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Max/Plus Tree Automata

for Termination of Term Rewriting

Adam Koprowski∗ and Johannes Waldmann†

Abstract

We use weighted tree automata as certificates for termination of term
rewriting systems. The weights are taken from the arctic semiring: natural
numbers extended with −∞, with the operations “max” and “plus”. In order
to find and validate these certificates automatically, we restrict their transition
functions to be representable by matrix operations in the semiring. The
resulting class of weighted tree automata is called path-separated.

This extends the matrix method for term rewriting and the arctic ma-
trix method for string rewriting. In combination with the dependency pair
method, this allows for some conceptually simple termination proofs in cases
where only much more involved proofs were known before. We further gener-
alize to arctic numbers “below zero”: integers extended with −∞. This allows
to treat some termination problems with symbols that require a predecessor
semantics.

Correctness of this approach has been formally verified in the Coq proof
assistant and the formalization has been contributed to the CoLoR library of
certified termination techniques. This allows formal verification of termina-
tion proofs using the arctic matrix method in combination with the depen-
dency pair transformation. This contribution brought a substantial perfor-
mance gain in the certified category of the 2008 edition of the termination
competition.

The method has been implemented by leading termination provers. We
report on experiments with its implementation in one such tool, Matchbox,
developed by the second author.

We also show that our method can simulate a previous method of quasi-
periodic interpretations, if restricted to interpretations of slope one on unary
signatures.
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1 Introduction

One method of proving termination is interpretation into a well-founded algebra.
Polynomial interpretations (over the naturals) are a well-known example of this
approach. Another example is the recent development of the matrix method [22, 13]
that uses linear interpretations over vectors of naturals, or equivalently, N-weighted
automata. In [38, 37] one of the authors extended this method (for string rewriting)
to arctic automata, i.e., on the max/plus semiring on {−∞}∪N. Its implementation
in the termination prover Matchbox [36] contributed to this prover winning the
string rewriting division of the 2007 termination competition [31, 1].

The first contribution of the present work is a generalization of arctic termi-
nation to term rewriting. We use interpretations given by functions of the form
(~x1, . . . , ~xn) 7→ M1 · ~x1 + . . . + Mn · ~xn + ~c. Here, ~xi are (column) vector vari-
ables, ~c is a vector and M1, . . . ,Mn are square matrices, where all entries are arctic
numbers, and operations are understood in the arctic semiring.

Functions of this shape compute the transition function of a weighted tree au-
tomaton [10, 9]. The vectors correspond to assignments from states to weights.

Since the max operation is not strictly monotone in single arguments, we obtain
monotone interpretations only for the case when all function symbols are at most
unary, i.e., string rewriting. For symbols of higher arity, arctic interpretations
are weakly monotone. These cannot prove termination, but only top termination,
where rewriting steps are only applied at the root of terms. This is a restriction
but it fits with the framework of the dependency pair method [4] that transforms
a termination problem to a top termination problem.

The second contribution is a generalization from arctic naturals to arctic in-
tegers, i.e., {−∞} ∪ Z. Arctic integers allow for example to interpret function
symbols by the predecessor function and this matches the “intrinsic” semantics
of some termination problems. There is previous work on polynomial interpreta-
tions with negative coefficients [19, 20], where the interpretation for predecessor
is also expressible using ad-hoc max operations. Using arctic integers, we obtain
verified termination proofs for 10 of the 24 rewrite systems Beerendonk/* from the
Termination Problem Database [2] (TPDB), simulating imperative computations.
Previously, they could only be handled by the method of Bounded Increase [17]
and polynomial interpretations with rational coefficients [30].

The third contribution is that we can express quasi-periodic interpretations [39]
of slope one, another powerful method for proving termination of rewriting, as an
instance of arctic interpretations for unary signatures.

The next contribution is the fact that the correctness of this method for proving
top termination has been formally verified with the proof assistant Coq [34]. This
extends previous work [27] and is now part of the CoLoR project [7] that gathers
formalizations of termination techniques and employs them to certify proofs found
by tools for automatic termination proving. This contribution was crucial in en-
abling CoLoR to win against the competing certification back-end, A3PAT [8], in
the termination competition of 2008 [1].
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A method to search for arctic interpretations is implemented for the termination
prover Matchbox. It works by transformation to a boolean satisfiability problem
and application of a state-of-the-art SAT solver (in this case, Minisat [11]). For a
number of problems Matchbox produced certified termination proofs, where only
un-certified proofs were available before. Recently the arctic interpretations method
was also implemented in AProVE [16] and TTT2 [28].

The paper is organized as follows. We present notation and basic facts on rewrit-
ing in Section 2 and give an introduction to proving termination of rewriting using
the monotone algebra framework in Section 3. Then we give preliminaries on the
arctic semiring in Section 4, and we relate the monotone algebra approach to the
concept of weighted tree automata in Section 5. We present arctic interpretations
for termination in Section 6, for top termination in Section 7 and the generalization
to arctic integers in Section 8. In Section 9 we show that quasi-periodic interpreta-
tions of slope one for proving termination of string rewriting [39] are a special case
of arctic matrix interpretations. We report on the formal verification in Section 10
and on performance of our implementation in Section 11. We present some discus-
sion of the method, its limitations and related work in Section 12 and we conclude
in Section 13.

Preliminary versions of the results from this paper have been presented at the
Workshop on Termination [37], at the Workshop on Weighted Automata [26], and
at the Conference on Rewriting Techniques and Applications [25]. We thank the
anonymous referees for their comments.

2 Term Rewriting

In this section we shortly introduce the basic notions on term rewriting. For more
details we refer to [5].

Let Σ be a signature, that is, a set of operation symbols each having a fixed
arity in N. For a set of variable symbols V, disjoint from Σ, let T (Σ,V) be the set
of terms over Σ and V, that is, the smallest set satisfying

• x ∈ T (Σ,V) for all x ∈ V, and

• if the arity of f ∈ Σ is n and ti ∈ T (Σ,V) for i = 1, . . . , n, then f(t1, . . . , tn) ∈
T (Σ,V).

Terms are identified with finitely branching labeled trees. We denote a root of a
term t by root(t) and root(f(t1, . . . , tn)) = f . By E we denote the sub-term relation
on terms and we have t E u if t is a sub-tree of u.

A term rewriting system (TRS) R over Σ,V is a set of pairs (ℓ, r) ∈ T (Σ,V) ×
T (Σ,V), for which ℓ 6∈ V and all variables in r occur in ℓ. Pairs (ℓ, r) are called
rewrite rules and are usually written as ℓ → r.

A TRS with all functions having arity one is called a string rewriting system
(SRS). For SRSs it is customary to write terms as strings, so a1(a2(. . . (an(x)) . . .))
becomes a1a2 · · · an and x becomes ǫ.
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For a substitution σ : V → T (Σ,V) and a term t the application of σ to t,
denoted by tσ, is a term defined inductively as:

• xσ = σ(x) for all x ∈ V, and

• f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

For a TRS R the top rewrite relation
top
→R on T (Σ,V) is defined by t

top
→R u if

and only if there is a rewrite rule ℓ → r ∈ R and a substitution σ : V → T (Σ,V)
such that t = ℓσ and u = rσ. The rewrite relation →R is defined to be the smallest
relation satisfying

• if t
top
→R u then t →R u, and

• if ti →R ui and tj = uj for j 6= i, then f(t1, . . . , tn) →R f(u1, . . . , un) for
every f ∈ Σ of arity n.

A relation → is terminating if it does not admit infinite descending chains
t0 → t1 → . . ., denoted as SN(→). For relations →1,→2, we define →1 / →2 by
(→1) · (→2)

∗. If SN(→1 / →2), we say that →1 is terminating relative to →2.
When given as arguments to SN we will often identify TRSs with the rewrite

relations generated by them and hence abbreviate
top
→R by Rtop and →R by R.

Now we will shortly introduce the dependency pair method [4] — a powerful
approach for proving termination of rewriting, used by most of the termination
provers.

Definition 2.1. [Dependency pairs] Let R be a TRS over a signature Σ. The
set of defined symbols is defined as DR = {root(l) | l → r ∈ R}. We extend a
signature Σ to the signature Σ♯ by adding symbols f ♯ for every symbol f ∈ DR. If
t ∈ T (Σ,V) with root(t) ∈ DR then t♯ denotes the term that is obtained from t by
replacing its root symbol with root(t)♯.

If l → r ∈ R and t E r with root(t) ∈ DR then the rule l♯ → t♯ is a dependency
pair of R. The set of all dependency pairs of R is denoted by DP(R). ⋄

The main theorem underlying the dependency pair method is the following.

Theorem 2.2 ([4]). Let R be a TRS. SN(R) iff SN(DP(R)top/R).

In this paper we will consider problems of termination of rewrite relations gen-
erated by some term rewriting systems. Three types of problems will be of interest:

• Full termination: given a TRS R, is it terminating, i.e., does SN(R) hold?

• Relative termination: given two TRSs R,S, does R terminate relative to S,
i.e., does SN(R/S) hold?

• Relative top termination: given two TRSs R,S does R terminate relative to
S if we allow only top reductions in R, i.e., does SN(Rtop/S) hold?



Linear Max/Plus Tree Automata 361

Note that termination is a special case of relative termination as SN(R) ⇐⇒
SN(R/ ∅), hence we will present results for relative termination only as they are
immediately applicable for the full termination case. Relative top termination
is of special interest due to its close relation with the dependency pair method,
established in Theorem 2.2.

We will illustrate some term rewriting notions on an example.

Example 2.3. Consider the following three rules TRS R, AG01/#3.41 from the
TPDB [2], over the signature Σ = {0,p, s, fac, times}:

p(s(x)) → x

fac(0) → s(0)

fac(s(x)) → times(s(x), fac(p(s(x))))

This TRS represents computation of the factorial function (without the rules for
addition and multiplication) with natural numbers represented with zero (0), suc-
cessor (s) and predecessor (p) and the factorial function (fac) expressed using mul-
tiplication (times).

We have the following reduction sequence (with the redex at every step under-
lined):

fac(s(s(0)))
top
→R times(s(s(0)), fac(p(s(s(0))))) →R

times(s(s(0)), fac(s(0))) →R times(s(s(0)), times(s(0), fac(p(s(0))))) →R

times(s(s(0)), times(s(0), fac(0))) →R times(s(s(0)), times(s(0), s(0)))

calculating that factorial of two equals 2×(1×1). We also have two defined symbols,
DR = {p, fac}, extended signature Σ♯ = Σ ∪ {p♯, fac♯} and two dependency pairs:

fac♯(s(x)) → fac♯(p(s(x)))

fac♯(s(x)) → p♯(s(x))

We will prove termination of this example in the following section. ⊳

3 Monotone Algebras

We will now introduce the definitions and results of monotone algebras, following
the presentation of [13].

Definition 3.1. [Monotonicity] Let A be a non-empty set. An operation [f ] :
A × · · · × A → A is monotone with respect to a binary relation → on A if for all
a1, . . . , ai, a

′
i, . . . an ∈ A with ai → a′

i we have

[f ](a1, . . . , ai, . . . , an) → [f ](a1, . . . , a
′
i, . . . , an) ⋄

Definition 3.2. [Σ-algebra] A Σ-algebra, (A, {fA}f∈Σ) consists of a non-empty set
A together with a map [fA] : An → A for every f ∈ Σ, where n is the arity of f . ⋄
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Definition 3.3. [Weakly monotone Σ-algebra] Let R be a TRS over a signature
Σ. A well-founded weakly monotone Σ-algebra is a quadruple A = (A, {fA}f∈Σ, >,
&) such that:

• (A, {fA}f∈Σ) is a Σ-algebra,

• all algebra operations are weakly monotone, i.e., monotone with respect to
&,

• > is a well-founded relation on A, and

• relations & and > are compatible, that is: > · & ⊆ > or & · > ⊆ >.

An extended monotone Σ-algebra (A, {fA}f∈Σ, >,&) is a weakly monotone Σ-
algebra (A, {fA}f∈Σ, >,&) in which moreover for every f ∈ Σ the operation [f ] is
strictly monotone, i.e., monotone with respect to >. ⋄

Definition 3.4. For a weakly monotone Σ-algebra A = (A, {fA}f∈Σ, >,&) we
extend the order & on A to an order &α on terms, as

t &α u ⇐⇒ ∀α:V→A : [t]α & [u]α

> is extended to >α in a similar way. ⋄

Now we present a slight variant of the main theorem from [13], for proving
relative (top)-termination with monotone algebras:

Theorem 3.5. Let R,R′,S,S ′ be TRSs over a signature Σ.

(a) Let (A, [·], >,&) be an extended monotone algebra such that: [ℓ] &α [r] for
every rule ℓ → r ∈ R∪ S and [ℓ] >α [r] for every rule ℓ → r ∈ R′ ∪ S ′. Then
SN(R/S) implies SN(R∪R′/S ∪ S ′).

(b) Let (A, [·], >,&) be a weakly monotone algebra such that: [ℓ] &α [r] for every
rule ℓ → r ∈ R∪S and [ℓ] >α [r] for every rule ℓ → r ∈ R′. Then SN(Rtop/S)
implies SN(Rtop ∪R′

top/S).

We will illustrate the application of this theorem on a simple example using the
matrix interpretation method [13].

Example 3.6. Consider the TRS from Example 2.3. We will show how Theo-
rem 3.5a can be applied to this TRS in order to simplify the related termination
problem.

For that we first need to choose a suitable monotone algebra. For the domain
A we take vectors over N of length 2 with the following orders:

(u1, u2) & (v1, v2) ⇐⇒ u1 ≥ v1 ∧ u2 ≥ v2

(u1, u2) > (v1, v2) ⇐⇒ u1 > v1 ∧ u2 ≥ v2
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Compatibility of those orders and well-foundedness of > are immediate. For in-
terpretations we take linear functions over this domain, so an n-ary symbol f is
interpreted by:

[f(~x1, . . . , ~xn)] = M1~x1 + . . . + Mn~xn + ~c (1)

where ~x1, . . . , ~xn,~c ∈ N
2 and M1, . . . ,Mn ∈ N

2×2. So an interpretation of a symbol
of arity n is given by n square matrices M1, . . . ,Mn of size 2× 2 and one constant
vector ~c of dimension 2. Such interpretations are always weakly monotone. We want
to use Theorem 3.5a so we need an extended monotone algebra which requires strict
monotonicity. For that we need some restrictions and it is easy to see that it can
be guaranteed by requiring Mi[1, 1] > 0 for 1 ≤ i ≤ n.

Now our goal is to prove termination of the given TRS and we will do that by
applying Theorem 3.5a instantiated with the extended monotone algebra that we
just introduced. We recall that termination is a special case of relative termination
so we will apply this theorem with S = S ′ = ∅. We need to find interpretations
for all f ∈ Σ. Typically this is done automatically by dedicated tools — we will
address this issue in Section 11. One of such tools, TPA [24], applied on this TRS
generated the following interpretations:

[0] =

(
0
2

)

[fac(~x)] =

(
1 2
0 2

)

~x +

(
0
2

)

[p(~x)] =

(
1 0
1 0

)

~x [times(~x, ~y)] =

(
1 0
0 0

)

~x +

(
2 0
0 0

)

~y

[s(~x)] =

(
1 1
3 3

)

~x

Note that the lack of the constant vector ~c in some of the above interpretations
indicates that this constant is the zero vector (0, 0).

Let us compute interpretations of the left and right hand side of the second rule
fac(0) → s(0).

[fac(0)] =

(
1 2
0 2

)(
0
2

)

+

(
0
2

)

=

(
4
6

)

[s(0)] =

(
1 1
3 3

) (
0
2

)

=

(
2
6

)

So using our order on vectors we obtain [fac(0)] > [s(0)]. In a similar way
we compute interpretations for the remaining rules. Note that the fact that we
restricted ourselves to linear functions means that their composition is linear too
and hence all the interpretations that we obtain are of the same shape as in Equa-
tion (1).

[p(s(x))] =

(
1 0
1 0

) (
1 1
3 3

)

~x =

(
1 1
1 1

)

~x

[x] =

(
1 0
0 1

)

~x
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[times(s(x), fac(p(s(x))))] =

(
1 0
0 0

)

[s(x)] +

(
2 0
0 0

)

[fac(p(s(x)))] =

(
7 7
0 0

)

~x

[fac(s(x))] =

(
1 2
0 2

) (
1 1
3 3

)

~x +

(
0
2

)

=

(
7 7
6 6

)

~x +

(
0
2

)

For both of the rules it is easy to see that regardless of the assignment to the
vector ~x we always obtain that the interpretation of the left hand side is bigger or
equal than that of the right hand side of a rule.

All in all we apply Theorem 3.5a with

R = { p(s(x)) → x, fac(s(x)) → times(s(x), fac(p(s(x)))) }

R′ = { fac(0) → s(0) }

S = S ′ = ∅

This allows us to remove the second rule and conclude termination of the whole
system from termination of R only, which is easy to show, for instance, with the
standard method of polynomial interpretations in combination with the dependency
pair method. ⊳

4 The Arctic Semiring

A commutative semiring [18] consists of a carrier D, two designated elements
d0, d1 ∈ D and two binary operations ⊕,⊗ on D, called semiring addition and
semiring multiplication, respectively, such that both (D, d0,⊕) and (D, d1,⊗) are
commutative monoids and multiplication distributes over addition: ∀x,y,z∈D : x⊗
(y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z).

One example of a semiring are the natural numbers with the standard operations
⊕ = + and ⊗ = ∗. We will need the arctic semiring (also called the max/plus
algebra) [15] with carrier AN ≡ {−∞} ∪ N, where semiring addition is the max
operation with neutral element −∞ and semiring multiplication is the standard
plus operation with neutral element 0, so:

x ⊕ y = y if x = −∞, x ⊗ y = −∞ if x = −∞ or y = −∞,

x ⊕ y = x if y = −∞, x ⊗ y = x + y otherwise,

x ⊕ y = max(x, y) otherwise.

We also consider these operations for arctic numbers below zero (i.e., arctic inte-
gers), that is, on the carrier AZ ≡ {−∞} ∪ Z.

For any semiring D, we can consider the space of linear functions (square ma-
trices) on n-dimensional vectors over D. These functions (matrices) again form a
semiring (though a non-commutative one), and indeed we write ⊕ and ⊗ for its
operations as well.

A semiring is ordered [14] by ≥ if ≥ is a partial order compatible with the
operations: ∀x,y,z : x ≥ y =⇒ x⊕z ≥ y⊕z and ∀x,y,z : x ≥ y =⇒ x⊗z ≥ y⊗z.
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The standard semiring of natural numbers is ordered by the standard ≥ relation.
The semiring of arctic naturals and arctic integers is ordered by ≥, being the
reflexive closure of > defined as . . . > 1 > 0 > −1 > . . . > −∞. Note that standard
integers with standard operations form a semiring but it is not ordered in this sense,
as we have for instance 1 ≥ 0 but 1 ∗ (−1) = −1 6≥ 0 = 0 ∗ (−1).

We remark that ≥ is the “natural” ordering for the arctic semiring, in the
following sense: x ≥ y ⇐⇒ x = x ⊕ y. Since arctic addition is idempotent, some
properties of ≥ follow easily, like the one presented below.

Lemma 4.1. For arctic integers a1, a2, b1, b2, if a1 ≥ a2 ∧ b1 ≥ b2, then a1 ⊕ b1 ≥
a2 ⊕ b2 and a1 ⊗ b1 ≥ a2 ⊗ b2.

Arctic addition (i.e., the max operation) is not strictly monotone in single
arguments: we have, e.g., 5 > 3 but 5 ⊕ 6 = 6 6> 6 = 3 ⊕ 6. It is, however, “half
strict” in the following sense: a strict increase in both arguments simultaneously
gives a strict increase in the result, i.e., a1 > b1 and a2 > b2 implies a1⊕a2 > b1⊕b2.
There is one exception: arctic addition is obviously strict if one argument is arctic
zero, i.e., −∞. This is the motivation for introducing the following relation:

a ≫ b ⇐⇒ (a > b) ∨ (a = b = −∞)

Below we present some of its properties needed later:

Lemma 4.2. For arctic integers a, a1, a2, b1, b2,

1. if a1 ≫ a2 ∧ b1 ≫ b2, then a1 ⊕ b1 ≫ a2 ⊕ b2.

2. if a1 ≫ a2 ∧ b1 ≥ b2, then a1 ⊗ b1 ≫ a2 ⊗ b2.

3. if b1 ≫ b2, then a ⊗ b1 ≫ a ⊗ b2.

Proof. By simple case analysis (whether an element is −∞ or not) and some prop-
erties of addition and max operations over integers.

Note that properties 2 and 3 in the above lemma would not hold if we were to
replace ≫ with >.

An arctic natural number a ∈ AN is called finite if a 6= −∞. An arctic integer
a ∈ AZ is called positive if a ≥ 0 (that excludes −∞ and negative numbers).

Lemma 4.3. Let m,n ∈ AN and a, b ∈ AZ, then:

1. if m is finite and n arbitrary, then m ⊕ n is finite.

2. if a is positive and b arbitrary, then a ⊕ b is positive.

3. if m and n are finite, then m ⊗ n is finite.

Proof. Direct computation.
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By analogy to linear algebra over (N,+, ·), we consider sequences (vectors) and
rectangular arrays (matrices) of arctic numbers. Sequences A

d form a semimodule
over A, the elements of which we call arctic vectors. Operations in the semimodule
are ⊕ : A

d × A
d → A defined by component-wise addition and component-wise

multiplication by a scalar value ⊗ : A × A
d → A

d. Then, arctic matrices represent
linear functions from vectors to vectors: An arctic matrix M maps a (column)
vector ~x to a (column) vector M ⊗ ~x and this mapping is linear: M ⊗ (~x ⊕ ~y) =
M ⊗ ~x ⊕ M ⊗ ~y.

We can combine those linear functions (matrices) in the usual way, and we re-
use symbols ⊕ and ⊗ for matrix addition and matrix multiplication. Square arctic
matrices form a non-commutative semiring with these operations. E.g. the 3 × 3
identity matrix is





0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0





We will be interested in linear functions over arctic vectors of the following
shape:

Definition 4.4. Let A be an arctic domain (so either arctic naturals AN or arc-
tic integers AZ). An (n-ary) arctic linear function (over A) (with linear factors
M1, . . . ,Mn and an absolute part ~c) is a function of the following shape:

f(~x1, . . . , ~xn) = M1⊗~x1 ⊕ . . . ⊕ Mn⊗~xn ⊕ ~c

So an arctic linear function over column vectors ~x1, . . . , ~xn ∈ A
d is described by a

column vector ~c ∈ A
d and square matrices M1, . . . ,Mn ∈ A

d×d. ⋄

Note that for brevity from now on we will omit the semiring multiplication sign
⊗ and use the following notation for arctic linear functions:

f(~x1, . . . , ~xn) = M1~x1 ⊕ . . . ⊕ Mn~xn ⊕ ~c

Example 4.5. Consider a linear function:

f(~x, ~y) =

(
1 −∞
0 −∞

)

~x ⊕

(
−∞ −∞
0 1

)

~y ⊕

(
−∞
0

)

Evaluation of this function on some exemplary arguments yields:

f(

(
−∞

0

)

,

(
1

−∞

)

) =

(
1 −∞

0 −∞

) (
−∞

0

)

⊕

(
−∞ −∞

0 1

) (
1

−∞

)

⊕

(
−∞

0

)

=

(
−∞

1

)

⊳

5 Weighted Tree Automata

In this section we instantiate the monotone algebra framework with the initial
algebraic semantics of weighted tree automata of a certain shape. This allows to
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put the matrix method (Example 3.6) into perspective, and it also is the basis for
the generalization to arctic matrices (following sections).

A weighted tree automaton [10, 9] is a finite-state device that computes a map-
ping from trees over some signature into some semiring. This computational model
is obtained from classical (Boolean) automata by assigning weights to transitions.

Formally, a D-weighted tree automaton is a tuple A = (D,Q,Σ, δ, F ) where D
is a semiring, Q is a finite set of states, Σ is a ranked signature, δ is a transition
function that assigns to any k-ary symbol f ∈ Σk a function δf : Qk ×Q → D and
F is a mapping Q → D. The idea is that δf (q1, . . . , qk, q) gives the weight of the
transition from (q1, . . . , qk) to q, and F (q) gives the weight of the final state q.

We use the following tree automaton as an ongoing example for this section.
This example is related to the matrix interpretation shown in Example 3.6, in a
way that will be made precise later.

Example 5.1. For the signature Σ = {0/0,p /1, s /1, fac /1, times /2} (from Ex-
ample 2.3), a N-weighted tree automaton with states Q = {a, b, c} is given by:

(0) δ0(b) = 2, δ0(c) = 1,

(p) δp(a, a) = δp(a, b) = δp(c, c) = 1,

(s) δs(a, a) = δs(b, a) = 1, δs(a, b) = δs(b, b) = 3, δs(c, c) = 1,

(fac) δfac(a, a) = 1, δfac(b, a) = δfac(b, b) = δfac(c, b) = 2, δfac(c, c) = 1,

(times) δtimes(a, c, a) = 1, δtimes(c, b, a) = 2, δtimes(c, c, c) = 1,

F (a) = 1, and all other transitions have weight 0. ⊳

For any tree t = f(t1, . . . , tk) over Σ, and q ∈ Q, denote by Aq(t) the weight
that A assigns to t in state q:

Aq(t) =
∑

{δf (q1, . . . , qk, q) · Aq1
(t1) · . . . · Aqk

(tk) | q1, . . . , qk, q ∈ Q}

and the total weight A(t) is
∑

{F (q) · Aq(t) | q ∈ Q}.

Example 5.2. (continued) We find Aa(0) = 0, Ab(0) = 2, Ac(0) = 1, since the
symbol 0 is nullary and thus Aq(0) = δ0(q). Then, for example, Ab(s(0)) = δs(a, b) ·
Aa(0) + δs(b, b) · Ab(0) + δs(c, b) · Ac(0) = 3 · 0 + 3 · 2 + 0 · 1 = 6. ⊳

This is called initial algebra semantics of a tree automaton. Indeed, the au-
tomaton is a Σ-algebra where the carrier set consists of weight vectors, indexed by
states. Let V = (Q → D) be the set of such vectors. Then for each k-ary symbol f ,
the transition δf computes a function [δf ] : V k → V by [δf ](v1, . . . , vk) = w where

wq =
∑

{δf (q1, . . . , qk, q) · v1,q1
· . . . · vk,qk

| q1, . . . , qk ∈ Q}.

Example 5.3. (continued) For the unary fac symbol, we have the unary function

[fac] : V 1 → V : (v1,a, v1,b, v1,c) 7→ (v1,a + 2v1,b, 2v1,b + 2v1,c, v1,c).

Since 0 is a nullary symbol, its interpretation [0] is of type V 0 → V , that is, it takes
an empty argument list and produces a vector [0] = (0, 2, 1). ⊳
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By distributivity in the semiring, each function [δf ] is multilinear (linear in each
argument):

[δf ](. . . , vi−1, vi + v′
i, vi+1, . . .)

= [δf ](. . . , vi−1, vi, vi+1, . . .) + [δf ](. . . , vi−1, v
′
i, vi+1, . . .).

For a given tree automaton A over Σ, the collection {[δf ] | f ∈ Σ} constitutes
an algebra with carrier V . Therefore, interpretations of function symbols [δf ] can
be lifted to interpretations of terms.

Example 5.4. (continued) In the algebra of the automaton:

[fac(0)] = (0 + 2 · 2, 2 · 2 + 2 · 1, 1) = (4, 6, 1). ⊳

It is convenient to think of elements of V as column vectors, and F as a row
vector. Then A(t) is the dot product F · (A1(t), . . . , A|Q|(t))

T .

Example 5.5. (continued) A(fac(0)) = (1, 0, 0) · (4, 6, 1)T = 4. ⊳

With these preparations, we can apply the monotone algebra approach for prov-
ing termination of term rewriting, where the algebra is given by a finite weighted
tree automaton.

In order to obtain a method that can be automated easily, we restrict the shape
of the automata transitions, so that the interpretation of each function symbol is a
sum of linear functions in single arguments, and an absolute part, cf. Equation 1.

Definition 5.6. A weighted tree automaton A = (D,Q,Σ, δ, F ) is called path-
separated with initial state i ∈ Q if for each k-ary transition with non-zero weight
we have that

• at most one of the initial k arguments is 6= i:

δf (q1, . . . , qk, q) 6= 0 ⇒ ∃≤11 ≤ j ≤ k : qj 6= i.

• if the target is i, then all sources are i, and the weight is unit:

δf (q1, . . . , qk, i) = (if q1 = . . . = qk = i then 1 else 0). ⋄

Example 5.7. (continued) The given automaton is path-separated, with i = c as
the initial state. ⊳

Proposition 5.8. The following conditions are equivalent for a weighted tree au-
tomaton A = (D,Q,Σ, δ, F ):

• A is path-separated with initial state i,

• each action of [δf ] has the following form:

[δf ](~v1, . . . , ~vk) 7→ M1 · ~v1 + . . . + Mk · ~vk + ~a,

where Mj are square matrices of dimension |Q| × |Q|, with all entries in row
i and in column i are zero; and ~a is a vector, with entry one at position i.
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Proof. Let A be path-separated with an initial state i. For any f ∈ Σk, we
have ~a[q] = δf (i, . . . , i, q), if none of the first k arguments is 6= i, and Mj [q, p] =
δf (i, . . . , i, p, i, . . . , i, q) where p is the single non-i state among the first k arguments.
By the path-separation restriction, these cases cover all possible transitions.

Example 5.9. (continued) [fac](~v) =





1 2 0
0 2 0
0 0 0



~v +





0
2
1



 . ⊳

Under these conditions, for each t we have Ai(t) = 1. So we drop the entry at
i in ~a, and also each row i and each column i in Mj . Then by Proposition 5.8, a
path-separated tree automaton corresponds to a matrix interpretation of shape (1)
and vice-versa.

Example 5.10. (continued) [fac](~v) =

(
1 2
0 2

)

~v +

(
0
2

)

. ⊳

We call these tree automata path-separated because their semantics can be
computed as the sum of matrix products along all paths of the input, and the
values along different paths do not influence each other.

Here, a path is a sequence of function symbols with directions. Formally, for
any term t = f(t1, . . . , tk), we define

paths(t) = {f0} ∪ {fi ◦ p | 1 ≤ i ≤ k, p ∈ paths(ti)}.

This is a mapping from T (Σ) to nonempty sequences of pairs of symbols and
numbers, with a pair (f, i) denoted by fi; actually to a subset of PΣ = (Σ ×
N>0)

∗(Σ × {0}).

Example 5.11.

paths(times(0, fac(0))) = {times0, times1 ◦ 00, times2 ◦ fac0, times2 ◦ fac1 ◦ 00}. ⊳

For a path-separated tree automaton A = (D,Q,Σ, δ, F ) and each k-ary symbol
f , where δf is as in (1), define a mapping [·] from paths in PΣ to vectors by [f0] = ~c
and [fi ◦ p] = Mi · [p]. Then it follows from distributivity of addition (of vectors)
over multiplication (with matrices) that for each term t,

A(t) =
∑

{F · [p] | p ∈ paths(t)}.

This illustrates why we call these automata path-separated.
We briefly comment on the effect of the path-separation restriction. Consider

a signature with a binary symbol g. A matrix interpretation of dimension one
interprets g with a function (x1, x2) 7→ m1x1 + m2x2 + a. This corresponds to a
path-separated N-weighted automaton with just two states, one of which being the
initial state.

The general form of a transition function of a tree automaton with two states,
one of them initial, is (x1, x2) 7→ m12x1x2 + m1x1 + m2x2 + a. The “m12x1x2”
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component cannot be part of a path-separated tree automaton’s transition function.
We really lose expressiveness here, e.g., the tree automaton’s transition (x1, x2) 7→
x1x2 cannot be expressed by matrix interpretations, even with additional states,
since it grows faster (doubly exponential) than any matrix-representable function
(exponential).

On the other hand, if the signature contains no symbols of arity > 1, then each
tree automaton has an equivalent path-separated automaton (of size |Q|+ 1, since
in general we need to add the initial state).

6 Full Arctic Termination

In this section, we instantiate the monotone algebra approach for proving termina-
tion of rewriting by using algebras defined by path-separated arctic tree automata.

The algebra domain consists of vectors of arctic naturals, A
d
N
. Every f ∈ Σ will

be interpreted by an arctic linear function (Definition 4.4) and we will refer to such
interpretations as arctic Σ-interpretations.

We define orders on arctic vectors and matrices by taking a point-wise extension
of the orders ≫ and ≥ introduced in Section 4. We will use the same notation, i.e.,
≫ and ≥, for those lifted orders. Now we take the vector extension of ≫ and ≥ as,
respectively, the strict and non-strict order of the algebra. Note that they are com-
patible, i.e., ≫ · ≥ ⊆ ≫. However with this choice we do not get well-foundedness
of the strict order as −∞ ≫ −∞. Therefore we will restrict first components of
vectors to finite elements (i.e., elements different from −∞, as introduced before
Lemma 4.3). Effectively our algebra becomes (N × A

d−1
N

, {fA}f∈Σ,≫,≥).
We will consider arctic linear functions over the domain of our algebra, so we

must make sure that evaluation of those functions stays within the domain, i.e., that
the first vector component is finite. The following definition and lemma address
this issue.

Definition 6.1. An n-ary arctic linear function

f(~x1, . . . , ~xn) = M1~x1 ⊕ . . . ⊕ Mn~xn ⊕ ~c

over AN is called somewhere finite if:

• ~c [1] is finite, or

• Mi[1, 1] is finite for some 1 ≤ i ≤ n. ⋄

Lemma 6.2. Let f be an n-ary arctic linear function over AN, ~x1, . . . , ~xn ∈ N ×
A

d−1
N

and ~v = f(~x1, . . . , ~xn). If f is somewhere finite then ~v[1] is finite.

Proof.
f(~x1, . . . , ~xn)[1] = (M1~x1)[1] ⊕ . . . ⊕ (Mn~xn)[1] ⊕ ~c [1] (2)

Since f is somewhere finite we have:

• ~c [1] is finite, or
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• for some 1 ≤ i ≤ n, Mi[1, 1] is finite but then (Mi~xi)[1] = Mi[1, 1]~xi[1]⊕ . . .⊕
Mi[1, d]~xi[d], which is finite by Lemma 4.3, as Mi[1, 1] is finite.

In either case one of the summands in Equation 2 is finite, making the whole
expression finite by Lemma 4.3.

To apply the monotone algebra theorem, Theorem 3.5, we will need to compare
arctic linear functions, i.e., we will need some properties ensuring that, for arbitrary
arguments, one arctic function always gives a vector that is greater (or greater
equal) than the result of application of some other arctic functions to the same
arguments. This is addressed in the following lemma, which is the arctic counter-
part of the absolute positiveness criterion used for polynomial interpretations [23].

Definition 6.3. Let f, g be arctic linear functions over A:

f(~x1, . . . , ~xn) = M1~x1⊕ . . .⊕ Mn~xn⊕~c

g(~x1, . . . , ~xn) = N1~x1 ⊕ . . .⊕ Nn~xn ⊕ ~d

We will say that f is greater (resp. greater equal) than g, notation f ≫λ g (resp.
f ≥λ g) iff:

• c ≫ d (resp. c ≥ d) and

• ∀1≤i≤n : Mi ≫ Ni (resp. Mi ≥ Ni). ⋄

We will justify the above definition in Lemma 6.5, but first we need an auxiliary
result:

Lemma 6.4. Let M,N ∈ A
d×d and ~x, ~y ∈ A

d.

1. If M ≫ N and ~x ≥ ~y then M~x ≫ N~y.

2. If M ≥ N and ~x ≥ ~y then M~x ≥ N~y.

Proof. Immediate using Lemma 4.1 and the first two properties of Lemma 4.2.

Lemma 6.5. Let f, g be arctic linear functions over A and let ~x1, . . . , ~xn be arbi-
trary vectors.

1. If f ≫λ g then f(~x1, . . . , ~xn) ≫ g(~x1, . . . , ~xn).

2. If f ≥λ g then f(~x1, . . . , ~xn) ≥ g(~x1, . . . , ~xn).

Proof. We will prove only the first case — the other one is analogous.

f(~x1, . . . , ~xn) = M1~x1⊕ . . .⊕ Mn~xn⊕~c

g(~x1, . . . , ~xn) = N1~x1 ⊕ . . .⊕ Nn~xn ⊕ ~d

We have ~c ≫ ~d and ∀1≤i≤n : Mi ≫ Ni as f ≫λ g and hence Mi~xi ≫ Ni~xi by
Lemma 6.4. So every vector summand of the evaluation of f is related by ≫ with
a corresponding summand of g and we conclude by Lemma 4.1.
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Clearly arctic linear functions are weakly monotone (because so is the max
operation, i.e., arctic addition) and we establish this property in the following
lemma.

Lemma 6.6. Every arctic linear function f over A is monotone with respect to ≥.

Proof. Let xi ≥ x′
i. We have:

f(~x1, . . . , ~xi, . . . , ~xn) = M1~x1⊕. . . ⊕ Mi~xi ⊕ . . . ⊕ Mn~xn ⊕ ~c

f(~x1, . . . , ~x
′
i, . . . , ~xn) = M1~x1⊕. . . ⊕ Mi~x

′
i ⊕ . . . ⊕ Mn~xn ⊕ ~c

All the summands are equal except for the one corresponding to the i’th argument,
where we have Mi~xi ≥ Mi~x

′
i by Lemma 6.4 and we conclude

f(~x1, . . . , ~xi, . . . , ~xn) ≥ f(~x1, . . . , ~x
′
i, . . . , ~xn)

by Lemma 4.1.

However, to obtain an extended weakly monotone algebra, and prove full ter-
mination using it, we need strict monotonicity. As remarked in Section 4, arctic
addition is not strictly monotone. Hence functions introduced in Definition 4.4 are
strictly monotone only if the ⊕ operation is essentially redundant; for instance it is
immediately lost for functions of more than one argument. This essentially restricts
our method to unary rewriting [35]; a proper extension of string rewriting. As such,
it had been described in [37] and had been applied by Matchbox in the 2007 ter-
mination competition. The following theorem provides a termination criterion for
such systems. In the next section we will look at top termination problems, which
will allow us to lift this restriction and consider arbitrary TRSs.

Theorem 6.7. Let R,R′,S,S ′ be TRSs over a signature Σ and [·] be an arctic
Σ-interpretation over AN. If:

• every function symbol has arity at most 1,

• every constant a ∈ Σ is interpreted by [a] = ~c with ~c [1] finite,

• every unary symbol s ∈ Σ is interpreted by [s(~x)] = M⊗~x with M [1, 1] finite,

• [ℓ] ≥λ [r] for every rule ℓ → r ∈ R ∪ S,

• [ℓ] ≫λ [r] for every rule ℓ → r ∈ R′ ∪ S ′ and

• SN(R/S).

Then SN(R∪R′/S ∪ S ′).

Proof. By Theorem 3.5a. Note that, by Lemma 6.5, [ℓ] ≥λ [r] (resp. [ℓ] ≫λ [r])
implies [ℓ] ≥α [r] (resp. [ℓ] ≫α [r]). So we only need to show that (N×A

d−1
N

, [·],≫,
≥) is an extended monotone algebra. The order ≫ is well-founded on this domain
as with every decrease we get a decrease in the first component of the vector, which
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belongs to N. Arctic functions are always weakly monotone by Lemma 6.6 and it
is an easy observation that, due to the first three premises of this theorem, the
interpretations that we allow here are strictly monotone. Finally we stay within
the domain by Lemma 6.2 as the interpretation functions [f ] that we restrict to are
somewhere finite (again by the first three assumptions).

We now present an example illustrating this theorem.

Example 6.8. The relative termination problem SRS/Waldmann/r2 is

{c a c → ǫ, a c a → a4 / ǫ → c4}

In the 2007 termination competition, it had been solved by Jambox [12] via “self
labeling” and by Matchbox via essentially the following arctic proof.

We use the following arctic interpretation

[a](~x) =





0 0 −∞

0 0 −∞

1 1 0



 ~x [c](~x) =





0 −∞ −∞

−∞ −∞ 0
−∞ 0 −∞



 ~x

It is immediate that [c] is a permutation (it swaps the second and third compo-
nent of its argument vector), so [c]2 = [c]4 is the identity and we have [ǫ] = [c]4. A
short calculation shows that [a] is idempotent, so [a] = [a4]. We compute

[c a c](~x) =





0 −∞ 0
1 0 1
0 −∞ 0



 ~x [a c a](~x) =





1 1 0
1 1 0
2 2 1



 ~x [a4](~x) =





0 0 −∞

0 0 −∞

1 1 0



 ~x

therefore [c a c](~x) ≥λ [ǫ](~x) and [a c a](~x) ≫λ [a4](~x). Note also that all the top
left entries of matrices are finite. This allows us to remove the strict rule a c a → a4

using Theorem 6.7. The remaining strict rule can be removed by counting letters
a. ⊳

7 Arctic Top Termination

As explained earlier, there are no strictly monotone, linear arctic functions of more
than one argument. Therefore in this section we change our attention from full
termination to top termination problems, where only weak monotonicity is required.
This is not a very severe restriction as it fits with the widely used dependency pair
method that replaces a full termination problem with an equivalent top termination
problem, as remarked in Section 2.

The monotone algebra that we are going to use is the same as in Section 6,
i.e., (N × A

d−1
N

, {fA}f∈Σ,≫,≥). However now for proving top termination we will
employ the second part of Theorem 3.5, so we only need a monotone algebra,
instead of an extended monotone algebra. This allows us to consider arbitrary
TRSs, as without the requirement of strict monotonicity we can allow arctic linear
functions of more than one argument. The following theorem allows us to prove
top termination in this setting:
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Theorem 7.1. Let R,R′,S be TRSs over a signature Σ and [·] be an arctic Σ-
interpretation over AN. If:

• for each f ∈ Σ, [f ] is somewhere finite,

• [ℓ] ≥λ [r] for every rule ℓ → r ∈ R ∪ S,

• [ℓ] ≫λ [r] for every rule ℓ → r ∈ R′ and

• SN(Rtop/S).

Then SN(Rtop ∪R′
top/S).

Proof. By Theorem 3.5b. By the same argument as in Theorem 6.7, (N×A
d−1
N

, [·],
≫,≥) is a weakly monotone algebra. So we only need to show that the evalua-
tion stays within the algebra domain which follows from Lemma 6.2 and the first
assumption.

We will illustrate this theorem on an example now.

Example 7.2. Consider the rewriting system secret05/tpa2:

(1) f(s(x), y) → f(p(s(x) − y),p(y − s(x))) (3) p(s(x)) → x

(2) f(x, s(y)) → f(p(x − s(y)),p(s(y) − x)) (4) x − 0 → x

(5) s(x) − s(y) → x − y

It was solved in the 2007 competition by AProVE [16] using narrowing followed by
polynomial interpretations and by TTT2 [28] using polynomial interpretations with
negative constants. In 2008 both provers used arctic interpretations to solve this
problem.

After the dependency pair transformation, 9 dependency pairs can be removed
using polynomial interpretations leaving the essential two dependency pairs:

(1♯) f♯(s(x), y) → f♯(p(s(x) − y),p(y − s(x)))

(2♯) f♯(x, s(y)) → f♯(p(x − s(y)),p(s(y) − x))

So now, according to the dependency pair Theorem 2.2, we need to consider
the relative top termination problem SN(Rtop/S), where R = {(1♯), (2♯)} and
S = {(1), (2), (3), (4), (5)}. For that consider the following arctic interpretation

[f♯(~x, ~y)] =

(
−∞ −∞

−∞ −∞

)

~x ⊕

(
0 0

−∞ −∞

)

~y ⊕

(
0

−∞

)

[0] =

(
3
3

)

[~x − ~y] =

(
0 −∞

0 0

)

~x ⊕

(
−∞ −∞

0 0

)

~y ⊕

(
0
0

)

[p(~x)] =

(
0 −∞

0 −∞

)

~x ⊕

(
−∞

−∞

)

[f(~x, ~y)] =

(
0 0
0 −∞

)

~x ⊕

(
2 0
0 −∞

)

~y ⊕

(
0

−∞

)

[s(~x)] =

(
0 0
2 1

)

~x ⊕

(
0
2

)
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which is somewhere finite and removes the second dependency pair:

[f♯(x, s(y))] =

(
−∞ −∞
−∞ −∞

)

~x ⊕

(
2 1

−∞ −∞

)

~y ⊕

(
2

−∞

)

[f♯(p(x − s(y)),p(s(y) − x))] =

(
−∞ −∞
−∞ −∞

)

~x ⊕

(
0 0

−∞ −∞

)

~y ⊕

(
0

−∞

)

It is also weakly compatible with all the rules. The remaining dependency pair can
be removed by a standard matrix interpretation of dimension two. ⊳

8 . . . Below Zero

In this section we will boldly go below zero: we extend the domain of matrix and
vector coefficients from AN (arctic naturals) to AZ (arctic integers). This allows to
interpret some function symbols by the “predecessor” function x 7→ x − 1, and so
represents their “intrinsic” semantics. This is the same motivation as the one for
allowing polynomial interpretations with negative coefficients [19, 20].

We need to be careful though, as the relation ≫ on vectors of arctic integers
is not well-founded. We will solve it in a similar way as in Sections 6 and 7,
that is by restricting the first component of the vectors in our domain to nat-
ural numbers, which restores well-foundedness. So we are working in the (N ×
A

d−1
Z

, {fA}f∈Σ,≫,≥) algebra.
Again we need to make sure that we do not go outside of the domain, i.e.,

the first vector component needs to be positive. This is ensured by the following
property:

Definition 8.1. An n-ary arctic linear function

f(~x1, . . . , ~xn) = M1⊗~x1 ⊕ . . . ⊕ Mn⊗~xn ⊕ ~c

over AZ is called absolutely positive if ~c [1] is positive. ⋄

Lemma 8.2. Let f be an n-ary arctic linear function over AZ, ~x1, . . . , ~xn ∈ N ×
A

d−1
Z

and ~v = f(~x1, . . . , ~xn). If f is absolutely positive then ~v[1] ∈ N.

Proof. Immediate, as ~c [1] positive by the definition of absolutely positive function.

~v[1] = f(~x1, . . . , ~xn)[1] = max(~c [1], . . .) ≥ 0

We can now present the main theorem of this section.

Theorem 8.3. Let R,R′,S be TRSs over a signature Σ and [·] be an arctic Σ-
interpretation over AZ. If:

• for each f ∈ Σ, [f ] is absolutely positive,

• [ℓ] ≥λ [r] for every rule ℓ → r ∈ R ∪ S,
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• [ℓ] ≫λ [r] for every rule ℓ → r ∈ R′ and

• SN(Rtop/S).

Then SN(Rtop ∪R′
top/S).

Proof. By Theorem 3.5b. We proved that (N × A
d−1
N

, {fA}f∈Σ,≫,≥) is a weakly
monotone algebra in Theorem 7.1 — now the domain is extended from arctic nat-
urals to arctic integers but all the properties carry over easily. The fact that we
respect the algebra domain is ensured by the first property and Lemma 8.2.

We now illustrate this theorem on an example.

Example 8.4. Let us consider the Beerendonk/2.trs TRS from the TPDB [2], con-
sisting of the following six rules:

cond(true, x, y) → cond(gr(x, y),p(x), s(y)) gr(s(x), s(y)) → gr(x, y)

gr(0, x) → false gr(s(x), 0) → true

p(0) → 0 p(s(x)) → x

This is a straightforward encoding of the following imperative program

while x > y do (x, y) := (x-1, y+1);

with x, y ∈ N and the predecessor of x, i.e., x − 1, defined on this domain, so
0 − 1 = 0. This program is obviously terminating, however its encoding as the
above TRS posed a serious challenge for the tools in the termination competition.
We will now show a termination proof for this system using an arctic below zero
interpretation.

We begin by applying the dependency pair method and obtaining four depen-
dency pairs, three of which can be easily removed (for instance using standard
matrix or polynomial interpretations) leaving the following single dependency pair:

cond♯(true, x, y) → cond♯(gr(x, y),p(x), s(y))

Now, consider the following arctic matrix interpretation of dimension 1, so a de-
generated case where arctic vectors and matrices simply become arctic numbers:

[cond♯(~x, ~y, ~z)] = (0)~x ⊕ (0)~y ⊕ (−∞)~z ⊕ (0) [0] = (0)

[cond(~x, ~y, ~z)] = (0)~x ⊕ (2)~y ⊕ (−∞)~z ⊕ (0) [false] = (0)

[gr(~x, ~y)] = (−1)~x ⊕ (−∞)~y ⊕ (0) [true] = (2)

[p(~x)] = (−1)~x ⊕ (0) [s(~x)] = (2)~x ⊕ (3)

This interpretation is absolutely positive, gives us a decrease for the dependency
pair

[cond♯(true, x, y)] = ( 0)~x ⊕ (−∞)~y ⊕ (2)

[cond♯(gr(x, y),p(x), s(y))] = (−1)~x ⊕ (−∞)~y ⊕ (0)

and all the original rules are oriented weakly. ⊳
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Remark 8.5. We discuss a variant which looks more liberal, but turns out to
be equivalent to the one given here. We cannot allow Z × A

d−1
Z

for the domain,
because it is not well-founded for ≫. So we can restrict the admissible range of
negative values by some bound c > −∞, and use the domain AZ≥c × A

d−1
Z

where
AZ≥c := {b ∈ AZ | b ≥ c}. Now to ensure that we stay within this domain we
would demand that the first position of the constant vector of every interpretation
is greater or equal than c.

Note however that this c can be fixed to 0 without any loss of generality as
every interpretation using lower values in those positions can be “shifted” upwards.
For any interpretation [·] and arctic number d construct an interpretation [·]′ by
[t]′ := [t] ⊗ d. This is obtained by going from [f ] = M1~x1 ⊕ . . . Mk~xk ⊕ ~c to
[f ]′ = M1~x1 ⊕ . . . Mk~xk ⊕ ~c ⊗ d. (A linear function with absolute part can be
scaled by scaling the absolute part.)

9 Quasi-Periodic Interpretations

Example 9.1. We consider the string rewriting system S = {bab → a3, a3 → b3},
Waldmann/jw1.srs from TPDB, as a (running) example. Termination could not be
established automatically by any of the programs taking part in the competition
2006. Then, Aleksey Nogin and Carl Witty produced a handwritten proof, that
had been streamlined by Hans Zantema, and it had later been generalized into the
method of quasi-periodic interpretations [39]. ⊳

We recall the basic notion:

Definition 9.2. A function f : N → N is called quasi-periodic of slope s and period
p if for all x, we have f(x + p) = f(x) + sp. ⋄

In [39] it had been shown that quasi-periodic interpretations can prove termi-
nation of some rewrite systems for which no other proof was known (at the time).
We now relate this approach to arctic matrix interpretations, by showing that they
can simulate quasi-periodic interpretations of slope one for unary signatures.

Example 9.3. The dependency pairs transformation reduces the termination prob-
lem for S from Example 9.1 to the top termination problem SN(Rtop/S), with

R = {Bab → Aaa, Aaa → Bbb}

where all length-decreasing dependency pairs have already been removed. The
proof given in [39] uses these quasi-periodic functions of period 3:

x 0 1 2 3 4 5 . . .
[a](x) = [A](x) 1 2 3 4 5 6 . . .
[b](x) = [B](x) 0 3 3 3 6 6 . . .
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which induce these interpretations of the words in the rules:

x 0 1 2 3 4 5 . . .
[Bab](x) = [bab](x) 3 6 6 6 9 9 . . .
[Aaa](x) = [aaa](x) 3 4 5 6 7 8 . . .
[Bbb](x) = [bbb](x) 0 3 3 3 6 6 . . .

We infer that for all x, [bab](x) ≥ [aaa](x) and [aaa](x) > [bbb](x), so there can not
be infinitely many top applications of Aaa → Bbb. This is the essential step in the
termination proof. ⊳

We give an encoding from weakly monotonic quasi-periodic functions of slope
one to arctic matrices and show that it is a morphism (it maps composition to
multiplication) and that it respects weak and strong compatibility with a string
rewriting system.

9.1 Basic translation

Throughout, we fix the natural number p > 0 to be the period.
Then each x ∈ N has a unique representation x = qp + r with 0 ≤ r < p.
We define a mapping

av : N → A
p

av : x 7→ (−∞, . . . ,−∞, q
︸︷︷︸

at position r

−∞, . . . ,−∞)

In this section, vector indices start from 0 (not 1).

Example 9.4. For period p = 3, we have av(0) = (0,−∞,−∞) and av(4) =
(−∞, 1,−∞). ⊳

For a quasi-periodic function f we define its associated arctic matrix [f ] (of size
p × p) by giving its column vectors:

[f ] =
(

av(f(0))T . . . av(f(p − 1))T
)

Example 9.5. For period p = 3, consider the quasi-periodic functions

x 0 1 2 3 4 5 . . .
f(x) 1 2 4 4 5 7 . . .
g(x) 3 3 5 6 6 8 . . .

with associated matrices

[f ] =





−∞ −∞ −∞
0 −∞ 1

−∞ 0 −∞



 [g] =





1 1 −∞
−∞ −∞ −∞
−∞ −∞ 1



 ⊳
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Lemma 9.6. If f is quasi-periodic of period p and slope one, then [f ]⊗ av(x)T =
av(f(x))T .

Proof. Let x = pq + r with 0 ≤ r < p. Since the slope of f is one, we have
f(x) = pq + f(r) and we put f(r) = pq′ + r′ with 0 ≤ r′ < p.

We compute the entry at position i in [f ] ⊗ av(x)T . Since av(x)T has exactly
one finite entry, namely q at position r, we get q times the i-th position of the r-th
column of [f ], which is q⊗av(f(r))[i]. This is finite exactly for i = r′, and then the
value is q ⊗ q′. So, the result vector is av(p(q + q′) + r′), and by the above, indeed
f(x) = pq + pq′ + r′.

The mapping [·] is in fact a homomorphism:

Lemma 9.7. If f and g are both quasi-periodic functions of common period p and
slope one, then [f ◦ g] = [g] ⊗ [f ].

Here, function composition is (f ◦ g) : x 7→ g(f(x)) and ⊗ is the (arctic) matrix
product.

Proof. We compute row i of [g] ⊗ [f ], which is [g] times row i of [f ], being [g] ⊗
av(f(i))T . By Lemma 9.6, this is av(g(f(i)))T .

We remark that a matrix interpretation of this shape corresponds to a complete
and deterministic weighted (word) automaton. This means that for each state and
letter, there is exactly one transition with nonzero weight.

9.2 Weak Compatibility

Now we treat compatibility. Referring to Example 9.5, the function g is greater
than the function f , but their associated matrices are not comparable w.r.t. ≫ or
≥. This will be repaired as follows. We start with weak compatibility.

For ease of presentation, we use arctic values below zero. We will see later that
this can be removed.

We define an arctic triangular matrix of size p × p by

D = (if i ≤ j then 0 else −1)i,j

Example 9.8. For p = 3 we get:

D =





0 0 0
−1 0 0
−1 −1 0



 ⊳

Lemma 9.9. For x = pq + r with 0 ≤ r < p, we have

D ⊗ av(x)T = ( q, . . . , q
︸ ︷︷ ︸

r + 1 entries

, q − 1, . . . , q − 1
︸ ︷︷ ︸

p − r − 1 entries

)T
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Proof. Entry number i (counting starts at 0) of the result vector is: if i ≤ r then q
else q − 1.

Lemma 9.10. If x ≤ y, then D ⊗ av(x)T ≤ D ⊗ av(y)T component-wise.

Proof. Follows directly from Lemma 9.9.

The matrices that arise here have a special shape:

Definition 9.11. An arctic matrix is called flat if each row (x1, . . . , xn) fulfills
x1 ≤ . . . ≤ xn ≤ x1 + 1 and each column (y1, . . . , ym)T fulfills ym + 1 ≥ y1 ≥ . . . ≥
ym. ⋄

Note that we define this for any rectangular shape.

Lemma 9.12. If f is a weakly monotone quasi-periodic function of slope one, then
D ⊗ [f ] is flat.

Proof. By Lemma 9.9, each column of D⊗[f ] has the required shape. For the shape
of the rows, we argue as follows. The j-th and the (j + 1)-th column of D⊗ [f ] are
D⊗ av(f(j))T and D⊗ av(f(j +1))T , respectively. By weak monotonicity of f , we
have f(j) ≤ f(j + 1), so by Lemma 9.10, each row of D ⊗ [f ] is weakly increasing.
Since f is monotonic, and also quasi-periodic of period p and slope one, we have
f(p − 1) ≤ f(p) = p + f(0). By Lemma 9.10,

D ⊗ av(f(p − 1))T ≤ D ⊗ av(p + f(0))T

Note that av(p + x) = av(x) ⊗ 1, since arctic multiplication by 1 means just to
increase each (finite) entry by one, therefore

D ⊗ av(f(p − 1))T ≤ D ⊗ av(f(0))T ⊗ 1

so for each row index i, we have (D ⊗ [f ])[i, p − 1] ≤ (D ⊗ [f ])[i, 0] + 1.

Lemma 9.13. If M is flat, then M ⊗ D = M .

Proof. The entry at position (i, j) in M ⊗ D is the dot product of row i in M and
column j in D. Let row i of M be ~x = (x1, . . . , xp), Column j in D has shape

(0, . . . , 0
︸ ︷︷ ︸

j times

,−1, . . . ,−1
︸ ︷︷ ︸

p − j times

)T

The dot product of these vectors is

max{x1, . . . , xj , xj+1 − 1, . . . , xp−1}

By flatness of M , we have x1 ≤ . . . xp ≤ x1 + 1, so the maximum is realized by xj .
This is exactly the value of the entry at position (i, j) in M .

Lemma 9.14. For any weakly monotonic quasi-periodic function f of slope one,
D ⊗ [f ] ⊗ D = D ⊗ [f ].
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Proof. By Lemma 9.12, D ⊗ [f ] is flat. By Lemma 9.13, the claim follows.

Definition 9.15. MD := D ⊗ M ⋄

Example 9.16. For f, g from Example 9.5,

[f ]D =





0 0 1
0 0 1
−1 0 0



 [g]D =





1 1 1
0 0 1
0 0 1



 ⊳

Now we present two important properties of the translation f 7→ [f ]D. It
is a homomorphism (function composition corresponds to matrix multiplication),
Lemma 9.17, and it respects the weak ordering, Lemma 9.18.

Lemma 9.17. [f ◦ g]D = [g]D ⊗ [f ]D

Proof. By Lemma 9.7, [f ◦ g]D = ([g]⊗ [f ])D. Denote [f ] by F and [g] by G. Then
GDFD = DGDF = DGF = (GF )D by Lemma 9.14.

Lemma 9.18. If quasi-periodic functions f, g of period p and slope one fulfill
∀x : f(x) ≥ g(x), then [f ]D ≥ [g]D.

Proof. We consider column r. It has value D⊗av(f(r))T resp. D⊗av(g(r))T , with
f(r) ≥ g(r) by assumption. The result then follows from Lemma 9.10.

The given translation f 7→ D ⊗ [f ] may create arctic matrices with negative
entries. It can be verified that −1 is the only negative value that may ever appear,
and that it is safe to replace it by −∞, in order to obtain an interpretation with
arctic naturals.

9.3 Strict Compatibility

Again referring to Example 9.5, the function g is strictly greater than the function
f , but as Example 9.16 shows, [g]D 6≫ [f ]D. By modifying the interpretation
of some symbols, we obtain strict compatibility. For easier presentation, we use
rational weights. Weights can be made integral by scaling: this is multiplication
by a constant, resp. arctic exponentiation.

Define E as the p × p square matrix where all rows are equal to vector F =
(0, 1/p, . . . , (p − 1)/p). The interesting property of F is:

Lemma 9.19. F ⊗ av(x)T = x/p.

Proof. Let x = pq + r. The vector av(x) has only one non-zero entry, namely q at
position r. Then F ⊗ av(x)T = r/p + q = x/p.

This implies

Lemma 9.20. If x, y ∈ N and x > y, then F ⊗ av(x)T > F ⊗ av(y)T and E ⊗
av(x)T ≫ E ⊗ av(y)T .
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Proof. The first statement follows from the previous lemma. Then the second
statement follows, as all rows of E are equal to F .

Now the application is that we can multiply an interpretation (that was trans-
lated according to f 7→ [f ]D) from the left by E, to get the desired relation:

Lemma 9.21. If quasi-periodic functions f, g of period p and slope one fulfill f < g
point-wise, then E ⊗ [f ]D ≪ E ⊗ [g]D.

Proof. We have E ⊗ [f ]D = ED[f ] = E[f ], since E is flat and Lemma 9.13 applies.
Column r of E[f ] is the product of E and column r of [f ], thus E ⊗ av(f(r))T .
This is to be compared with E ⊗ av(g(r))T , so we apply Lemma 9.20.

9.4 Putting it all together

While we achieve weak compatibility (w.r.t. ≥) by the translation [·]D, we get strict
compatibility (w.r.t. ≫) only for the shape of top rewrite relations that arise from
the dependency pair transformation.

Theorem 9.22. Given a weakly monotonic quasi-periodic interpretation of period
p and slope one that is weakly compatible with S and R and strictly compatible
with R′, where the top symbols of R ∪ R′ do not occur in S, there is an arctic
matrix interpretation of dimension p that fulfills the conditions of Theorem 7.1: it
is weakly compatible with S and R, and strictly compatible with R′.

Proof. This interpretation is obtained by taking as the translation of a non-top
symbol interpretation f the matrix [f ]D, and for a top symbol, the matrix E⊗[f ]D.
This interpretation is somewhere finite since the top left entry of each matrix is
finite. This follows from f(0) ≥ 0. This translation computes the correct values
by Lemma 9.17, and we get weak compatibility by Lemma 9.18 as well as strict
compatibility by Lemma 9.21.

Example 9.23. For the quasi-periodic interpretation from Example 9.3,

[a] =





−∞ −∞ 1
0 −∞ −∞

−∞ 0 −∞



 [a]D =





0 0 1
0 0 0
−1 0 0





[b] =





0 1 1
−∞ −∞ −∞
−∞ −∞ −∞



 [b]D =





0 1 1
−1 0 0
−1 0 0





[a3]D =





1 1 1
0 1 1
0 0 1



 [b3]D =





0 1 1
−1 0 0
−1 0 0
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E ⊗ [a3]D =





1 4/3 5/3
1 4/3 5/3
1 4/3 5/3



 E ⊗ [b3]D =





0 1 1
0 1 1
0 1 1





E ⊗ [a]D =





1/3 2/3 1
1/3 2/3 1
1/3 2/3 1



 E ⊗ [b]D =





0 1 1
0 1 1
0 1 1





⊳

Remark 9.24. We comment on the effect of restricting the slope to one. Quasi-
periodic interpretations of higher slope cannot be represented by arctic matrix
interpretations: for instance, the function f : x 7→ 2x is a quasi-periodic function
of slope 2 and period 1 (trivially), and iterated application of f gives exponentially
increasing values, while arctic matrices (of any dimension) can only give linear
growth. On the other hand, as has been remarked already in [39], if quasi-periodic
functions are applied together with other termination methods, restricting the slope
to one does not seem to reduce the power of the method too much. There are several
hard termination problems where slope one is sufficient.

10 Certification

The theory developed in this paper for proving termination with arctic (below-
zero) interpretations (i.e., Theorem 7.1 and Theorem 8.3) is accompanied by formal
proofs in the Coq proof assistant [34, 6]. Coq is a proof assistant/checker based
on the Calculus of Inductive Constructions (CIC) [33] — a very expressive logic
supporting simple, inductive, dependent and polymorphic types.

The certification has been carried out within the CoLoR project [7]. The main
part of CoLoR is a library of termination techniques formalized in Coq. The aim of
the project is to gather such formalizations within this library and then use them
to certify concrete proofs produced by some existing termination provers.

This is accomplished by introducing an intermediate format for termination
proofs. Automated termination provers only need to support this format (which
should be easy to accomplish) and then Rainbow, a simple tool developed within
the CoLoR project, transforms proofs in this format to actual Coq scripts certifying
termination. Then Coq is run as a proof checker to verify correctness of the proof
reported by the termination tool, with the use of the termination criteria formalized
in the CoLoR library.

We formalized the arctic techniques for proving termination of term rewriting
presented in this paper, so the criteria corresponding to Theorems 7.1 and 8.3 but
not that of Theorem 6.7.

Let us illustrate the CoLoR approach to certification on the termination criteria
developed in this paper. An arctic termination proof requires providing an arctic
interpretation, Definition 4.4, which consists of:

• a natural number d, indicating the dimension of vectors and matrices that
are used,
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• a theorem to be used: either Theorem 7.1 or Theorem 8.3 and

• for every symbol f the arctic function corresponding to it (over AN in case of
Theorem 7.1 or over AZ for Theorem 8.3), i.e., the constant vector ~c and its
linear factors M1, . . . ,Mn, where n is the arity of f .

Such arctic interpretation can be specified by means of a formal grammar, which is
part of the aforementioned proof format. Then proofs like those presented in Ex-
ample 7.2 or Example 8.4 can be easily expressed in this format and translated by
Rainbow to formal Coq proofs, allowing to check their correctness with Coq. Simi-
lar transformation can be applied to termination proofs generated by termination
provers, allowing a fully automatic certification of their results. We implemented
this in the termination prover Matchbox [36] and we report on the results in the
following section.

The basis of this formalization work was the certification of the matrix interpre-
tations method [27], the method introduced shortly in Example 3.6, which consists
of formalizations of:

• a semiring structure,

• vectors and matrices over arbitrary semirings of coefficients,

• the monotone algebras framework and

• the matrix interpretation method.

The framework of monotone algebras was used without any changes at all.
Vectors and matrices were formalized in [27] for arbitrary semirings, however all
the results involving orders were developed for the usual orders on natural numbers,
as used in the matrix interpretation method. So the first step in the formalization
process was to generalize the semiring structure to a semiring equipped with two
orders (>,≥) and to adequately generalize results on vectors and matrices. Then
the arctic semiring was developed in this setting.

As for the technique itself it has a lot in common with the technique of ma-
trix interpretations. Therefore the common parts were extracted to a module
MatrixBasedInt which was then specialized to the matrix interpretation method
(MatrixInt) and to a basis for arctic based methods (ArcticBasedInt), which was
narrowed down to the methods of arctic interpretations (ArcticInt) and arctic
below-zero interpretations (ArcticBZInt). This hierarchy is depicted in Figure 1.

We did not yet formalize the developments of Section 9 on quasi-periodic in-
terpretations. Note that this is not strictly necessary: one can still certify quasi-
periodic termination proofs with CoLoR indirectly: just carry out the transforma-
tion according to Theorem 9.22, and submit the corresponding arctic interpretation
for certification. This has been realized by the termination prover Matchbox in the
Certified Termination Competition for string rewriting in 2008.

Considering the extension of the formal proof format and the Rainbow tool it
was minimal. The format for the matrix interpretation proofs was already devel-
oped in [27] and it essentially requires to provide matrix interpretations for all the
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MatrixBasedInt

ttiiiiiiii

++VVVVVVVV

MatrixInt ArcticBasedInt

sshhhhhhhhhh

**UUUUUUU

ArcticInt ArcticBZInt

Figure 1: Hierarchy of different matrix-based methods in CoLoR.

function symbols in the signature. The format for arctic interpretations is the same
except that:

• it indicates which matrix-based method is to be used, indicated by different
XML tags (as the common proof format of CoLoR is in the end specified using
XML syntax),

• the entries of vectors and matrices are from a different domain.

Below we illustrate the performance of the winning tools in the certified com-
petitions of 2007 and 2008. In case of the 2008 competition we narrow down the
results only to the set of problems used in 2007, to make the figures and tools’
performances comparable.

category year winner termination
proofs

TRS
2007 CoLoR + TPA 354/975≈ 36.3%
2008 CoLoR + AProVE 420/975≈ 43.1%

SRS
2007 Matchbox (uncertified) 337/517≈ 65.2%
2008 CoLoR + Matchbox 354/517≈ 68.5%

Figure 2: Performance of the winners of the certified competition in 2007 and 2008.

In the SRS category the only improvement in Matchbox [36] from 2007 to
2008 was the addition of arctic interpretations, and the transformation from quasi-
periodic to arctic interpretations.

Even more importantly we are comparing here the un-certified Matchbox 2007
(there was no certified SRS category in 2007) with its certified 2008 counterpart.
That means that some features not supported by CoLoR had to be switched off
in Matchbox for the 2008 competition and still it performed better than in the
previous year. Roughly half of the proofs produced by Matchbox involved arctic
interpretations, showing the importance of this technique for string rewriting.

The interpretation of the results in the TRS category is much more difficult.
TPA [24] and AProVE [16] are very different tools using different proof search strate-
gies. Also apart from the addition of arctic interpretations, AProVE could take ad-
vantage of the dependency graph decomposition technique that was not available
in CoLoR in the previous year.
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In the following section we will present the experimental data comparing per-
formance of Matchbox with different sets of techniques in use, which will allow for
a better evaluation of the impact of arctic interpretations on termination proving
power.

11 Implementation

The implementation in Matchbox follows the scheme described in [13]. The con-
straint problem for the arctic interpretation is translated to a constraint problem
for matrices, for arctic numbers and, finally, for Boolean variables. This is then
solved by Minisat [11].

An arctic number is represented by a pair a = (b; v0, v1, . . . , vn) where b is a
Boolean value and v0, . . . , vn is a sequence of Booleans (all numbers have fixed
bit-width). If b is 1, then a represents −∞, if b is 0, then a represents the binary
value of v0, . . . , vn.

To represent integers, we use two’s complement representation, i.e., the most
significant bit is the “sign bit”.

Note that implementation of max/plus operation is less expensive than stan-
dard plus/times: with a binary representation both max and plus can be computed
(encoded) with a linear size formula (whereas a naive implementation of the stan-
dard multiplication requires quadratic size and asymptotically better schemes do
not pay off for small bit widths).

It is useful to require the following, for each arctic number a = (b, v): if the
infinity bit b is set, then v = 0. Then (b, v) ⊕ (b′, v′) = (b ∧ b′,max(v, v′)). For
(b, v) ⊗ (b′, v′) we compute c = b ∨ b′, u = (u0, . . . , un) = v + v′ and the result is
(c;¬c ∧ u0, . . . ,¬c ∧ un).

To represent arctic integers, we use a similar convention: if the infinity flag b is
set, we require that the number v represents the lowest value of its range.

The following table lists the numbers of certified proofs that we obtain with
the dependency pair method (without analyzing the dependency graph) and the
following matrix methods: (s)tandard, (a)rctic, below (z)ero. The problem set
used for this experiment is the TPDB of the 2007 competition, so the problems
correspond to those presented in Figure 2.

Runs were executed on a single core of an Intel X5365 processor running at
3GHz. All proofs are available for inspection at the Matchbox web page [36]. In
all cases we used standard matrices of dimension 1 and 2 to remove rules before
the dependency pair transformation, and then matrix dimensions d from 1 up; with
numbers of bit width 3, and a timeout of 1+d2 seconds for each individual attempt.

Here, we count only verified proofs, so we are missing about 3 to 5 proofs where
Coq does not finish in reasonable time.

For a SRS R we consider reverse(R) = {reverse(l) → reverse(r) | (l → r) ∈
R}. Clearly this transformation preserves termination both ways (the implication
SN(reverse(R)) =⇒ SN(R) has been formalized in CoLoR). Half of the allotted
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number of proofs
problem set time found by the method

s sa sz saz

975 TRS 1 min 361 376 388 389
10 min 365 381 393 394

517 SRS 1 min 178 312 298 320
10 min 185 349 323 354

Figure 3: Performance of Matchbox using different versions of matrix (arctic) in-
terpretations.

time is spent for each of R and reverse(R). This increases the score considerably
(by about one third).

In the previous section we already mentioned that the method of arctic inter-
pretations was implemented in AProVE. Recently it was also incorporated into TTT2
and both those provers used it in the termination competition of 2008, where they
took the first two places in the main categories (full termination of term/string
rewriting systems).

12 Discussion

Arctic naturals form a sub-semiring of arctic integers. So the question comes up
whether Theorem 8.3 subsumes Theorem 7.1. Note that the prerequisites for both
theorems are incomparable. Still there might be a method to construct from a
somewhere-finite interpretation (above zero) an equivalent absolutely positive in-
terpretation (below zero). We are not aware of any. Experience with implementa-
tion shows that it is useful to have both methods, especially for string rewriting.
Naturals are easier to handle than integers because they do not require signed
arithmetics. So typically we can increase the bit width or the matrix dimension for
naturals. Our implementation finds several proofs according to Theorem 7.1 where
it fails to find a proof according to Theorem 8.3 and vice-versa.

It is interesting to ask whether the preconditions of Theorems 6.7,7.1,8.3 can be
weakened. We discussed one variant in Remark 8.5. In general, a linear interpre-
tation [·] with coefficients in AN (AZ respectively) is admissible for a termination
proof if for each ground term t, the value [t] is finite (positive, respectively). This
is in fact a reachability problem for weighted (tree) automata. It is decidable for
interpretations on arctic naturals, but it is undecidable for arctic integers (this fol-
lows from a result of Krob [29] on tropical word automata). In our setting, we
do not guess an interpretation and then decide whether it is admissible. Rather,
we have to formulate the decision algorithm as part of the constraint system for
the interpretation. Therefore we chose sharper conditions on interpretations that
imply finiteness (positiveness, respectively) and have an easy constraint encoding.
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Another question is the relation of the standard matrix method to the arctic ma-
trix method(s). Performance of our implementation suggests that neither method
subsumes the other, but this may well be a problem of computing resources, as we
hardly reach matrix dimension 5 and bit width 3.

As for the relation to other termination methods (e.g., path orderings), the
only information we have is that arctic (and other) matrix methods can do non-
simple termination, while path orders and polynomial interpretations cannot; and
on the other hand, the arctic matrix method implies a linear bound on deriva-
tional complexity (see below), which is easily surpassed by path orders and other
interpretations.

The full arctic termination method bounds lengths of derivations:

Lemma 12.1. For a rewriting system R that fulfills the requirements of Theo-
rem 6.7 for S = ∅, the derivational complexity of R is linear.

Proof. For a finite arctic vector ~x = (x1, . . . , xk), define |~x| = max(x1, . . . , xk).
Then |~x ⊕ ~y| ≤ max(|~x|, |~y|) and |~x ⊗ ~yT | ≤ |~x| + |~y|.
For a finite arctic matrix A of dimension k × k, define |A| = max{A[i, j] | 1 ≤

i, j ≤ k}. Then |A ⊗ ~x| ≤ |A| + |~x| and |A ⊗ B| ≤ |A| + |B|.
For an interpretation [·] of some signature Σ, and any word w ∈ Σ∗, this implies

that |[w]| ≤ c · |w| where c = max{|[f ]| : f ∈ Σ}.
Now we remark that u →R v implies [u] ≫ [v], and ~x ≫ ~y implies |~x| > |~y|.

Thus the derivational complexity of R is linear: any derivation starting from u has
at most c · |u| steps.

This means that rewriting systems with higher derivational complexity (e.g.,
quadratic: {a b → b a}, or exponential {a b → b2 a}) do not admit an arctic
termination proof. Note that both these systems admit a standard matrix proof.

It seems very difficult to combine this argument with the dependency pair
method, as it can drastically alter (i.e., reduce) derivational complexity [32].

Example 12.2. The following rewriting system [21] has a derivational complexity
that is not primitive recursive:

{s(x) + (y + z) → x + (s(s(y)) + z), s(x) + (y + (z + w)) → x + (z + (y + w))}

and still it has, after dependency pairs transformation, an easy termination proof
by “counting symbols” [13]. Note however that arctic interpretations cannot count
globally: to compute the interpretation [f(t1, t2)], it is impossible to add values from
subtrees [t1], [t2], as we can only take the maximum of [t1], [t2]. Yet we find an arctic
proof, as follows. The given system is in fact an encoding of a length-preserving
string rewriting system on the infinite alphabet N. Both rules keep the right spine
of terms (corresponding to the length of the simulated string) intact, so we can
remove dependency pairs that shrink it, using the interpretation [+](x, y) = y ⊗ 1.
We are left with two dependency pairs (that directly correspond to the original
rules). They can be handled by [+](x, y) = x and [s](x) = x ⊗ 1. So instead of
numbers of symbols, we were just using path lengths. ⊳
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Max/plus polynomials have been used by Amadio [3] as quasi-interpretations
(i.e., functions are weakly monotone), to bound the space complexity of derivations.
Proving termination directly was not intended.

13 Conclusions

We presented the arctic interpretations method for proving termination of term
rewriting. It is based on the matrix interpretation method [13] where the usual
plus/times operations on N are generalized to an arbitrary semiring, in this case
instantiated by the arctic semiring (max/plus algebra) on {−∞} ∪ N.

Matrix interpretations are an efficient realization of a certain class of weighted
tree automata. It remains a subject of further study to characterize the family of
weighted tree languages that can be represented in that way.

We also generalized this to arctic integers. This generalization allowed us to
solve 10 of Beerendonk/* examples that are difficult to prove terminating and thus
far could only be solved by AProVE with the Bounded Increase [17] technique,
dedicated to such class of problems coming from transformations from imperative
programs and with polynomial interpretations with rational coefficients [30].

Our presentation of the theory is accompanied by a formalization in the Coq
proof assistant. By becoming part of the CoLoR project this formalization allows
us to formally verify termination proofs involving the arctic matrix method. It
was evaluated in the certified category of the termination competition in 2008 and
turned out to be a crucial contribution allowing CoLoR to win with the competing
certification back-end, A3PAT [8].

We want to remark here that all performance data and all examples presented
in this paper were collected from problems of TPDB and we did not “cook up”
any special examples to show off the arctic method. The emphasis of these exam-
ples (in fact, of the whole paper) is not to provide termination proofs where none
were known before, but rather to provide certified (and often conceptually simpler)
termination proofs where only uncertified proofs were available up to now.
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[8] Contejean, É., Courtieu, P., Forest, J., Pons, O., and Urbain, X. Certification
of automated termination proofs. In International Symposium on Frontiers
of Combining Systems (FroCoS), volume 4720 of Lecture Notes in Computer
Science, pages 148–162, 2007.

[9] Droste, M., Pech, C., and Vogler, H. A Kleene theorem for weighted tree
automata. Theory of Computing Systems, 38(1):1–38, 2005.

[10] Droste, M. and Vogler, H. Weighted tree automata and weighted logics. The-
oretical Computer Science, 366(3):228–247, 2006.
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