
Acta Cybernetica 19 (2009) 295–312.

Weighted Automata Define a Hierarchy of

Terminating String Rewriting Systems

Andreas Gebhardt∗ and Johannes Waldmann†

Abstract

The “matrix method” (Hofbauer and Waldmann 2006) proves termination
of string rewriting via linear monotone interpretation into the domain of vec-
tors over suitable semirings. Equivalently, such an interpretation is given by
a weighted finite automaton. This is a general method that has as parameters
the choice of the semiring and the dimension of the matrices (equivalently,
the number of states of the automaton). We consider the semirings of non-
negative integers, rationals, algebraic numbers, and reals; with the standard
operations and ordering. Monotone interpretations also allow to prove rel-
ative termination, which can be used for termination proofs that consist of
several steps. The number of steps gives another hierarchy parameter. We
formally define the hierarchy and we prove that it is infinite in both directions
(dimension and steps).

Keywords: string rewriting, relative termination, weighted automaton,
matrix interpretation, monotone algebra.

1 Introduction

Rewriting is pattern replacement in context. It serves as a model of computation
that is Turing-complete. Thus all “interesting” semantic properties are undecidable,
including the very natural question of termination [18]: for a given rewriting system,
are all derivations finite? Since the problem is significant in practice, e.g. for the
analysis of software, one is interested in semi-algorithms: computable methods of
proving termination that are sound, but not complete.

One method to prove termination of rewriting is “matrix interpretation” [13].
These interpretations are in fact N-weighted finite automata. Several automated
termination provers now implement this method, and indeed the outcome of recent
Termination Competitions is heavily influenced by “matrix proofs”.

∗Martin-Luther-Universität Halle-Wittenberg, Von-Seckendorff-Platz 1, D-06120 Halle , Ger-
many. E-mail: andreas.gebhardt@informatik.uni-halle.de

†Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig, Fb IMN, PF 30 11 66, D-04251
Leipzig, Germany. E-mail: waldmann@imn.htwk-leipzig.de

296 Andreas Gebhardt and Johannes Waldmann

Related to that, investigations of matrix method(s) mainly focused on proving
correctness, and then efficiency of implementation in solving the corresponding
constraint systems for the matrix entries.

With the present paper, we intend to start a systematic study of matrix
method(s) as proof systems. We define a suitable hierarchy of termination problems
and explore its properties.

One parameter of this hierarchy is the size of the matrices used in the proof,
corresponding to the number of states of the automata.

Another parameter is the underlying (semi)ring. In the present paper, we con-
sider weight rings that include N. In [8] we reported on some experiments with
non-negative rationals.

The matrix interpretation method in fact solves a more general problem: that
of relative termination. A rewriting system R terminates relative to a rewriting
system S if each mixed derivation (containing R and S steps in any order) contains
only finitely many R steps. While being an interesting concept in itself [10],
relative termination helps to solve standard termination problems because it allows
to compose termination proofs: if R terminates relative to S then termination of
R∪S follows from termination of S, and the latter can be proved separately. That
way, termination of a rewriting system can be shown incrementally, and the number
of proof steps gives another interesting parameter for the hierarchy.

In the present paper, we focus on string rewriting. The matrix method has been
generalized to term rewriting [6], but we leave the investigation of the corresponding
hierarchy of terminating term rewriting systems for further study.

After giving preliminaries on string rewriting in Section 2 and on termination
proofs via weighted word automata in Section 3, we define the corresponding hier-
archy of (relatively) terminating rewriting systems in Section 4. Then we discuss
the hierarchy with respect to matrix dimension in Section 5 (with a particular case
in Section 6), choice of the weight semiring in Section 7, and number of proof steps
in Section 8.

We obtain these results:

• the hierarchy is infinite with respect to matrix dimension (Theorem 2)

• rational weights are strictly more powerful than integral weights (Theorem 5)

• the hierarchy is infinite with respect to the number of proof steps (Theorem 6).

Some of the results in this paper have been announced in contributions to the
Workshop on Termination [8] and to the Workshop on Weighted Automata [9].

2 Notation and Preliminaries

Strings and Rewriting. Given a finite alphabet Σ, denote by Σ∗ the set of
finite words with letters from Σ. In fact Σ∗ is a monoid under the operation · of
concatenation, with the empty word ǫ as unit.

Weighted Automata Define a Hierarchy of Terminating String . . . 297

A string rewriting system [3] is a set R of rules, where a rule is a pair of words.
We often write the rule (l, r) as (l → r). A string rewriting system R defines a
(one-step) rewrite relation over Σ∗ by u →R v if there exists (l, r) ∈ R and x, y ∈ Σ∗

such that u = x · l · y and v = x · r · y. For example, for R = {ab → baa} over
Σ = {a, b}, we have abb →R baab →R babaa →R bbaaaa. We often write R (the
system) as a shorthand for →R (the relation).

Relations and Termination. For a relation →, we write SN(→) if this → is
well-founded, that is, if there is no infinite chain x0 → x1 → . . . We also say that
→ is terminating.

We denote the composition of relations →1 and →2 by →1 ◦ →2, the transitive
closure of a relation → by →+, and the transitive and reflexive closure by →∗.

For relations →1,→2, define →1 / →2 as →1 ◦ →∗
2. Then SN(→1 / →2) denotes

that →1 is terminating relative to →2: there is no (→1 ∪ →2)-chain containing
infinitely many →1 steps. Note that →1 /∅ =→1.

By the above remark, we write SN(R) (“the system R is terminating”) for
SN(→R) (“the derivation relation of R is terminating”).

Semirings. A semiring [11] has a carrier D with operations + (addition) and ·
(multiplication) and designated elements 0 (zero) and 1 (unit), such that (D,+, 0)
is a commutative monoid, and (D, ·, 1) is a monoid, addition distributes over mul-
tiplication from both sides, and 0 · a = 0 = a · 0. A semiring is partially ordered [7]
if there is a relation ≥ on D that is compatible with the operations. In the present
paper, we use semirings over the domains of natural numbers N, non-negative ra-
tional numbers Q≥0, algebraic numbers Alg≥0, and real numbers R≥0; each with
standard operations. For N, we use the standard ordering; for the others, see below
(after Theorem 1). The given domains are in fact positive cones of rings, but we
rarely subtraction.

Weighted automata. A weighted automaton [2, 5, 15] A = (D,Σ, Q, λ, µ, γ)
consists of a semiring D, an alphabet Σ, a set of states Q, and mappings

λ : Q → D,µ : (Q × Σ × Q) → D, γ : Q → D.

We picture such an automaton as a directed labelled graph (possibly with loops

and parallel edges), with an edge p
x:w
−→ q for each µ(p, x, q) = w. An incoming edge

(no source)
w

−→ q denotes λ(q) = w, an outgoing edge (no target) p
w

−→ denotes
γ(p) = w. We omit all edges with weight 0. As an ongoing example for this section,

1 2
1 a : 1

a : 1

b : 1

a : 1

b : 3

1

298 Andreas Gebhardt and Johannes Waldmann

A path in the automaton is a sequence q0
x1:w1−→ q1

x2:w2−→ · · ·
xn:wn−→ qn. The label

of this path is x1x2 . . . xn ∈ Σ∗, and the weight of this path is w1 ·w2 · · · · ·wn ∈ D.

For instance, the path 1
a:1
−→ 1

a:1
−→ 2

b:3
−→ 2 has label aab and weight 3. For each

state q, there is an empty path from q to q with label ǫ and weight 1.
The function µ∗ : (Q × Σ∗ × Q) → D computes the weight of a word x =

x1x2 . . . xn from state q0 to qn as the sum of the weights of all paths from p to q
with label x:

µ∗(q0, x1 . . . xn, qn) =
∑

q1,...,qn−1∈Q

∏

1≤k≤n

µ(qk−1, xk, qk)

For instance, µ∗(1, aab, 2) is computed from the paths 1
a:1
−→ 1

a:1
−→ 2

b:3
−→ 2 and

1
a:1
−→ 2

a:1
−→ 2

b:3
−→ 2, so the total weight is 6. We identify µ∗ with µ, and find it

convenient to write µ(p, x, q) = d as p
x:d
→A q.

The weight assigned by A to a word w is obtained by considering the functions
λ and γ that give the weights for entering and leaving a state,

A(w) =
∑

i,f∈Q

λ(i) · µ∗(i, w, f) · γ(f).

In the example, A(aab) = A(1, aab, 2) = 6.
We say that state q ∈ Q is initial if λ(q) = 1, and zero elsewhere; and q is

final if γ(q) = 1, and zero elsewhere. An automaton with unique initial state i and
unique final state f is called (i, f)-pointed.

Reduced automata. We say that states p is connected to state q in A if there
is some w ∈ Σ∗ such that µ(p, w, q) 6= 0. We write p →∗

A q. An (i, f)-pointed
automaton is called reduced if for each q ∈ Q, we have i →∗

A q →∗
A f . For each

automaton A, there is a reduced automaton A′ that computes the same weight
function as A. This A′ can be obtained from A by simply deleting all unconnected
states.

Matrices. The function µ of a weighted automaton can also be visualized as a
mapping that assigns to each letter x ∈ Σ a square matrix, also called µ(x), that
is indexed by Q × Q. For the example automaton, we have these matrices

µ(a) =

(

1 1
0 1

)

, µ(b) =

(

1 0
0 3

)

This mapping can be extended from letters to words, by matrix multiplication:
µ(x1 . . . xn) = µ(x1) · . . . ·µ(xn), and this corresponds with the function µ∗ defined
above, that is, the entry at position (p, q) in the matrix product µ(x1 . . . xn) is the
weight of the word x1 . . . xn from p to q, as defined above. In the example, we
compute

µ(aab) = µ(a) · µ(a) · µ(b) =

(

1 6
0 3

)

.

Weighted Automata Define a Hierarchy of Terminating String . . . 299

If we view λ as a row vector and γ as a column vector, then A(w) = λ ·µ(w) ·γ.
For example,

A(aab) = λ · µ(aab) · γ =
(

1 0
)

·

(

1 6
0 3

)

·

(

0
1

)

= 6

For (i, f)-pointed automata, λ and γ are unit vectors, so A(w) is just the entry
at position (i, f) in the square matrix µ(w). Usually, i is the first index and f is
last, so (i, f) marks the top right position.

3 Termination Proofs from Weighted Automata

An (i, f)-pointed automaton A is is called weakly compatible with a rewriting system
R, if ∀a ∈ Σ : µ(i, a, i) ≥ 1∧µ(f, a, f) ≥ 1 and for each rule (l → r) ∈ R, and states
p, q ∈ Q, we have µ(p, l, q) ≥ µ(p, r, q). The automaton is called strictly compatible
with R if additionally for each rule (l → r) ∈ R, µ(i, l, f) > µ(i, r, f). (In this
paper we only use sub-semirings of R≥0, so all weights are non-negative.)

The main result of [13], written here in the language of weighted automata, is

Theorem 1. If there is an N-weighted automaton A that is strictly compatible
with a rewriting system R and weakly compatible with a rewriting system S, then
SN(R/S).

The intution is that for a rewrite step xly → xry using a rule (l → r) ∈ R, each

path i
x:∗
−→ i

l:∗
−→ f

y:∗
−→ f has strictly larger weight than the corresponding path

i
x:∗
−→ i

r:∗
−→ f

y:∗
−→ f . The total weight of xly (xry, resp.) may include contributions

from other paths, but for these we require a weak decrease. By strictness of “<”
w.r.t. addition, we get a total decrease.

We give an example where Theorem 1 is applied with S = ∅.

Example 1. For the rewriting system R = {ab → baa}, consider the (1, 2)-pointed
automaton with transition matrices

µ(a) =

(

1 1
0 1

)

, µ(b) =

(

1 0
0 3

)

By matrix multiplication, we compute

µ(ab) =

(

1 3
0 3

)

, µ(baa) =

(

1 2
0 3

)

and we note µ(i, ab, f) = 3 > 2 = µ(i, baa, f), and weak inequalities (in fact,
equalities) elsewhere. This shows that the automaton is strictly compatible with
R. From the theorem, we conclude SN(R/∅), thus SN(R).

In [8] it was observed that the theorem also holds if we replace N by Q≥0, and
this easily extends to Alg≥0 and R≥0. Now > is not well-founded on Q≥0 and
indeed we use a different ordering: x >ǫ y ⇐⇒ x ≥ ǫ + y where

ǫ = inf {µ(i, l, f) − µ(i, r, f) | (l → r) ∈ R} .

300 Andreas Gebhardt and Johannes Waldmann

If the automaton is strictly compatible with a finite system R, then this is a positive
number, and therefore >ǫ is well-founded. Under the conditions of the theorem,
we have u →R v implies µ(i, u, f) >ǫ µ(i, v, f).

The following is an easy observation:

Lemma 1. If A fulfills the conditions of Theorem 1, then there is a reduced au-
tomaton A′ with the same properties.

Proof. We take A′ as the reduced automaton of A, obtained by deleting states that
are unreachable from i or do not reach f . Denote by µ′ the transition function of A′.
For states p, q of A′, and letter x ∈ Σ, we have µ′(p, x, q) = µ(p, x, q). Therefore,
also for w ∈ Σ∗ we have µ′(p, w, q) = µ(p, w, q). Since initial and final state of A
and A′ coincide (respectively), we are done.

The following example shows an application of the theorem with non-empty S.

Example 2. Take S = {ab → baa} and R = {cb → bcc}, and the (1, 2)-pointed
automaton with matrices

µ(a) =

(

1 0
0 1

)

, µ(b) =

(

1 1
0 1

)

, µ(c) =

(

3 0
0 1

)

We compute

µ(cb) =

(

3 3
0 1

)

, µ(bbc) =

(

3 2
0 1

)

, µ(ab) = µ(baa) =

(

1 1
0 1

)

.

This shows that the automaton is strictly compatible with R and weakly compatible
with S, thus SN(R/S).

Now we introduce an additional notation:

Definition 1. For rewriting systems R,S we write

R S ⇐⇒ R ⊇ S ∧ SN((R \ S)/S).

Example 3. Example 1 shows that {ab → baa} ∅. Example 2 shows that

{ab → baa, cb → bbc} {ab → baa}.

Proposition 1. R S if and only if each infinite R-derivation ends with an
infinite S-derivation.

Proof. We have SN((R\S)/S) if and only if each R-derivation contains only finitely
many steps from R \ S.

The notation “ ” supports the idea of composing termination proofs. Indeed,

Proposition 2. The relation is transitive.

Weighted Automata Define a Hierarchy of Terminating String . . . 301

Proof. Given R S and S T , we have to show that each infinite R-derivation
ends with an infinite T -derivation. Assume there is an R-derivation with infinitely
many steps from R\T . If this derivation contains infinitely many steps from R\S,

then this contradicts R S. So it contains only finitely many steps from R \ S.

After the last of these, we have an S-derivation. By S T , it contains only finitely
many steps from S \ T , and then continues as an infinite T -derivation.

We obtain the following

Corollary 1. If R
∗
∅, then SN(R).

Here is a typical application:

Example 4. By Example 3, we have

{ab → baa, cb → bbc} {ab → baa} ∅,

thus the rewriting system on the left is terminating.

4 A Hierarchy of Relative Termination

We relate the general idea of relative termination, as denoted by “ ”, with the
idea of matrix interpretations.

Definition 2. We denote by M(W,n) the set of pairs of rewriting systems (R,S)
for which an automaton exists with weight domain W and n states that is strictly

compatible with R \ S and weakly compatible with S. We also write R
M(W,n)

S.

Indeed M(W,n) is a relation on rewriting systems, and by Theorem 1, we have

that R
M(W,n)

S implies R S.
For relations M(W,n) we will make use of standard operations on relations like

composition, iteration (exponentiation) and (reflexive and) transitive closure.

Example 5. By Example 1 we get {ab → baa}
M(N,2)

∅.

By abuse of notation we sometimes write R ∈ M(W, d) for (R, ∅) ∈ M(W,d).

Example 6. By Examples 1,2, and the above abuse of notation,

{ab → baa, cb → bbc} ∈ M(N, 2)2.

The exponent 2 indicates that the termination proof is composed of two steps.

Definition 3. The matrix termination hierarchy consists of the classes M(W,d)s

of pairs of rewriting systems, where

• W ∈ {N, Q≥0,Alg≥0, R≥0} is a weight semiring,

302 Andreas Gebhardt and Johannes Waldmann

• d is a natural number ≥ 0 giving the matrix dimension (automaton size),

• and s is a natural number ≥ 1 counting the proof steps s.

We abbreviate ∪n≥0M(W,n) by M(W). Then in our notation M(N) is the set
of all rewriting systems that have a one-step termination proof using some natural-
weighted automaton. Using transitivity, M(N)+ is the set of all systems with a
multi-step termination proof using such automata.

We have these immediate observations:

Proposition 3. 1. If n ≤ n′, then for all W , M(W,n) ⊆ M(W,n′).

2. If W is a sub-semiring of W ′, then for all n, M(W,n) ⊆ M(W ′, n).

3. If 1 ≤ s ≤ s′, then for all W,n

M(W,n) ⊆ M(W,n)≤s ⊆ M(W,n)≤s′

⊆ M(W,n)∗.

Proof. (1) We can introduce useless states in the automaton. (2) Each W -inter-
pretation is also a W ′-interpretation. (3) Each sequence with ≤ s steps is also a
sequence with ≤ s′ steps.

While these statements are obvious, the following problems are not:

• Which of the obvious inclusions are strict?

• Are there non-obvious inclusions?

• Are the hierarchies (w.r.t. number of states, number of steps) infinite?

• What levels M(W,n)s are inhabited?

We will answer some of them in the rest of the paper.

5 Number of States

In this section we present a terminating rewriting system that needs large matrices
for a termination proof. The construction works for any size, so we infer that the
“matrix size hierarchy” is infinite.

We consider, for d ≥ 2, the alphabet Σd = {s, 1, . . . , d, f}. These are d numbers
and two extra letters s, f (start and final). We take any enumeration e1, . . . of even
permutations of {1, . . . , d} and enumeration o1, . . . of odd permuations of {1, . . . , d}.
Then consider the string rewriting system

Rd = {sekf → sokf | 1 ≤ k ≤ d!/2}.

Weighted Automata Define a Hierarchy of Terminating String . . . 303

Example 7. For d = 4, we get the rule set

s1234f → s2134f, s2314f → s2341f, s3124f → s1324f,
s3241f → s3214f, s1342f → s3142f, s3412f → s3421f,
s2143f → s1243f, s2431f → s2413f, s1423f → s4123f,
s4213f → s4231f, s4132f → s1432f, s4321f → s4312f.

Lemma 2. There is no strict subset S of R2d such that (R2d, S) ∈ M(N, d).

Proof. We use the Amitsur-Levitzki Theorem [14, 4]. It says that the elementary
symmetric polynomial in 2d variables

s(x1, . . . , x2d) =
∑

π is a permutation of {1, . . . , 2d}

(−1)sgn(π)xπ(1) · . . . · xπ(2d)

is identically zero for d × d-matrices.
Any d-dimensional matrix interpretation [·] has

∑

(l→r)∈R

([l] − [r]) = [s]
(

∑

([ek] − [ok])
)

[f] = 0.

If [·] is weakly compatible with R2d, then
∑

(l→r)∈R2d
([l] − [r]) ≥ 0, and this

implies ∀(l → r) ∈ R2d : [l] = [r]. So, [·] cannot be strictly compatible with any
rule of R2d.

Lemma 3. For d′ = 2d + 3, R2d ∈ M(N, d′)(2d)!/2

Proof. For each k, we give a matrix interpretation [·] of dimension d′ that is weakly
compatible with all rules of R2d and strictly compatible with rule sekf → sokf .
The interpretation represents an automaton that just counts the number of factors
sekf . This is a word with 2d + 2 letters, so counting can be done with 2d + 3
states. The counting automaton consists of loops at initial and final state, and a
path labelled sekf (and all unit weights) from initial to final state.

1

Σ

s ek f

Σ

1

This works since sekf is not self-overlapping (no non-trivial prefix is equal to a
suffix). The count reduces by one at each rewrite step, since there are no overlaps
between sekf and sok′f either. Applying these interpretations for all k, in any
order, gives the result: termination of R2d can be shown by a sequence of (2d)!/2
matrix interpretations of size d′.

Lemma 4. For d′ = 2 + (2d + 1)(2d)!/2, we have R2d ∈ M(N, d′).

Proof. We build an automaton that contains all the automata constructed in the
proof of Lemma 3 in parallel.

304 Andreas Gebhardt and Johannes Waldmann

.1

Σ s

e1

f

s

e(2d)!/2

f

Σ

1

It has one initial and one final state, and (2d)!/2 paths each using (2d+1) individual
states.

As a corollary, we obtain

Theorem 2. For each W ∈ {N, Q≥0,Alg≥0, R≥0}: The hierarchy M(W,d)d=0,1,...

is infinite.

Proof. Assume, to the contrary, that there is d such that M(W,d) = M(W,d+1) =
. . . By Lemma 2, the system R2d is not in M(W,d), and by Lemma 4, R2d ∈
M(W,d′) for some d′ > d.

6 Small Automata

We have more information on the lower levels of the hierarchy:

Proposition 4. These inclusions are strict:

M(N, 0) ⊂ M(N, 1) ⊂ M(N, 2) ⊂ M(N, 3).

Proof. We prove R1 = {a → b} ∈ M(N, 1) \ M(R≥0, 0). A strictly compatible
1-dimensional interpretation of the required shape is given by [a] = 2, [b] = 1. Any
interpretation in M(N, 0) is necessarily constant, so it is strictly compatible only
with the empty set of rules, and not with R1.

We prove R2 = {ab → ba} ∈ M(N, 2) \ M(R≥0, 1). A strictly compatible
2-dimensional interpretation is given by

[a] =

(

2 0
0 1

)

, [b] =

(

1 1
0 1

)

.

Any one-dimensional matrix interpretation [·] is commutative, so [ab] = [ba] and it
cannot be strictly compatible with R2.

We prove R3 = {aa → aba} ∈ M(N, 3) \ M(R≥0, 2). A strictly compatible
3-dimensional interpretation is

[a] =

1 1 0
0 0 1
0 0 1

 , [b] =

1 0 0
0 0 0
0 0 1

 .

Any two-dimensional interpretation [·] of the required shape has main diagonal
entries ≥ 1 and thus [aba] ≥ [aa], contradicting strict compatibility with R3.

Weighted Automata Define a Hierarchy of Terminating String . . . 305

If the automata under consideration have only one state, the weight domain is
not really important, and the “step hierarchy” collapses.

Lemma 5. M(R≥0, 1) ⊆ M(N, 1).

Proof. An interpretation [·] by a one-state R≥0-weighted automaton corresponds
to a multiplicative weight assignment (the weight of a word is the product of the
weight of its letters). Note that all weights are positive, by definition. Taking loga-
rithms, we get an additive assignment (the weight of a word is the sum of its letter
weights). The conditions of weak and strict compatibility give rise to a system of
linear equalities and inequalities between letter weights. The coefficients are natu-
ral numbers (namely, numbers of occurences of letters in sides of rules). If such a
system has any solution at all, then it also has a rational solution. Since the sys-
tem is moreover homogenous (the linear functions contain no absolute parts), any
rational solution can be scaled to give an integer solution. In fact the components
are naturals, since weights must be non-negative. From natural additive weights
we can get back to multiplicative weights by exponentiation. If we take any natural
base, then the weights are natural (they are powers of the base).

Example 8. For R = {aaa → bca}, S = {b → cac} we obtain the system of
inequalities

log[a] ≥ 0 ∧ log[b] ≥ 0 ∧ log[c] ≥ 0

∧2 log[a] − log[b] − log[c] > 0 ∧ − log[a] + log[b] − 2 log[c] ≥ 0.

One solution is log[a] = 4, log[b] = 6, log[c] = 1. We can take base 2 and obtain

multiplicative weights [a] = 16, [b] = 64, [c] = 2. This proves R ∪ S
M(N,1)

S.

As a corollary to Lemma 5, we obtain

Theorem 3. M(N, 1) = M(Q≥0, 1) = M(Alg≥0, 1) = M(R≥0, 1).

Now we consider the number of proof steps when using one-state automata. We
show that two-step proofs are not stronger than one-step proofs.

Lemma 6. M(N, 1)2 = M(N, 1)

Proof. We are given a two-step one-dimensional termination proof, and we need
to construct an equivalent one-step proof. Assume weight function f is strictly
compatible with R and weakly compatible with S ∪ T , and weight function g is
strictly compatible with S and weakly compatible with T . We construct a weight
function h that is strictly compatible with R ∪ S and weakly compatible with T ,
as follows. (In light of the previous, we write the weight functions additively.)

We will define
h(x) = f(x) · c + g(x),

for a suitable natural number c > 0. Such an interpretation h is weakly compatible
with T , since both f and g have this property. Interpretation h is strictly compatible
with S, since f is weakly compatible with S and g is strictly compatible with S.

306 Andreas Gebhardt and Johannes Waldmann

We put
c = 1 + sup{max(0, g(r) − g(l)) | (l → r) ∈ R}

This is one plus the maximal increase of g weights, for R rules.
It remains to check that h is strictly compatible with R. If u →R v, then

f(u) − f(v) ≥ 1 by strict compatibility (and using that weights are natural), and
g(u) − g(v) ≥ −c + 1 by definition of c. By definition of h we get h(u) − h(v) ≥
c + (−c + 1) = 1, and this proves the claim.

Example 9. We have {a2 → b3, b5 → a3}
M(N,1)

{b5 → a3} by the interpretation

f : a 7→ 5, b 7→ 3; and {b5 → a3}
M(N,1)

∅ by g : a 7→ 0, b 7→ 1. Since g(a2) =

0, g(b3) = 3, we put c = 4 and get {a2 → b3, b5 → a3}
M(N,1)

∅ by h : a 7→ 20, b 7→
13.

As a corollary to Lemma 6, we obtain

Theorem 4. M(N, 1)∗ = M(N, 1)

7 Choice of Weight Domain

We compare the power of matrix interpretations w.r.t. the weight domain.
We give an example (R ∪ S, S) ∈ M(Q≥0, 3)2 \ M(N)∗, that is, with a two-step

termination proof of rational-weighted automata of size 3, but no natural-weighted
termination proof of any size and number of steps.

The rewriting systems are

R = {baa → abc, ca → ac, cb → ba}, S = {ǫ → b}.

Lemma 7. (R ∪ S, S) ∈ M(Q≥0, 3) ◦ M(N, 1).

Proof. We use the following interpretation

[a] =

1 1 0
0 5

2 6
0 0 1

 , [b] =

1 0 0
0 1

2 0
0 0 1

 , [c] =

1 2 0
0 5

2
7
2

0 0 1

 .

giving these interpretations for the rules:

[baa] =

1 7
2 6

0 25
8

21
2

0 0 1

 [abc] =

1 13
4

7
4

0 25
8

83
8

0 0 1

[ca] =

1 6 12
0 25

4
37
2

0 0 1

 [ac] =

1 9
2

7
2

0 25
4

59
4

0 0 1

[cb] =

1 1 0
0 5

4
7
2

0 0 1

 [ba] =

1 1 0
0 5

4 3
0 0 1

Weighted Automata Define a Hierarchy of Terminating String . . . 307

This proves R ∪ S
M(Q≥0,3)

{cb → ba, ǫ → b}.
By another interpretation [a] = [b] = 1, [c] = 2 we get

{cb → ba, ǫ → b}
M(N,1)

{ǫ → b}.

Lemma 8. There is no T ⊂ R ∪ S such that (R ∪ S, T) ∈ M(N).

Proof. Assume there is a matrix interpretation of any size (an N-weighted automa-
ton with any number of states) that is weakly compatible with R ∪ S and strictly
compatible with one of the rules from R. (It cannot be strictly compatible with S
since S is non-terminating.)

We assume the automaton is reduced. All edges labelled by b are unit loops:
they go from some state q to q and have weight one. The reason is that weak com-
patibility with S requires [ǫ] ≥ [b], but [ǫ] is the unit matrix, for any interpretation
[·].

The plan of the proof is now: we show that the interpretation of b is indeed the
unit matrix (each state has a b loop), and then we derive a contradiction from that.

Consider the subset A of states that are reachable from the initial state i of the
automaton by a edges. (Here and in the following, when we speak of an edge, then
we mean that it has a non-zero weight.)

We claim that state q in A is also reachable from i by c edges, and has a b loop.
The proof is by induction on the distance to i. Assume the transition p

a
→ q has

weight > 0, and the claim holds true for p. Then we have a path p
b
→ p

a
→ q.

By weak compatibility with rule cb → ba, there must be a path p
cb
→ q. Since b

transitions are loops, this can only take the form of p
c
→ q

b
→ q.

Every state r reachable from i by any mixture of a and c steps is also in A
(that is, reachable by a steps alone): assume by induction that there is a transition

q
c
→ r and the claim holds true for q. Then q is in A, so there is a transition p

a
→ q,

thus a path p
a
→ q

b
→ q

c
→ r. By weak compatibility with baa → abc, there must

be a path p
baa
→ r. Since a b edge is a loop, there is some q′ such that the path is

p
b
→ p

a
→ q′

a
→ r. This shows that r is in A, since it is reachable from p ∈ A by a

steps.
The final state f does also belong to A: since the interpretation was assumed

to be strictly compatible with some rule (l → r) ∈ R, there must be a path i
l
→ f .

Since b steps (loops) are irrelevant for reachability, the claim follows.
Since the automaton was reduced, we have shown that each state belongs to A,

thus each state has a b loop. This implies that the interpretation of letter b is the
unit matrix. Now we replace b by ǫ in R, obtaining R′ = {aa → ac, ca → ac, c → a}.
We claim that the automaton is weakly compatible with R′ and strictly compatible
with at least one rule from R′. This holds true since [baa] = [aa] etc., and the
automaton was assumed to be weakly compatible with R and strictly compatible
with at least one rule from R.

308 Andreas Gebhardt and Johannes Waldmann

On the other hand, there is a looping R′-derivation

aaa → aca → aac → aaa → . . .

that uses each rule of R′ infinitely often. This contradicts the fact that the au-
tomaton is strictly compatible with at least one rule of R′, since this rule must be
relatively terminating w.r.t. the others.

In all, this proves that the interpretation (automaton) does not exist.

As a corollary to Lemma 7 and Lemma 8, we get

Theorem 5. M(Q≥0, 3)2 \ M(N)∗ is non-empty.

8 Number of Proof Steps

We first recall an example that shows that two-step proofs (even of dimension two)
are more powerful than one-step proofs (of any dimension). Then we generalize,
and show that the “step hierarchy” is infinite. The underlying reason is derivational
complexity. The following is a basic fact of linear algebra:

Lemma 9. Let A be any finite set of square matrices of identical shape. The
coefficients in a product of any k matrices from A are bounded by an exponential
function of k.

This will be used in the following form:

Corollary 2. For disjoint rewriting systems R and S: if there is a family of R∪S-
derivations

d1 : w1,1 → . . . → w1,n1
, d2 : w2,1 → . . . → w2,n2

, . . .

such that the number of R steps in dk is not bounded by an exponential function of
|wk,1|, then (R ∪ S, S) /∈ M(R≥0).

Proof. Assume to the contrary that there is some (i, f)-pointed automaton A with
the given properties: strictly compatible with R and weakly compatible with S.
Then u →R v implies µ(i, u, f) > µ(i, v, f), and u →S v implies µ(i, u, f) ≥
µ(i, v, f), So the number of R steps in the derivation starting in wk,1 is bounded
by µ(i, wk,1, f), which is an exponential function by Lemma 9, contradicting the
assumption.

Lemma 10. There is R ∈ M(N, 2)2 \ M(R≥0).

Proof. The following example is already presented in [13]. Let R = {ab → baa, cb →
bbc}. There are derivations (for each k ≥ 0):

akb →∗ ba2k, abk →∗ bka2k

cbk →∗ b2kc, ckb →∗ b2k

ck

ackb →∗ ab2k

ck →∗ b2k

a22k

ck

Weighted Automata Define a Hierarchy of Terminating String . . . 309

The resulting string has length 22k

, thus the derivation also took this number of
steps, since each step extends the length by one.

By Lemma 9, there can be no matrix interpretation that is strictly compatible
with both rules of R.

On the other hand we have R ∈ M(N, 2)2 by Example 6.

We modify, and generalize this example. For any n ≥ 1, define a rewriting
system over alphabet Σn = {1, . . . , n} by

Rn = {i(i − 1) → (i − 1)2i | 2 ≤ i ≤ n} ∪ {(i − 1) → (i − 2) | 3 ≤ i ≤ n}.

For n ≥ 2, this system has 2n − 3 rules. Note that R1 is empty.

Example 10. R3 = {32 → 223, 21 → 112, 2 → 1}.

Lemma 11. For each i and k, there is a Rn-derivation from ik(i−1) to some word

containing (i−1)2
k−1

(i−2) as a factor and using each of the rules i(i−1) → (i−1)2i
and (i − 1) → (i − 2) at least 2k−1 times.

Proof. For each l, we have i(i − 1)l →l (i − 1)2li, and by iteration,

ik(i − 1) →2k+1−1 (i − 1)2
k

ik.

Now we apply rule (i − 1) → (i − 2) for 2k−1 times to get

(i − 1)2
k−1

(i − 2)2
k−1

ik.

Using Lemma 11 repeatedly, we get

Lemma 12. For each i and k, there is a Rn-derivation from ik(i − 1) using at
least exp(exp(k)) steps of each rule j(j − 1) → (j − 1)2j and (j − 1) → (j − 2), for
j < i.

Lemma 13. If a matrix interpretation is weakly compatible with Rn and strictly
compatible with some subset S ⊆ Rn, then Rn−1 ∩ S = ∅.

Proof. By Lemma 12, there is a family of derivations that uses all rules in Rn−1

more than exponentially often. By Corollary 2, the claim follows.

Lemma 14. Rn+2 /∈ M(R≥0)
n.

Proof. R2 /∈ M(R≥0)
0 since R2 is non-empty. By Lemma 13, if Rn+1

M(R≥0)
R′,

then Rn ⊆ R′. Then the claim follows by induction.

Lemma 15. Rn+1 ∈ M(N, 2)n.

310 Andreas Gebhardt and Johannes Waldmann

Proof. R1 ∈ M(R≥0, 2)0 since R1 is empty. The following interpretation

[n] =

(

3 0
0 1

)

, [n − 1] =

(

1 1
0 1

)

, for j ≤ n − 2 : [j] =

(

1 0
0 1

)

,

shows Rn
M(N,2)

Rn−1. Then the claim follows by induction.

We obtain as a corollary:

Theorem 6. Each inclusion M(R≥0)
s ⊂ M(R≥0)

s+1 is strict. The “proof length
hierarchy” (M(R≥0)

s)s=1,2,... is infinite.

9 Discussion

Summary. Termination proofs by weighted (word and tree) automata are being
investigated only since 2006. (resp. 2003, if we include the Match Bounds method,
which later turned out to be related to the Min/Max semiring.) The focus of
investigation mainly was the construction of automata, with the goal of actually
implementing and running the algorithms. This has been achieved rather success-
fully: the various “matrix methods” play a decisive role in the regular Termination
Competitions.

With the present paper, we start a systematic investigation into the expressive-
ness of these methods as proof systems.

To this end, we have defined a two-dimensional hierarchy M(W,d)s for termi-
nation proofs for string rewriting via weighted word automata, and we proved that
the hierarchy is infinite in both directions.

Still, we have no exact information on which levels are actually inhabited (notice
the “gap” from d to d′ in Lemma 4), and which levels (if any) are decidable. These
questions remain as challenging open problems. Other extensions are at hand, and
we list a few.

Decidability. As noted in the proof of Lemma 5, existence of a one-dimensional
interpretation is equivalent to the feasibility of a system of linear inequalities.
Therefore, M(R≥0, 1) is decidable.

For larger dimensions, the weak and strong compatibility conditions give rise
to a system of inequalities between polynomials, where the unknowns are the ma-
trix entries (the weights of the automaton transitions). Then we can use Tarski’s
decision method [16], and obtain that for each d, M(R≥0, d) is decidable.

In fact if the system of polynomial (in)equalities has a solution, then it also has
a solution in algebraic numbers. So we don’t really need real numbers: for each d,
M(Alg≥0, d) = M(R≥0, d).

Except for these immediate observations, we have no information (and no intu-
ition) on decidability of any M(W,d).

Weighted Automata Define a Hierarchy of Terminating String . . . 311

Non-strict semirings. One can use semirings with non-strict addition for ter-
mination, e.g. the max/plus semiring, or the max/min semiring [17]. Again, a cor-
responding hierarchy can be defined but it needs different methods than presented
here. If we try the construction of Section 5, using a suitable polynomial identity
∑

[li] =
∑

[ri] in the arctic semiring, we can no longer infer from ∀i : [li] ≥ [ri]
that ∀i : [li] = [ri], since arctic addition is not strictly monotonic in its arguments.
For the proof step hierarchy we cannot use the methods of Section 8, because of
the following: Arctic interpretations give a linear bound on derivational complex-
ity, and by the reasoning in Lemma 6, even a combination of such interpretations
might not achieve more than linear derivation lenghts. So, the “arctic termination
hierarchy” is a subject of further study.

Term rewriting. The method of interpretation via weighted automata has been
generalized to term rewriting [6]. The definition of our hierarchy can be generalized
as well. Still we note that matrix interpretations for term rewriting use a rather
restricted form of weighted tree automata.

Parallel composition of proofs. Our hierarchy uses the concept of combining
termination proofs sequentially. There are methods of proving termination that cor-
respond to a parallel composition: after the Dependency Pairs transformation [1],
the resulting relative termination problem can be decomposed into several inde-
pendent sub-problems, corresponding to the strictly connected components of the
dependency graph [12]. In all, a termination proof thus gets a tree structure. While
we presently compare proof sequences by length, proof trees should be compared
structurally, e.g. with respect to embedding.

References

[1] Arts, Thomas and Giesl, Jürgen. Termination of term rewriting using depen-
dency pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

[2] Berstel, Jean and Reutenauer, Christophe. Noncommutative Rational Series
With Applications. http://www-igm.univ-mlv.fr/~berstel/LivreSeries/
LivreSeries.html, 2009.

[3] Book, Ronald V and Otto, Friedrich. String Rewriting Systems. Springer,
1993.

[4] Drensky, Vesselin and Formanek, Edward. Polynomial Identity Rings.
Birkhäuser, 2004.

[5] Droste, Manfred, Kuich, Werner, and Vogler, Heiko, editors. Handbook of
Weighted Automata. Springer, 2009. in preparation.

[6] Endrullis, Jörg, Waldmann, Johannes, and Zantema, Hans. Matrix interpre-
tations for proving termination of term rewriting. In Furbach, Ulrich and

312 Andreas Gebhardt and Johannes Waldmann

Shankar, Natarajan, editors, IJCAR, volume 4130 of Lecture Notes in Com-
puter Science, pages 574–588. Springer, 2006.

[7] Fuchs, Laszlo. Partially Ordered Algebraic Systems. Addison-Wesley, 1962.

[8] Gebhardt, Andreas, Hofbauer, Dieter, and Waldmann, Johannes. Matrix evo-
lutions. In Hofbauer, Dieter and Serebrenik, Alexander, editors, Proc. Work-
shop on Termination, Paris, 2007.

[9] Gebhardt, Andreas and Waldmann, Johannes. Weighted automata define a
hierarchy of terminating string rewriting systems. In Droste, Manfred and
Vogler, Heiko, editors, Proc. Weighted Automata Theory and Applications,
Dresden, pages 34–35, 2008.

[10] Geser, Alfons. Relative termination. Dissertation, Fakultät für Mathematik
und Informatik, Universität Passau, Germany, 1990. 105 pages. Also available
as: Report 91-03, Ulmer Informatik-Berichte, Universität Ulm, 1991.

[11] Golan, Jonathan S. Semirings and their Applications. Kluwer, 1999.

[12] Hirokawa, Nao and Middeldorp, Aart. Dependency pairs revisited. In van
Oostrom, Vincent, editor, RTA, volume 3091 of Lecture Notes in Computer
Science, pages 249–268. Springer, 2004.

[13] Hofbauer, Dieter and Waldmann, Johannes. Termination of string rewriting
with matrix interpretations. In Pfenning, Frank, editor, RTA, volume 4098 of
Lecture Notes in Computer Science, pages 328–342. Springer, 2006.

[14] Kanel-Belov, Alexei and Rowen, Louis Halle. Computational Aspects of Poly-
nomial Identities. AK Peters, 2005.

[15] Kuich, Werner. Semirings and formal power series. In Handbook of Formal
Languages, volume 1, pages 609–677. Springer, 1997.

[16] Tarski, Alfred. A decision method for elementary algebra and geometry.
Manuscript. Santa Monica, CA: RAND Corp., 1948.

[17] Waldmann, Johannes. Weighted automata for proving termination of string
rewriting. Journal of Automata, Languages and Combinatorics, 12(4):545–570,
2007.

[18] Zantema, Hans. Termination. In Terese, editor, Term Rewriting Systems,
pages 181–259. Cambridge University Press, 2003.

Received 1st August 2008

