest because stochastic languages play an important role in, e.g.,
natural language processing. To learn stochastic tree languages, it is probably
most natural to consider a learning-from-text-like setting: positive examples are
drawn according to a probability distribution D, and the goal is to learn D in the
limit by, e.g., constructing an appropriate wta. A learner of this kind has recently
been presented by Denis and Habrard [16].

The second category of learners does not assume that the sought wta is a
stochastic tree automaton. There seem to be only two results of this kind, both
using the MAT model and the general algorithmic idea explained in the previous
section. Let us first give some basic definitions. Readers who wish to read a more
decent introduction to weighted tree automata are referred to the excellent survey
by Fülöp and Vogler [22].

Let S = (S,+, ·, 0, 1) be a (commutative) semiring, i.e., a set S together with
binary addition and multiplication operations + and · and distinct elements 0, 1 ∈ S

such that (S,+, 0) and (S, ·, 1) are commutative monoids, multiplication distributes
over addition, and 0 is absorbing with respect to multiplication. From now on, we
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simply denote S by S. A tree series is a mapping ψ : TΣ → S. Given such a tree
series, we call the set supp(ψ) = {t ∈ TΣ | ψ(t) 6= 0} the support of ψ.

Below, for a finite index set I, we let SI denote the set of all vectors over S

indexed by I. As usual, the ith component of v ∈ SI is denoted by vi, for i ∈ I.
The inner product of u, v ∈ SI is u · v =

∑
i∈I ui · vi.

Definition 3.1. Let S be a semiring. A weighted tree automaton (wta) over S is
a tuple A = (Σ, Q, µ, λ) consisting of a ranked alphabet Σ, a ranked alphabet Q of
states such that Q = Q(0), a transition weight table µ ∈ SΣ(Q)×Q, and a root weight
mapping λ ∈ SQ. Thus, µ assigns a weight µτ to every transition τ ∈ Σ(Q)×Q. A
is (bottom-up) deterministic (a dwta) if, for every l ∈ Σ(Q), there is at most one
q ∈ Q such that µl→q 6= 0.

For t = f [t1, . . . , tk] ∈ TΣ, we define µ̂(t) ∈ SQ by setting

µ̂(t)q =
∑

q1,...,qk∈Q

µf [q1,...,qk]→q ·
∏

i=1,...,k

µ̂(ti)qi
,

for all q ∈ Q.
The tree series recognized by A is given by ψA(t) = λ · µ̂(t), and is called a

recognizable tree series.

In the following, we want to consider the problem of learning a wta in the MAT
model, first for dwta over a semifield, and then for nondeterministic wta over a field.
Clearly, for this to be possible, the teacher has to be given appropriate capabilities.
Thus, if A is the class of wta to be learned, and ψ is the target series, membership
queries become coefficient queries: given a tree t ∈ TΣ, the procedure coef(t) will
return ψ(t). Similarly, equivalence queries have to be extended: the input is a
wta A ∈ A, and eqQuery(A) will either return ⊥, indicating that ψA = ψ, or a
counterexample, a tree t ∈ TΣ such that ψA(t) 6= ψ(t).

As mentioned, we are first going to have a look at the deterministic case. For
readers who are not yet familiar with wta, a small example (which will be continued
later) follows.

Example 3.1. We consider the semifield S = (Z ∪ {∞},min,+,∞, 0). To avoid
confusion, the reader should keep in mind that + plays the role of multiplication in
this example, with ∞ being the absorbing element, and 0 being the neutral element.

As in Example 2.2, let Σ = {f (2), g(1), a(0)}. For a tree t of the form c · f [t′, a],
where c ∈ C{g} and t′ ∈ T{g,a}, let ψ(t) = 2m + n, where m is the number of
occurrences of g in c, and n is the size of t′. For all other trees t ∈ TΣ, let
ψ(t) = ∞. Thus, the support of ψ is the tree language in Example 2.2.

A dwta over S recognizing ψ can be constructed by using states q1, q2, q3. Except
for the addition of weights, the automaton is the same as the one in Example 2.2.
It will be in state q1 when it has just read an a, in state q2 when it has read a
number of gs above an a, and in state q3 when it has read a tree in supp(ψ). For
the specification of concrete dwta, it is convenient to write µ as a set of rules of the

form l
w
→ q, where l ∈ Σ(Q) and q is the unique element of Q such that w = µl→q
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is non-zero (which, in the present case, means that w 6= ∞). Using this notation,
A contains the following rules:

a
0
→ q1, g[q1]

1
→ q2, g[q2]

1
→ q2,

f [q1, q1]
1
→ q3, f [q2, q1]

1
→ q3, g[q3]

2
→ q3.

Furthermore, λq1
= λq2

= ∞ and λq3
= 0.

Now, let us have a look at the MAT learner Ldwta
∗ for dwta over a (commutative)

semifield S by Maletti [30]. It extends Lfta
∗ to the weighted case and generalizes

an earlier version proposed by Drewes and Vogler [19], which was restricted to the
class of “all-accepting” dwta.

The learner Ldwta
∗ makes use of the Myhill-Nerode theorem for deterministically

recognizable tree series over commutative semifields [8]. Thus, from now on, every
a ∈ S \ {0} is assumed to have a multiplicative inverse. As in Lfta

∗ , observation
tables are given by sets S, T ⊆ TΣ and C ⊆ CΣ. The entry in row t and column
c is now the coefficient ψ(c · t). The fact that Lfta

∗ , in T , only collects live trees
becomes now crucial for the correctness of the learner. In the context of tree series,
a tree t ∈ TΣ is live if there exists a sign of life for t, a context c ∈ CΣ such that
ψ(c · t) 6= 0. The case of tree series poses a difficulty not present in the language
case: if µ̂(t)q 6= 0 but λq = 0, then the value of µ̂(t)q is hidden in the sense that a
coefficient query on t will yield ψ(t) = 0. To determine the right coefficients during
the construction of AΩ, we thus have to make sure that C contains a sign of life, for
every t ∈ T . In the algorithm extend, this is easily guaranteed by changing case 2
in such a way that c is added to C (see footnote 3 on p. 258).

Thus, the crucial invariant maintained by Ldwta
∗ is that, as in Lfta

∗ , the obser-
vation table Ω = (S, T,C) satisfies S ⊆ T ⊆ Σ(S). In addition, C now contains a
sign of life for every tree in T . For t, t′ ∈ T , what used to be the equality of 〈t〉 and
〈t′〉 in the unweighted setting, is now replaced by the requirement that one row be
a multiple of the other. More precisely, let 〈t〉 ≈ 〈t′〉 if and only if there exists an
a ∈ S such that 〈t〉 = a · 〈t′〉 (where a · 〈t′〉 denotes the scalar multiplication of the
row 〈t′〉 by a). Note that, due to the existence of signs of life, a is non-zero and
is uniquely determined for every pair of trees in T (if it exists). Similar to Lfta

∗ ,
for every tree t ∈ T , S will always contain exactly one tree s such that 〈s〉 ≈ 〈t〉.
Given t ∈ T , we will denote this particular tree s ∈ S by repΩ(t).

Now, we can assign a weight ψΩ(t) to every tree t ∈ T : ψΩ(t) is the unique
factor a ∈ S such that 〈t〉 = a · 〈repΩ(t)〉. In particular, ψΩ(s) = 1 for every s ∈ S.6

Using these definitions, an observation table Ω = (S, T,C) gives rise to the dwta
AΩ = (Σ, Q, µ, λ), where

• Q = 〈S〉,

• for every transition τ = (f [〈s1〉, . . . , 〈sk〉] → 〈t〉), where t = f [s1, . . . , sk] ∈ T ,
we let µτ = ψΩ(t),

6This definition of ψΩ(t) differs from the one given in [30], but fulfills the same purpose. This
illustrates the fact that there may be several minimal wta recognizing ψ, which differ in their
transition weights (and in λ).
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• all remaining transition weights µτ are 0, and

• λ〈s〉 = ψ(s) for all s ∈ S.

In the same way as Lfta
∗ , Ldwta

∗ now starts with the observation table Ω =
(∅, ∅, {2}). It repeatedly constructs AΩ, asks an equivalence query, and passes the
counterexample received (if any) to the procedure extend. In other words, the main
procedure of Ldwta

∗ looks exactly like that of Lfta
∗ (although it does now work with

dwta rather than fta, of course). Even extend looks quite the same as before, the
major difference being that we now add the context c as a sign of life in case 2:

procedure extend(Ω, t) where Ω = (S, T, C)
loop

decompose t into t = c · t′ where t′ = f [s1, . . . , sk] ∈ Σ(S) \ S;
let s = repΩ(t′);
if t′ ∈ T then

if coef(t) = ψΩ(t′) · coef(c · s) then t := c · s (case 1a)
else return close(S, T,C ∪ {c}) (case 1b)

else return close(S, T ∪ {t′}, C ∪ {c}) (case 2)

The following result, similar to Theorem 2.2, holds under the assumption that
all relevant operations on S (addition, multiplication, and taking inverses) can be
computed in constant time. Compared to Theorem 2.2, an additional factor |Q|
results from the fact that rows are not bit strings anymore, and thus cannot be
stored as single integers.

Theorem 3.1 ([30]). The learner Ldwta
∗ returns a minimal dwta A = (Σ, Q, µ, λ)

recognizing ψ in time O(r · |Q|2 · |δ| · (|Q| +m)), where m is the maximum size of
counterexamples returned by the teacher, r is the maximum rank of symbols in Σ,
and |δ| is the number of transitions τ ∈ Σ(Q) ×Q such that µτ 6= 0.

Let us have a look at an example.

Example 3.2. Consider the tree series ψ in Example 3.1, where, again, S =
(Z ∪ {∞},min,+,∞, 0). We now apply Ldwta

∗ in order to construct, by means
of learning, a dwta over S recognizing ψ. The counterexamples used as well as the
states and transitions discovered are the same as in Example 2.2. In particular,
counterexamples are re-used if possible. Furthermore, the context c in case 2 of
extend is not added to the table if the table already contains a sign of life for t′. To
save space in Figure 4, the very first step, in which a is found to be a new state and
transition, is omitted. Otherwise, the figure is very similar to Figure 2. Indeed, the
resulting wta recognizes ψ, as the reader may easily check, although the transition
weights differ from those used in Example 3.1.

It seems to be clear that the learner Lrep
∗ discussed in the previous section carries

over to deterministic wta over S in quite exactly the same way as Lfta
∗ . Thus, the

resulting learner would use coefficient queries and a representative sample, the latter
being a subset of supp(ψ) covering every transition of a minimal dwta recognizing
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λ〈a〉 = ∞, λ〈f [a,a]〉 = 1

a
0
→ 〈a〉

f [〈a〉, 〈a〉]
0
→ 〈f [a, a]〉

g[〈a〉]
1
→ 〈a〉

g[〈f [a, a]〉]
2
→ 〈f [a, a]〉

λ〈a〉 = ∞, λ〈f [a,a]〉 = 1

f

a g

a

6→
f

a a

f

g

g

a

a
→

f

g

a

a

2 g[f [g[2], a]] f [a,2]

a ∞ 4 1
f [a, a] 1 ∞ ∞
g[a] ∞ 5 ∞

g[f [a, a]] 3 ∞ ∞

2 g[f [g[2], a]] f [a,2]

a ∞ 4 1
f [a, a] 1 ∞ ∞
g[a] ∞ 5 ∞

g[f [a, a]] 3 ∞ ∞
g[g[a]] ∞ 6 ∞

f [g[a], a]] 2 ∞ ∞

a
0
→ 〈a〉

f [〈a〉, 〈a〉]
0
→ 〈f [a, a]〉

g[〈a〉]
0
→ 〈g[a]〉

g[〈f [a, a]〉]
2
→ 〈f [a, a]〉

λ〈a〉 = λ〈g[a]〉 = ∞, λ〈f [a,a]〉 = 1

a
0
→ 〈a〉 f [〈a〉, 〈a〉]

0
→ 〈f [a, a]〉

g[〈a〉]
0
→ 〈g[a]〉 f [〈g[a]〉, 〈a〉]

1
→ 〈f [a, a]〉

g[〈f [a, a]〉]
2
→ 〈f [a, a]〉

g[〈g[a]〉]
1
→ 〈g[a]〉

λ〈a〉 = λ〈g[a]〉 = ∞, λ〈f [a,a]〉 = 1

Figure 4: A run of Ldwta
∗ , similar to the run of Lfta

∗ in Figure 2.
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ψ. Note that, even though there may be various minimal dwta recognizing ψ,
their representative sets coincide, because two minimal dwta recognizing the same
tree series over S differ only in the weights of their transitions (and in their root
weights).

We now turn to the second learner for recognizable tree series, proposed by
Habrard and Oncina [26]. In contrast to the one explained above (and, in fact, also
in contrast to all other extensions of L∗ known to the author), this learner works for
nondeterministic wta. This becomes possible by making the stronger assumption
that S, the semiring considered, is a field. Thus, from now on, S is even assumed
to have additive inverses. From the point of view of MAT learning, the important
consequence of this assumption is that we, again, can make use of a Myhill-Nerode
theorem; see [22, Theorem 3.31].

Below, since we are now dealing with nondeterministic wta A = (Σ, Q, µ, λ), it
is occasionally convenient to specify µ as a function µ : Σ(Q) → SQ. The connection
between the two views is, of course, that µl→q = µ(l)q for all l ∈ Σ(Q) and q ∈ Q.

Before turning to the discussion of the learner, let us have a look at an example
of a nondeterministic wta.

Example 3.3. Let Σ = {f (2), g(1), a(0)} and S = Q, where addition and multipli-
cation are as usual. For a tree t ∈ TΣ, let ψ(t) = m + n, where n is the number
of nodes labelled f in t, and m is the number of nodes labelled f in t that do
not have a child node labelled f . In other words, we count fs, and those which
do not have another f as a direct descendant are counted twice. A minimal wta
A = (Σ, Q, µ, λ) recognizing ψ has three states q1, q2, q3. The intuition behind them
is as follows. At the root of a (sub-)tree t, state q1 carries the weight w = 0 if the
root of t is labelled f , and w = 1 otherwise. At the same time, q2 carries the weight
1 − w. State q3 always carries the weight ψ(t). Consequently, denoting v ∈ SQ as
(vq1

, vq2
, vq3

), the specification of µ reads as follows:

µ(a) = (1, 0, 0)

µ(g[q1]) = (1, 0, 0)
µ(g[q2]) = (1, 0, 0)
µ(g[q3]) = (0, 0, 1)

µ(f [q1, q1]) = (0, 1, 2)
µ(f [q, q′]) = (0, 1, 1) if q2 ∈ {q, q′} ⊆ {q1, q2}
µ(f [q, q′]) = (0, 0, 1) if {q, q′} ∈ {{q1, q3}, {q2, q3}}.

The root weights are given by λ = (0, 0, 1). Figure 5 illustrates a computation.

Now, suppose that ψ is a recognizable tree series over a field S. For the mo-
ment, let Ω denote the infinite observation table obtained by taking all of TΣ as T
(indexing the rows) and all of CΣ as C (indexing the columns). Then the rank of
Ω, viewed as a matrix, is finite. Moreover, it is not difficult to show that, for every
set S ⊆ TΣ, if there exists a tree t ∈ TΣ such that 〈t〉 is linearly independent of
〈S〉, then a tree with this property can even be found in Σ(S). Therefore, there is a
finite subtree-closed set7 S ⊆ TΣ such that, for all s ∈ S, 〈s〉 is linearly independent
of 〈S〉 \ {〈s〉}, and every row in 〈TΣ〉 is a linear combination of rows in 〈S〉.

7Recall that subtree-closedness of S means that S even contains all subtrees of trees in S.
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g

f

f

g

a

a

a

→
g

f

f

g

(1, 0, 0)

(1, 0, 0)

(1, 0, 0)

→
g

f

f

(1, 0, 0) (1, 0, 0)

(1, 0, 0)

→
g

f

(0, 1, 2) (1, 0, 0)

→
g

(0, 1, 3)

→ (1, 0, 3)

Figure 5: A computation of the wta in Example 3.3.

Assume that we have discovered such a set S, and let Q = 〈S〉. For every tree
t ∈ TΣ, let µ̃(t) ∈ SQ be the unique vector such that 〈t〉 =

∑
s∈S µ̃(t)〈s〉 · 〈s〉.

In other words, µ̃(t) is the vector of coefficients of 〈t〉, if expressed as a linear
combination of rows in 〈S〉. Then, for a tree t and a context c, we have

ψ(c · t) = Ω(t, c) =
∑

s∈S

µ̃(t)〈s〉 · Ω(s, c) =
∑

s∈S

µ̃(t)〈s〉 · ψ(c · s).

In particular, choosing c = 2 and setting λ〈s〉 = ψ(s), we get ψ(t) = λ · µ̃(t). Since
this is just the definition of ψA(t), it remains to show how to discover S, together
with a weight table µ such that µ̂ = µ̃.

This is done as follows, again using an observation table. As in Ltfta
∗ , rows are

indexed by the trees in Σ(S), i.e., Σ(S) plays the role of T . Each time new contexts
have been added to C, the learner makes sure that the table is closed, which now
means that 〈t〉 is a linear combination of 〈S〉, for every tree t ∈ Σ(S). Closedness can
be achieved by an straightforward iterative procedure close that preserves subtree-
closedness. Given that Ω is closed, a corresponding wta AΩ = (Σ, Q, µ, λ) with
Q = 〈S〉 can be obtained along the lines of the preceding discussion: for every
tree l = f [〈s1〉, . . . , 〈sk〉] ∈ Σ(Q), we let µ(l) be the unique vector such that 〈t〉 =∑

s∈S µ(l)〈s〉 · 〈s〉. Furthermore, λ〈s〉 = ψ(s) for all s ∈ S.
Now, here is the pseudo-code of the main routine of the learner:

procedure Lwta
∗

Ω = (S,C) := (∅, ∅)
loop

construct AΩ;

t := eqQuery(AΩ); (ask equivalence query)
if t = ⊥ then return AΩ;

else

C := C ∪ {c ∈ CΣ | ∃t′ ∈ TΣ : c · t′ = t};
S := close(S);

Thus, when a counterexample is received, C is enlarged by all contexts obtained
from this counterexample. Since it can be shown that this increases the rank of Ω,
termination is guaranteed. (In fact, the learner in [26] is slightly more optimized
than the version described here. Before asking a new equivalence query, it is checked
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whether there is a tree t ∈ T such that ψAΩ
(t) 6= ψ(t). In other words, there is

a context c ∈ C such that c · t is a counterexample. In this case, the learner can
obviously proceed by using c · t as a counterexample, thus avoiding the need to ask
an equivalence query.)

Every counterexample increases |S|, which never gets larger than the number
of states of a minimal wta recognizing ψ. Furthermore, every counterexample t
leads to the inclusion of at most |t| new contexts in C. As all the basic steps in the
algorithm can be performed in polynomial time in the size of Ω (i.e, in |Σ(S)|+|C|),
we get the following theorem.

Theorem 3.2 ([26]). For every recognizable tree series over S, Lwta
∗ learns a min-

imal wta A recognizing ψ in polynomial time with respect to the size of A and the
size of the largest counterexample returned by the teacher.

Again, let us have a look at an example.

Example 3.4. We apply Lwta
∗ to the tree series in Example 3.3. The initial wta,

without any states, assigns the weight 0 to all trees. The teacher may respond with
the counterexample f [a, a], which leads to the first observation table in Figure 6.
In the figure, only as many contexts of C are shown as needed. For example, f [a,2]
is left out in the first table. Furthermore, for the sake of clarity, the part below the
horizontal line in each table lists all of T , rather than only T \ S.

The teacher may now give the counterexample t = f [f [f [a, a], a], f [a, a]], be-
cause ψAΩ

(t) = 27/4 rather than 6. Of the contexts obtained from t, we need only
f [f [f [2, a], a], f [a, a]] to distinguish between three states; see the second table in
Figure 6. AΩ now recognizes ψ, even though the “intuition” of the learner differs
from the one used to construct the (equivalent) wta in Example 3.3. More precisely,
let rootf (t) be the predicate which is true if and only if the root symbol of t is f .
Then, if µ(t) = (v1, v2, v3), we have

v1 = 1 − ψ(t)/2, v2 =

{
1 if rootf (t)
0 otherwise,

v3 =

{
ψ(t)/2 − 1 if rootf (t)
ψ(t)/2 otherwise.

Indeed, given the choice of λ, this means that AΩ recognizes ψ.

4 Final Remarks

We have considered a family of grammatical inference algorithms for tree languages
and tree series that can be regarded as more or less direct descendants of the learner
L∗ proposed by Angluin in [3]. An approach that has not been discussed here is
the one presented in [6, 38] for string and tree languages, respectively (see also
[37, 36]). This approach uses so-called correction queries instead of membership
queries. Given a recognizable tree language L ⊆ TΣ to be learned, a correction
query correct(t) (where t ∈ TΣ) is answered by returning the smallest context
c ∈ CΣ such that c · t ∈ L. Here, contexts are ordered according to a Knuth-Bendix
order. A special token is returned if no c with c · t ∈ L exists, i.e., in case t is
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2 f [2, a]

s1 = a 0 2 λ〈s1〉 = 0

s2 = f [a, a] 2 3 λ〈s2〉 = 2

a 0 2 µ(a) = (1, 0)

g[s1] 0 2 µ(g[〈s1〉]) = (1, 0)

g[s2] 2 4 µ(g[〈s2〉]) = (1
2 , 1)

f [s1, s1] 2 3 µ(f [〈s1〉, 〈s1〉]) = (0, 1)

f [s1, s2] 3 4 µ(f [〈s1〉, 〈s2〉]) = (− 1
4 ,

3
2 )

f [s2, s1] 3 4 µ(f [〈s2〉, 〈s1〉]) = (− 1
4 ,

3
2 )

f [s2, s2] 5 6 µ(f [〈s2〉, 〈s2〉]) = (− 3
4 ,

5
2 )

2 f [2, a] f [f [f [2, a], a], f [a, a]]

s1 = a 0 2 6 λ〈s1〉 = 0

s2 = f [a, a] 2 3 7 λ〈s2〉 = 2

s3 = g[f [a, a]] 2 4 8 λ〈s3〉 = 2

a 0 2 6 µ(a) = (1, 0, 0)

g[s1] 0 2 6 µ(g[〈s1〉]) = (1, 0, 0)

g[s2] 2 4 8 µ(g[〈s2〉]) = (0, 0, 1)

g[s3] 2 4 8 µ(g[〈s3〉]) = (0, 0, 1)

f [s1, s1] 2 3 7 µ(f [〈s1〉, 〈s1〉]) = (0, 1, 0)

f [s1, s2] 3 4 8 µ(f [〈s1〉, 〈s2〉]) = (− 1
2 , 1,

1
2 )

f [s1, s3] 4 5 9 µ(f [〈s1〉, 〈s3〉]) = (−1, 1, 1)

f [s2, s1] 3 4 8 µ(f [〈s2〉, 〈s1〉]) = (− 1
2 , 1,

1
2 )

f [s2, s2] 5 6 10 µ(f [〈s2〉, 〈s2〉]) = (− 3
2 , 1,

3
2 )

f [s2, s3] 5 6 10 µ(f [〈s2〉, 〈s3〉]) = (− 3
2 , 1,

3
2 )

f [s3, s1] 4 5 9 µ(f [〈s3〉, 〈s1〉]) = (−1, 1, 1)

f [s3, s2] 5 6 10 µ(f [〈s3〉, 〈s2〉]) = (− 3
2 , 1,

3
2 )

f [s3, s3] 6 7 11 µ(f [〈s3〉, 〈s3〉]) = (−2, 1, 2)

Figure 6: Applying Lwta
∗ to the tree series ψ in Example 3.3

dead. It seems to be an interesting question whether this approach carries over the
weighted setting in a reasonable way.

In the case of weighted tree automata, the learners mentioned in Section 3 seem
to be the only ones known so far. In contrast, a variety of learning approaches for
stochastic string languages and recognizable string series have been proposed in the
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literature (see, e.g., [31, 9, 12, 10, 11, 14, 15, 25]). It could be interesting to see
whether these approaches extend to stochastic tree languages or tree series as well.

Another question that may be worth studying is whether grammatical inference
of tree series is easier if some aspects of the target series are already known, such
as the support or the yield of the support.
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rection and equivalence queries. In Sakakibara, Y., Kobayashi, S., Sato, K.,
Nishino, T., and Tomita, E., editors, 8th Intl. Coll. Grammatical Inference:
Algorithms and Applications (ICGI’06), volume 4201 of Lecture Notes in Com-
puter Science, pages 281–292. Springer, 2006.

[7] Besombes, J. and Marion, J.-Y. Learning tree languages from positive ex-
amples and membership queries. Theoretical Computer Science, 382:183–197,
2007.

[8] Borchardt, B. The Myhill-Nerode theorem for recognizable tree series. In Ésik,
Z. and Fülöp, Z., editors, Proceedings of the 7th International Conference on
Developments in Language Theory (DLT’03), volume 2710 of Lecture Notes
in Computer Science, pages 146–158. Springer, 2003.



272 Frank Drewes

[9] Carrasco, R.C., Forcada, M.L., and Santamaŕıa, L. Inferring stochastic regu-
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[22] Fülöp, Z. and Vogler, H. Weighted tree automata and tree transducers.
In Kuich, Werner, Droste, Manfred, and Vogler, H., editors, Handbook of
Weighted Automata. Springer, 2009.

[23] Gold, E.M. Language identification in the limit. Information and Control,
10:447–474, 1967.

[24] Gold, E.M. Complexity of automaton identification from given data. Infor-
mation and Control, 37:302–320, 1978.

[25] Habrard, H., Denis, F., and Esposito, Y. Using pseudo-stochastic rational lan-
guages in probabilistic grammatical inference. In Sakakibara, Y., Kobayashi,
S., Sato, K., Nishino, T., and Tomita, E., editors, Proc. 8th International Col-
loquium on Grammatical Inference (ICGI’06), volume 4201 of Lecture Notes
in Artificial Intelligence, pages 112–124. Springer, 2006.

[26] Habrard, H. and Oncina, J. Learning multiplicity tree automata. In Sakak-
ibara, Y., Kobayashi, S., Sato, K., Nishino, T., and Tomita, E., editors, Proc.
8th International Colloquium on Grammatical Inference (ICGI’06), volume
4201 of Lecture Notes in Artificial Intelligence, pages 268–280. Springer, 2006.

[27] Knuutila, T. and Steinby, M. The inference of tree languages from finite
samples: an algebraic approach. Theoretical Computer Science, 129:337–367,
1994.

[28] Lee, L. Learning of context-free languages: A survey of the literature. Report
TR-12-96, Harvard Univ., Center for Research in Computing Technology, 1996.
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