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Abstract

A language is prefix-convex if it satisfies the condition that, if a word w

and its prefix u are in the language, then so is every prefix of w that has u as

a prefix. Prefix-convex languages include prefix-closed languages at one end

of the spectrum, and prefix-free languages, which include prefix codes, at the

other. In a similar way, we define suffix-, bifix-, factor-, and subword-convex

languages and their closed and free counterparts. This provides a common

framework for diverse languages such as codes, factorial languages and ideals.

We examine the relationships among these languages. We generalize these

notions to arbitrary binary relations on the set of all words over a given

alphabet, and study the closure properties of such languages.
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1 Introduction

This section introduces our basic terminology and notation, defines the scope of
our work, and states some preliminary observations. Previous research is described
in Section 2.

A note concerning the terminology is in order. We have used the term con-
tinuous languages in several publications [1, 5, 6, 7]. However, the term convex
languages had been used for the same concept much earlier in [20]. Consequently
we revert to the earlier terminology here.

Let Σ be an alphabet, and Σ∗, the free monoid generated by Σ, with ε as the
empty word. A language over an alphabet Σ is any subset of Σ∗. If L ⊆ Σ∗, the
complement of L with respect to Σ∗ is denoted by L. When convenient, we use
the customary notation for regular expressions, with + for union, juxtaposition for
concatenation, and ∗ for Kleene closure.

∗This work was supported by the Natural Sciences and Engineering Research Council of Canada
under grant no. OGP0000871.

†David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON,
Canada N2L 3G1, E-mail: tang@student.cs.uwaterloo.ca,brzozo@uwaterloo.ca



446 Thomas Ang and Janusz Brzozowski

Suppose E is a binary relation on Σ∗; if u E v and u 6= v, we write u ⊳ v.
Let D be the converse binary relation, that is, let u D v if and only if v E u. The
reflexive-and-transitive closure of E is denoted by E∗.

Definition 1 and Proposition 1 below are generalizations of some results of
Haines [10] and Thierrin [20]. See Section 2 for a further discussion.

Definition 1. A language L is E-convex if u E v, u E w, and v E w with u,w ∈ L

imply v ∈ L. It is E-free if v ⊳ w and w ∈ L imply v 6∈ L. It is E-closed if v E w

and w ∈ L imply v ∈ L. It is D-closed if v D w and w ∈ L imply v ∈ L.

For an arbitrary relation E on Σ∗, let

EL = {v ∈ Σ∗ | v E
∗ w for some w ∈ L}

and
LE = {v ∈ Σ∗ | v D

∗ w for some w ∈ L}.

The following are easily verified:

Proposition 1. Let E be an arbitrary relation on Σ∗. Then

1. A language is E-convex if and only if it is D-convex.

2. A language is E-free if and only if it is D-free.

3. Every E-closed language and every D-closed language is E-convex.

4. A language is E-closed if and only if its complement is D-closed.

5. A language L is E-closed (D-closed) if and only if L = EL (L = LE).

Example 1. For w ∈ Σ∗, let |w|2 be the length of w modulo 2. Let Σ = {a} and
let E be the binary relation ≤2 defined by

u ≤2 v if |u|2 ≤ |v|2.

The ≤2-convex languages are J = a∗, K = a(aa)∗, L = (aa)∗, and ∅. The ≤2-
closed languages are J , L, and ∅. The ≤2-free languages are ∅ and all the singleton
languages {w}, for w ∈ Σ∗. Note that there are ≤2-free languages that are not
≤2-convex. For instance, {aa} is ≤2-free but not ≤2-convex, because aa ≤2 ε,
aa ≤2 aa, ε ≤2 aa, but ε 6∈ L.

Proposition 2. If E is antisymmetric, then every E-free language is E-convex. If
E is reflexive and every E-free language is E-convex then E is antisymmetric.

Proof. Suppose L is E-free and E is antisymmetric. If L is not E-convex, then
there exist u,w ∈ L, v 6∈ L, such that u E v, u E w, and v E w. Thus u E v and
v E w and, since E is antisymmetric, we have u 6= w. Thus we have u,w ∈ L and
u ⊳ w, contradicting that L is E-free.

Conversely, suppose E is reflexive and every E-free language is E-convex, but
E is not antisymmetric. Then there exist v, w ∈ Σ∗ such that w E v, v E w and
v 6= w. Since E is reflexive, we have w E w. The language {w} is E-free but not
E-convex. Note that, if reflexivity is absent, v and w do not violate convexity.
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Usually in our applications we deal with partial order relations, so reflexivity
and antisymmetry hold. If the binary relation is understood, we call a language
convex, free, closed, or converse closed .

If u, v, w ∈ Σ∗ and w = uv, then u is a prefix of w and v is a suffix of w. If v is
a prefix of w, we write v ≤ w; if also v 6= w, then v < w. If v is a suffix of w, we
write v � w; if also v 6= w, then v ≺ w. If w = xvy for some v, x, y ∈ Σ∗, then v is
a factor of w. Note that a prefix or suffix of w is also a factor of w. If v is a factor
of w, we write v ⊑ w; if also v 6= w, then v ⊏ w. If w = w0a1w1 · · · anwn, where
a1, . . . , an ∈ Σ, and w0, . . . , wn ∈ Σ∗, then v = a1 · · · an is a subword of w; note
that every factor of w is a subword1 of w. If v is a subword of w, we write v ⋐ w;
if also v 6= w, then v ⊂ w. The relations ≤, �, ⊑, and ⋐ are partial orders on Σ∗.

We apply Definition 1 to the following special cases:

E is ≤: If we use the relation “is a prefix of”, then we get prefix-convex lan-
guages [6]. Prefix-free languages, except {ε}, are prefix codes [4], prefix-closed
languages are complements of right ideals, and converse closed languages are
the right ideals, that is, have the form LΣ∗, L ⊆ Σ∗. See Proposition 7.

E is �: If we use the relation “is a suffix of”, then we get the suffix-convex lan-
guages. Suffix-free languages, except {ε}, are suffix codes [4], suffix-closed
languages are complements of left ideals, and converse closed languages are
the left ideals, that is, have the form Σ∗L. See Proposition 7.

E is ⊑: If we use the relation “is a factor of”2, we get factor-convex languages.
Factor-free languages, except {ε}, are infix codes [19], factor-closed languages
are factorial languages [15], which are complements of two-sided ideals, and
converse closed languages are the ideals, that is, have the form Σ∗LΣ∗. See
Proposition 6.

E is ⋐: If we use the relation “is a subword of”3, we get subword-convex languages.
Subword-free languages, except {ε}, are hypercodes [19], subword-closed lan-
guages are of the form K = L =

⋃
a1···ai∈L Σ∗a1Σ∗ · · · aiΣ∗, and converse

closed languages are of the form L above. See Section 2.

If a language is both prefix- and suffix-convex it is bifix-convex 4. If it is both
prefix- and suffix-free it is bifix-free; if it is not {ε}, it is then a bifix code [4].
If it is both prefix- and suffix-closed, it is bifix-closed. Note that bifix-closed and
bifix-free languages can be defined as (≤ ∪ �)-closed and (≤ ∪ �)-free languages,
respectively, but bifix-convex languages cannot be derived from a single relation.

The remainder of the paper is structured as follows. Previous work on convex
languages is described in Section 2. In Section 3 we show the relations among the

1The word “subword” is often used to mean “factor”; here by a “subword” we mean a subse-
quence.

2This relation is called the “infix order” in [19].
3This relation is called the “embedding order” in [10].
4The word “bifix” is sometimes used to describe a word that is both a prefix and a suffix. Here

we follow [12, 18]. The term “biprefix” is used in [4].
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prefix- and suffix-convex classes of languages and their subclasses. In Section 4
we study the closure properties of the X-convex, X-closed and X-free classes of
languages, where X stands for prefix, suffix, bifix, factor or subword. The converse
X-closed classes are considered in Section 5. Special properties of closure under
concatenation and star are studied in Section 6, and Section 7 concludes the paper.

2 Previous results and generalizations

For consistency, we use our notation and terminology when discussing previous
work, but some of the key original terms are also mentioned.

In 1969 Haines proved the following results [10]:

Theorem 1 (Haines). Every subword-free language is finite.

He called the subword relation embedding . He also defined (what we call) the
subword closure of any language L ⊆ Σ∗ which is the set of all words that are
subwords of words in L:

⋐L = {u ∈ Σ∗ | u is a subword of v for some v ∈ L}.

Dually, he defined (what we call) the converse subword closure of any language
L ⊆ Σ∗ which is the set of all words that contain a word of L as a subword:

L⋐ = {v ∈ Σ∗ | u is a subword of v for some u ∈ L}.

Theorem 2 (Haines). For any L ⊆ Σ∗, there exist finite languages F and G, such
that

⋐L = F⋐ =
⋃

a1···ai∈F

Σ∗a1Σ∗ · · · aiΣ∗,

and

L⋐ = G⋐ =
⋃

a1···ai∈G

Σ∗a1Σ
∗ · · · aiΣ

∗.

Theorem 3 (Haines). The languages ⋐L and L⋐ are regular, for every L ⊆ Σ∗.

Haines noted that Theorem 1 is false for the factor relation, because L = {abna |
n ≥ 1} is an infinite factor-free language. It is also false for the prefix and suffix
relations, since L is an infinite prefix- and suffix-free language.

For a discussion of earlier work related to the results of Haines see the paper by
Kruskal [14].

In 1973 Thierrin introduced convex languages for the subword partial order [20].
He called a language convex if it is ⋐-convex, left convex if it is ⋐-closed, and right-
convex if it is ⋑-closed. He also defined a language to be strongly convex if it is
closed under nonempty subwords, that is, if v 6= ε, v ⋐ w, and w ∈ L implies v ∈ L.
This last concept is outside the scope of this work; we refer the reader to [20].
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Proposition 3 (Thierrin). A language is ⋐-convex if and only if it is an intersec-
tion of a ⋐-closed and a ⋑-closed language. Equivalently, a language L is ⋐-convex
if and only if there exist ⋐-closed languages M and N such that L = M \ N .

Corollary 1 (Thierrin). Every ⋐-convex language is regular.

Proposition 3 can be generalized with an added condition on E.

Proposition 4. If there exist M,N ⊆ Σ∗ such that M and N are E-closed and
L = M \ N , then L is E-convex. If E is transitive and L is E-convex, then there
exist M,N ⊆ Σ∗ such that M and N are E-closed and L = M \ N .

Proof. Suppose L = M \N , where M and N are E-closed, and L is not E-convex.
Then there exists a triple (u ∈ L, v 6∈ L,w ∈ L), such that u E v, u E w, and v E w.
We must have u,w ∈ M , and u,w 6∈ N , that is, u,w ∈ N . If v ∈ M , then also
v ∈ N and v 6∈ N . This means that N is not E-convex. But, N is D-closed by
Proposition 1 (4), and every D-closed language is E-convex by Proposition 1 (3),
which is a contradiction. Hence we must have v 6∈ M . But this now means that M

is not E-convex, and hence cannot be E-closed—again a contradiction.
Conversely, suppose that E is transitive, and L is E-convex. Let M = EL; then

M is E-closed by definition. Let

N = EL \ L = {v ∈ Σ∗ | v 6∈ L and v E
∗ w for some w ∈ L}.

Since E is transitive, we also have

N = {v ∈ Σ∗ | v 6∈ L and v E w for some w ∈ L}.

We claim that N is also E-closed. For suppose u E v for some v ∈ N such that
v E w, for some w ∈ L. Then u E w by transitivity. If u ∈ L, then L cannot be
E-convex because of the triple (u ∈ L, v 6∈ L,w ∈ L). Hence we must have u 6∈ L,
and N is E-closed. Now M \ N = M ∩ N = EL ∩ (EL ∪ L) = EL ∩ L = L.

Example 2. Let Σ = {a}, and let E = {(ε, a), (a, aa)}; then E is not transitive
since (ε, aa) is not in the relation. If L = {ε, aa}, then L is E-convex, but not E-
closed, since aEaa, aa ∈ L and a 6∈ L. Suppose L can be expressed as L = M \N ,
where both M and N are E-closed. Then M must contain L and be closed; hence
a ∈ M . Now N must contain a; otherwise a ∈ M \ N , and M \ N 6= L. However,
since N must be closed, it must contain ε, since ε E a. But then M \ N does not
contain ε, which is a contradiction. Therefore, Proposition 3 does not hold here.

On the other hand, lack of transitivity does not prevent all languages from
satisfying Proposition 3. For example, the language K = {a} is E-convex and not
E-closed, but can be expressed as K = {ε, a} \ {ε}, which is a difference between
two E-closed languages.

Proposition 5 (Thierrin). If L is a ⋐-closed or a ⋑-closed language over Σ, then
the syntactic monoid ML is finite and contains a disjunctive zero z such that ab = z,
a, b ∈ ML, implies axb = z for every x ∈ ML.
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A language L is noncounting [20] if there exists an integer k ≥ 0 such that, for
arbitrary u, v, w ∈ Σ∗, uvkw ∈ L if and only if uvk+1w ∈ L.

Corollary 2 (Thierrin). Every ⋐-convex, ⋐-closed, and ⋑-closed language is a
noncounting regular language, and hence, a star-free language.

Corollary 2 does not hold for the prefix, suffix, and factor relations. For example,
K = (aa)∗bΣ∗, L = Σ∗b(aa)∗ and M = Σ∗b(aa)∗bΣ∗ are converse prefix-closed,
converse suffix-closed and converse factor-closed, respectively, but they are not
noncounting. However, convex languages with respect to these three relations are
noncounting in the case of the one-letter alphabet.

Properties of ⋐-free languages were studied by Shyr and Thierrin [19] under
the name of hypercodes. There is an extensive literature on codes characterized as
antichains with respect to binary relations in free monoids. For example, languages
that are both factor-free codes and ⋐-convex are studied in [9]. See also [11, 13, 18]
and the references contained therein for further examples. It is not our purpose
in this paper to deal with this topic in depth, but only to point out how various
classes of these languages fit into the framework of convex languages, and to study
the closure properties of convex languages.

In 1990, de Luca and Varricchio characterized factor-closed languages, which
they called factorial:

Proposition 6 (De Luca & Varricchio). A language L is factorial (that is, ⊑-
closed) if and only if it is the complement of a two-sided ideal, that is, if and only
if L = Σ∗KΣ∗, for some language K.

In Proposition 6, K can be taken to be regular if L is regular.
We have analogous results for prefix-closed and suffix-closed languages:

Proposition 7. A language L is prefix-closed (suffix-closed) if and only if it is the
complement of a right (left) ideal, that is, if and only if L = KΣ∗, (L = Σ∗K) for
some language K. Moreover, K can be taken to be regular if L is regular.

Proof. The proof parallels the proof of Proposition 6 in [15]. Let ≤L be the set of
all prefixes of words in L; thus, if L is prefix-closed, then L = ≤L. Now let K = ≤L.
One verifies that u ∈ K implies uv ∈ K for all v ∈ Σ∗, that is, K = KΣ∗, and
L = ≤L = K = KΣ∗. Note that K is regular if L is regular. Conversely, suppose
L = KΣ∗ for some K, w = uv ∈ L, and u 6∈ L. Then u ∈ KΣ∗, u = u′u′′, for some
u′ ∈ K, u′′ ∈ Σ∗, and w = u′u′′v must also be in KΣ∗, which is a contradiction.
Thus L is prefix-closed.

A dual argument proves the result for suffix-closed languages.

Prefix-convex languages were studied in connection with trace-assertion speci-
fications [6, 7] (under the name of prefix-continuous languages). Here a software
module is modeled by an automaton in which the states are represented by words
over the input alphabet. It was shown in [6], for deterministic automata, that
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the automaton is well-behaved if the set of words representing the states is prefix-
convex. This result was extended to nondeterministic automata in [5]. Applications
of these methods to the specification of software modules were discussed in [7].

Closure properties studied by Thierrin [20] are discussed in later sections.

3 Examples of convex languages

For convenience, we first consider E-convex, E-free, and E-closed languages, where
E ranges over {≤,�,⊑,⋐}. If a nonempty language is prefix-convex (respectively,
suffix-, bifix-, factor-, or subword-convex), then it is prefix-closed (respectively,
suffix-, bifix-, factor-, or subword-closed) if and only if it contains ε. The empty
language ∅ and the language {ε} vacuously satisfy the E-convex, E-free, and E-
closed conditions if E ∈ {≤,�,⊑,⋐}. Also, since ε is a prefix, suffix, factor, and
subword of every word, ∅ and {ε} are the only two languages that are both E-free
and E-closed.

Factorial languages are defined as factor-closed languages, for example, in [2, 15],
and as bifix-closed languages, for example, in [16]. This is justified in view of the
following:

Remark 1. A language is factor-closed if and only if it is bifix-closed.

Proof. If L is factor-closed, then it is also bifix-closed, since every prefix and suffix
is also a factor. Conversely, let L be a bifix-closed language and let w ∈ L. Suppose
v is any factor of w = xvy; then xv ∈ L since xv is a prefix of w, and v ∈ L because
v is a suffix of xv. Therefore L is factor-closed.

Factorial languages have received considerable attention. For example, their
decompositions are studied in [2], their combinatorial properties in [15], and their
complexity issues in [17]. We return to these languages later.

Figure 1 shows the various classes of languages partially ordered under set con-
tainment, where P , S, B, F , and W , stand for prefix, suffix, bifix, factor, and
subword, respectively, PC, PF and PCL stand for prefix-convex, prefix-free, and
prefix-closed languages, etc. The classes in small rectangular boxes are closed under
concatenation; we discuss this later. The classes in the large rectangle correspond
to codes. The only difference between the solid and dashed lines is that the dashed
lines indicate free and closed languages as special cases of convex languages, while
solid lines show classes defined by changing the underlying binary relation.

Proposition 8. All containments shown in Figure 1 are proper, and there are no
other containments, except those implied by transitivity.

Proof. First, we verify that the containments shown do indeed hold. Any class
of the form BX, where X ∈ {C,CL, F} is the intersection of PX and SX, by
definition. Also, BX ⊇ FX, because every prefix and suffix is a factor, and FX ⊇
WX, because every factor is a subword. This explains the solid lines. Next, for Y ∈
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Factorial

BC
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WC

SCPC

PCL SCL

WCL
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CODES

BCL

FCLLanguages

Figure 1: Classes of convex languages

{P, S,B, F,W}, classes Y CL and Y F are special cases of Y C by Propositions 1(3)
and 2; this accounts for the dashed lines.

Second, we show that no class contains any other class except as shown, or
implied by transitivity of set containment. We consider each class in turn, starting
with the maximal ones.

The prefix-convex class PC: It suffices to show that PC contains neither SCL

nor SF . We have L1 = {ε, a, ba} ∈ SCL\PC, and L2 = {a, abb} ∈ SF \PC.

The suffix-convex class SC: Use left-right symmetry with PC.

The prefix-closed class PCL: It suffices to show that PCL contains neither
SCL nor WF . Since PC does not contain SCL, neither does its subclass
PCL. Also, L3 = {a, b} ∈ WF \ PCL.

The suffix-closed class SCL: Use left-right symmetry with PCL.

The prefix-free class PF : It suffices to show that PF contains neither SF nor
WCL. Since PC does not contain SF , neither does PF . Also, L4 = {ε, a} ∈
WCL \ PF .

The suffix-free class SF : Use left-right symmetry with PF .

The bifix-convex class BC: It suffices to show that BC does not contain any
class from {PCL, SCL,PF, SF}. This follows because L5 = {ε, a, ab} ∈
PCL \ BC, L1 = {ε, a, ba} ∈ SCL \ BC, L6 = {b, aab} ∈ PF \ BC, and
L2 = {a, abb} ∈ SF \ BC.
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The bifix-free class BF : It suffices to show that BF does not contain any class
from {WCL,PF, SF}. We have L4 = {ε, a} ∈ WCL \ BF , L6 = {b, aab} ∈
PF \ BF , and L2 = {a, abb} ∈ SF \ BF .

The factor-convex class FC: It suffices to show that FC does not contain any
class from {PCL, SCL,BF}. Since BC does not contain PCL or SCL,
neither does FC. Also, L7 = {b, aba} ∈ BF \ FC.

The bifix-closed class BCL: It suffices to show that BCL does not contain any
class from {PCL, SCL,WF}. Since FC does not contain PCL or SCL,
neither does BCL. Also, L8 = {a} ∈ WF \ BCL.

The factor-free class FF : It suffices to show that FF does not contain any class
from {WCL,BF}. Since BF does not contain WCL, neither does FF . Since
FC does not contain BF , neither does FF .

The subword-convex class WC: It suffices to show that WC contains neither
BCL nor FF . We have L9 = {ε, a, b, ab, ba, aba} ∈ BCL \ WC, and L10 =
{aa, abba} ∈ FF \ WC.

The subword-closed class WCL: It suffices to show that WCL contains neither
BCL nor WF . Since WC does not contain BCL, neither does WCL. Also,
L8 = {a} ∈ WF \ WCL.

The subword-free class WF : It is enough to show that WF contains neither
WCL nor FF . Since FF does not contain WCL, neither does WF . Also,
L10 = {aa, abba} ∈ FF \ WF .

This completes the proof.

Remark 2. PC ∩ SCL = PCL ∩ SCL = BCL = SC ∩ PCL.

Proof. By definition, BCL = PCL ∩ SCL. From Figure 1, we have PC ∩ SCL ⊇
BCL. Conversely, if L is suffix-closed, then it contains ε, which is also a prefix
of every word; thus, if L is also prefix-convex, then it is prefix-closed, and hence
bifix-closed. The last equality follows by left-right symmetry.

3.1 One-letter alphabets

The length of a word w ∈ Σ∗ is |w|, and wR is the reverse of w. The reverse of L

is LR = {wR | w ∈ L}.
Languages over one-letter alphabets have very special properties. Note that, if

L ⊆ {a}∗, then L = LR. Also, the statements “u is a prefix of w”, “u is a suffix of
w”, “u is a factor of w”, and “u is a subword of w” are all equivalent to each other
and to “|u| ≤ |w|”. Thus the following are easily verified:

Proposition 9. If Σ = {a}, and L ⊆ Σ∗, then the following hold:
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1. If X stands for “prefix”, “suffix”, “bifix”, “factor”, or “subword”, then all
the statements of the form X-convex are equivalent, all the statements of the
form X-free are equivalent, and all the statements of the form X-closed are
equivalent.

2. L is prefix-convex if and only if it is empty, or has the form {ai | m ≤ i ≤
m + n}, or {ai | m ≤ i} = ama∗, for some m ≥ 0, n ≥ 0.

3. L is prefix-closed if and only if it is empty, or has the form {ai | 0 ≤ i ≤ m},
for some m ≥ 0, or {ai | 0 ≤ i} = a∗.

4. L is prefix-free if and only if it is empty, or contains only one word.

5. If K,L ⊆ Σ∗ are prefix-convex, then so is KL.

4 Closure in E-convex languages

Thierrin [20] proved the closure results of Table 1 for subword-convex languages.

Table 1: Thierrin’s closure results for the subword relation.

convex closed converse closed
intersection yes yes yes
union no yes yes
complement no no no
concatenation no yes yes
star no yes no

We generalize and extend these results. We first consider the closure properties
of convex, free, and closed classes of languages. Converse closed classes are studied
in Section 5.

4.1 Intersection, union and complement

Proposition 10. If K,L ⊆ Σ∗ are E-convex (E-free, or E-closed), then so is
M = K ∩ L.

Proof. If M is not E-convex, there exist u,w ∈ M and v 6∈ M such that u E v,
u E w, and v E w. Since u,w ∈ K and u,w ∈ L, and K and L are E-convex, we
have v ∈ K and v ∈ L, which contradicts that v 6∈ M .

If M is not E-free, there exist v, w ∈ M such that v ⊳ w. Since v, w ∈ K, this
contradicts that K is E-free.

If M is not E-closed, there exist w ∈ M , v 6∈ M such that v E w. Then either
v 6∈ K or v 6∈ L. In the first case, w ∈ K and v 6∈ K contradicts that K is E-closed.
In the second case, L cannot be E-closed.
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Corollary 3. All the classes in Figure 1 are closed under intersection.

The following is easily verified:

Proposition 11. If K,L ⊆ Σ∗ are E-closed, then so is K ∪ L. If Ln is E-closed
for n ≥ 1, then so is

⋃∞

n=1
Ln.

Corollary 4. All the closed classes, PCL, SCL, BCL = FCL, and WCL, are
closed under union.

Remark 3. The remaining classes in Figure 1 are not closed under union. Let K =
{ε}, L = {aa}; both languages are X-convex and X-free for all X ∈ {P, S,B, F,W}.
However, K ∪ L is neither X-convex nor X-free.

Remark 4. None of the classes is closed under complementation. The language
L = {a} is in XC for all X ∈ {P, S,B, F,W}, but its complement is not. Also, L

is in XF , but L is not. The language K = {ε} is in XCL, but K is not.

4.2 Concatenation and star

In general, convex languages are not closed under concatenation and star, even if
the relation E is one of prefix, suffix, factor or subword relations.

Remark 5. If L ⊆ Σ∗ is prefix-(suffix-, bifix-, factor-, or subword-)convex, then
L2 is not necessarily prefix-(suffix-, bifix-, factor-, or subword-)convex. Hence these
languages are not closed under concatenation.

Proof. L = {a, b, ab, ad, ca} is prefix-, suffix-, factor-, and subword-convex, but L2

is not, since ab, abca ∈ L2 but abc 6∈ L2, and ab, adab ∈ L2, but dab 6∈ L2.

For concatenation of converse closed languages, see Section 5. For closed and
free languages see Section 6.

Remark 6. If L ⊆ Σ∗ is prefix-(suffix-, bifix-, factor-, or subword-)convex, then
L∗ is not necessarily prefix-(suffix-, bifix-, factor-, or subword-)convex. The same
holds if we replace “convex” by “free” or “converse closed”.

Proof. If Σ = {a}, L = {aa} is prefix-, suffix-, bifix-, factor-, and subword-convex,
and -free, but (aa)∗ is not. Also, L = aaa∗ is converse X-closed for all X, but
L∗ = L ∪ {ε} is not.

For the star of closed languages see Section 6.2.

4.3 Quotients

If x ∈ Σ∗ and L ⊆ Σ∗, then the left quotient of L by x is x−1L = {w ∈ Σ∗ | xw ∈ L}.
The right quotient of L by x is Lx−1 = {w ∈ Σ∗ | wx ∈ L}.

A binary relation is left-invariant (right-invariant) if u E v implies xu E xv

(ux E vx).5

5The terms ‘left compatible’ and ‘right compatible’ are used in [13, 18].
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Proposition 12. If E is left-invariant, and L is E-convex (E-free or E-closed),
then M = x−1L is E-convex (E-free or E-closed), for any x ∈ Σ∗. The same holds
if ‘left’ is replaced by ‘right’ and ‘x−1L’ by ‘Lx−1’.

Proof. Suppose L is E-convex. If M is not E-convex, then there exist u,w ∈ M

and v 6∈ M such that u E v, u E w, and v E w. If E is left-invariant, then xu E xv,
xu E xw, and xv E xw, and xu and xw ∈ L, while xv 6∈ L. This contradicts that L

is E-convex.
Suppose L is E-free. If M is not E-free, there exist v, w ∈ M such that v ⊳ w;

then xv, xw ∈ L. If E is left-invariant, then xv ⊳ xw, which contradicts that L is
E-free.

Suppose L is E-closed. If M is not E-closed, there exist w ∈ M , v 6∈ M such
that v E w; then xw ∈ L and xv 6∈ L. If E is left-invariant, then xv E xw, which
contradicts that L is E-closed.

The claim for the case where E is right-invariant follows by duality.

Example 1 shows that the invariance conditions of Proposition 12 are not nec-
essary. The relation ≤2 is not left-invariant, since aa ≤2 a but a(aa) 6≤2 a(a).
The left (and right) quotient of J by any word is J . The left quotient of K by w

is K (respectively L), if w has even (respectively odd) length. Similarly, the left
quotient of L by w is L (respectively K), if w has even (respectively odd) length.
The left quotient of ∅ is ∅. Thus the left quotient of every ≤2-convex language is
≤2-convex. Similarly, the left quotient of every ≤2-free language is ≤2-free. On the
other hand, the left quotient of L by a is K, which is not ≤2-closed.

Corollary 5. The classes PC, PCL and PF are closed under left quotient, SC,
SCL and SF are closed under right quotient, and WC, WCL and WF are closed
under both quotients.

Remark 7. The classes BC, BF , FC, FCL and FF are not closed under either
type of quotient. For let L = {ε, a, b, ab, ba, aba}; then L is bifix-convex, factor-
convex and factor-closed, but a−1L = {ε, b, ba} and La−1 = {ε, b, ab} are not. Also,
L = {bb, bab} is bifix-free and factor-free, but b−1L = {b, ab} and Lb−1 = {b, ba}
are neither.

4.4 Homomorphism and inverse homomorphism

If S is a set, then 2S is the set of all subsets of S. Let Σ and ∆ be alphabets.
A homomorphism is a map h : Σ∗ → ∆∗ such that h(uv) = h(u)h(v) for all
u, v ∈ Σ∗. If L ⊆ Σ∗, then h(L) =

⋃
w∈L{h(w)}. The inverse homomorphism of h

is h−1 : h(Σ∗) → 2Σ
∗

defined by h−1(x) = {w ∈ Σ∗ | h(w) = x}, for all x ∈ h(Σ∗).
If L ⊆ h(Σ∗), then the inverse image of L under h is h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}.
A substitution is a map s : Σ∗ → 2∆

∗

such that s(ε) = {ε}, s(uv) = s(u)s(v) for all
u, v ∈ Σ∗, and s(L) =

⋃
w∈L{s(w)}.

Remark 8. None of the classes from Figure 1 is closed under homomorphism. If
Σ = ∆ = {a}, h(a) = aa, L = {ε, a}, then h(L) = {ε, aa}, L is in XC and in XCL,
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for all X ∈ {P, S,B, F,W}, but h(L) is not. Also, if L = {a, b}, h(a) = ε, h(b) = a,
then h(L) = {ε, a}. Now L is in XF , but h(L) is not. It follows that none of the
classes from Figure 1 is closed under substitution.

Let E be a binary relation on Σ∗, and E′, a binary relation on ∆∗. Then h is
a (E,E′)-homomorphism6 if u E v implies h(u) E′ h(v).

Proposition 13. Let (Σ∗,E) and (∆∗,E′) be free monoids with binary relations,
let h : Σ∗ → ∆∗ be a (E,E′)-homomorphism, and let K ⊆ h(Σ∗). If K is E′-convex
(E′-free, or E′-closed), then L = h−1(K) is E-convex (E-free, or E-closed).

Proof. Suppose K is E′-convex, but L is not E-convex. Then there exist u,w ∈ L,
v 6∈ L such that uEv, uEw, and vEw. Since h is a (E,E′)-homomorphism, we also
have h(u), h(w) ∈ K, h(v) 6∈ K, and h(u) E′ h(v), h(u) E′ h(w), and h(v) E′ h(w),
which contradicts that K is E′-convex.

Suppose K is E′-free, but L = h−1(K) is not E-free. Then there exist v, w ∈ L

such that v ⊳ w. Since h is a (E,E′)-homomorphism, we also have h(v) ⊳′ h(w),
which contradicts that K is E′-free.

Suppose K is E′-closed, but L = h−1(K) is not E-closed. Then there exist
w ∈ L, v 6∈ L such that v E w. If h is a (E,E′)-homomorphism, then h(w) ∈ K,
h(v) 6∈ K, and h(v) E′ h(w), which contradicts that K is E′-closed.

Corollary 6. All the classes in Figure 1 are closed under inverse homomorphism.

Proof. If u is a prefix (suffix, factor, or subword) of v and h is a homomorphism,
then h(u) is a prefix (suffix, factor, or subword) of h(v). Thus, we have a (E,E′)-
homomorphism for all E ∈ {≤,�,⊑,⋐}.

5 Converse closed languages

For X ∈ {P, S, F,W}, let XCC be the class of converse closed languages cor-
responding to the prefix, suffix, factor, and subword relations, respectively. By
Proposition 1 (3), all these languages are convex. Similarly, let XC represent the
convex classes and XCL, the closed classes.

The classes XCC in Figure 2 are the converse closed classes, which are shown
in double rectangles. (We explain TR and TR′ later.) Each converse closed class
XCC = {L | L ∈ XCL} is in 1-1 correspondence with the corresponding closed
class. Note that each class XC contains languages that are not in XCL ∪ XCC ∪
XF . For example, {a, aa} is in XC but it is not in XCL ∪ XCC ∪ XF , for all
X ∈ {P, S, F,W}.

Applying Propositions 10, 11, 12, and 13 for intersection, union, quotient, and
inverse homomorphism, respectively, to the relation D, we obtain:

Corollary 7. All the classes of the form XCC are closed under intersection, union,
and inverse homomorphism. Moreover, PCC is closed under left quotient, SCC,
under right quotient, and WCC, under both.

6In the terminology of [11], the relation E is compatible with h (in the case where E = E′).
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Figure 2: Classes of converse closed languages

Remark 9. The class FCC is not closed under either quotient. Let E be ⊑,
let Σ = {a, b}, and let L = Σ∗abaΣ∗. Then L is ⊒-closed, but K = a−1L =
Σ∗abaΣ∗ + baΣ∗ is not, because ba ∈ K, but bba 6∈ K. Symmetrically, La−1 is not
⊒-closed.

Remark 10. No class XCC is closed under homomorphism. For let Σ = ∆ =
{a, b}, h(a) = h(b) = b, and L = {ε, a}. Then L ∈ XCL and L = (b+aa+ab)Σ∗ =
Σ∗(b + aa + ab) = Σ∗(b + aa + ab)Σ∗ = Σ∗bΣ∗ + Σ∗aΣ∗aΣ∗ + Σ∗aΣ∗bΣ∗ ∈ XCC,

for all X ∈ {P, S, F,W}. However, h(L) = bb∗, and K = h(L) = ε + Σ∗aΣ∗ is not
in XCL, since b 6∈ K.

Remark 11. All the classes of the form XCC are closed under concatenation,
because we have (LΣ∗)(KΣ∗) = (LΣ∗K)Σ∗, etc. Also, all the classes are closed
under positive closure, which is defined as L+ = LL∗, because LΣ∗ ⊇ LΣ∗LΣ∗,
etc. However, converse closed classes are not closed under star if ǫ 6∈ L, because
{ε} ∪ LΣ∗ is not a right ideal, etc.

5.1 Transitive sofic languages

Factorial languages contain an interesting subclass which we discuss next; for more
details we refer the reader to the literature [3, 4, 16]. A language M ⊆ Σ∗ is a
monoid if it contains ε and is closed under concatenation. A monoid L is very
pure if uv, vu ∈ L implies u, v ∈ L. A factorial language is called sofic if it is
regular. A language L is transitive if for all u,w ∈ L, there exists x ∈ Σ∗ such that
v = uxw ∈ L. Let F (L) be the set of all factors of words in L.

Transitive sofic languages constitute the class TR in Figure 2, and TR′ is the
class of their complements. The following characterization is given in [3]:
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Proposition 14 (Béal & Perrin). A language L is sofic and transitive if and
only if there exists a very pure regular language M , which is a monoid, such that
L = F (M).

Example 3. Let Σ∗ = {a, b, c}, let M = (ab∗c + b)∗, and let L = F (M). To
find F (M) we construct a nondeterministic finite automaton N from the minimal
deterministic finite automaton D for M as follows. All the states of M , except
the rejecting “dead” state, are made both accepting and initial. This guarantees
that N accepts precisely all the factors of words of M . We then determinize N
using the standard subset construction to obtain the minimal deterministic finite
automaton A for L = F (M). We leave the details to the reader; the automaton
D has only three states, and A has only four. From A we can find the following
regular expressions for L:

L = b∗ + b∗c(b + ab∗c)∗(ε + ab∗) + b∗a(b + cb∗a)∗(ε + cb∗) = Σ∗(ab∗a + cb∗c)Σ∗.

Here the language G = ab∗c + b is a circular code [4] and is a minimal generating
set of M . The monoid M = G∗ is very pure, and L = F (M) is transitive.

Proposition 15. Let h : Σ∗ → ∆∗ be a homomorphism, let K ⊆ h(Σ∗) and let
L = h−1(K). If K is a transitive sofic language then so is L.

Proof. Since K is regular, so is L, since regular languages are closed under inverse
homomorphism. Suppose that u and w are in L, and let h(u) = x, h(w) = z. Since
K is transitive, for every x, z ∈ K there exists y ∈ ∆∗ such that xyz is in K. Since
K is factorial, we also have y ∈ K. Hence there exists v ∈ L such that h(v) = y.
Since h(uvw) = h(u)h(v)h(w) = xyz ∈ K, we also have uvw ∈ L, and we have
shown that L is transitive. Finally, if uvw ∈ L and v 6∈ L, then h(uvw) ∈ K and
h(v) 6∈ K, contradicting that K is factorial. Hence L is also factorial. Altogether,
L is transitive sofic.

Remark 12. Transitive sofic languages are not closed under left and right quo-
tients, intersection, union, complement and concatenation. Let Σ = {a, b, c, d, e},
let L be the transitive sofic language L of Example 3, and let K be a similar
language,

K = e∗ + e∗c(e + de∗c)∗(ε + de∗) + b∗d(e + ce∗d)∗(ε + ce∗) = Σ∗(de∗d + ce∗c)Σ∗.

Then L∩K = ε + c, which is not transitive, because, for instance, cxc 6∈ L∩K for
any x ∈ Σ∗. Also, for the language L of Example 3, cac ∈ a−1L, but a 6∈ a−1L;
hence a−1L is not factorial. Similarly, cac ∈ La−1, but a 6∈ La−1; hence La−1 is
not factorial. Moreover, let Σ = {a, b}, K = a∗, and L = b∗. Then K and L are
transitive, but K∪L and KL are not. We have a, b ∈ K∪L, but there is no x ∈ Σ∗

such that axb ∈ K∪L. Also, ab ∈ KL, but there is no x ∈ Σ∗ such that abxab ∈ L.
The complement of L is not factorial, since ε 6∈ L.
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5.2 Containments involving converse closed languages

Proposition 16. All containments shown in Figures 1 and 2 are proper, and there
are no other containments, except those implied by transitivity.

Proof. We consider the classes starting with the largest ones.

1. PC 6⊇ SCC: L11 = (a + b)∗(aa + aaba) ∈ SCC, because L11 is a left ideal,
but L11 is not prefix-convex because aa, aaba ∈ L11, but aab 6∈ L11.

2. SC 6⊇ PCC: L12 = (aa + abaa)(a + b)∗ ∈ PCC \ SC, by a similar argument.

3. PCL 6⊇ TR′: L13 = (a+b+c)∗(ab∗a+cb∗c)(a+b+c)∗ ∈ TR′ \PCL, because
aa ∈ L13, but a 6∈ L13.

4. PCL 6⊇ WCC: L14 = (a + b)∗a(a + b)∗a(a + b)∗ ∈ WCC \ PCL, because
aa ∈ L14, but a 6∈ L14.

5. SCL 6⊇ TR′: L13 ∈ TR′ \ SCL.

6. SCL 6⊇ WCC: L14 ∈ WCC \ SCL.

7. PF 6⊇ TR′: L13 ∈ TR′ \ PF , because aaa ∈ L13 and aa ∈ L13.

8. PF 6⊇ WCC: L14 ∈ WCC \ PF , because aaa ∈ L14 and aa ∈ L14.

9. SF 6⊇ TR′: L13 ∈ TR′ \ SF .

10. SF 6⊇ WCC: L14 ∈ WCC \ SF .

11. PCC 6⊇ WCL: L4 = {ε, a} ∈ WCL \ PCC.

12. PCC 6⊇ TR: L15 ∈ TR \ PCC, where L15 is L from Example 3, because
a ∈ L15, but aa 6∈ L15.

13. PCC 6⊇ WF : L8 = {a} ∈ WF \ PCC.

14. SCC 6⊇ WCL: L4 = {ε, a} ∈ WCL \ SCC.

15. SCC 6⊇ TR: L15 ∈ TR \ SCC.

16. SCC 6⊇ WF : L8 = {a} ∈ WF \ SCC.

17. FCC 6⊇ PCC: L16 = a(a + b)∗ ∈ PCC \ FCC.

18. FCC 6⊇ SCC: L17 = (a + b)∗a ∈ SCC \ FCC.

19. WCC 6⊇ FCC: L18 = (a+ b)∗aa(a+ b)∗ ∈ FCC \WCC, since aa ∈ L18, but
aba 6∈ L18.

20. TR′ 6⊇ WCC: L14 ∈ WCC \ TR′, because L14 = b∗ + b∗ab∗ is not transitive,
since it has no word axa for any x ∈ Σ∗.

21. WCC 6⊇ TR′: L13 ∈ TR′ \ WCC, because aa ∈ L13, but aca 6∈ L13.

Hence all the classes shown in the two figures are distinct and there are no other
containments.
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6 Concatenation in free and closed languages

The next example illustrates that, in general, E-closed and E-free languages are
not closed under concatenation.

Example 4. Suppose u E v if and only if either u = v or |u| = |v| and u precedes
v in the lexicographic order. Thus, for Σ = {a, b}, we have a ⊳ b, aa ⊳ ab ⊳ ba ⊳ bb,
aaa ⊳ aab ⊳ aba ⊳ · · · ⊳ bbb, etc. Let K = {a, bb}; then K is E-free. However,
KK = {aa, abb, bba, bbbb} is not. Also, if L = {aa, ab}, then L is E-closed. However,
LL = {aaaa, aaab, abaa, abab} is not. Hence, for this binary relation, the classes of
E-closed and E-free languages are not closed under concatenation.

6.1 Free languages and concatenation

A binary relation E is propagating if x1x2 ⊳ y1y2 implies that

(x1 ⊳ y1) ∨ (y1 ⊳ x1) ∨ (x2 ⊳ y2) ∨ (y2 ⊳ x2),

for all x1, x2, y1, y2 ∈ Σ∗, where ∨ denotes disjunction.

Proposition 17. If E is propagating, and K and L are E-free, then so is KL.

Proof. Suppose K and L are E-free, but M = KL is not. Then there are x1, y1 ∈ K,
x2, y2 ∈ L such that x1x2 ⊳ y1y2. Since E is propagating, either x1 and y1 are
unequal and comparable under E, or x2 and y2 are. Thus either K or L is not
E-free, which is a contradiction.

Lemma 1. The binary relations ≤, �, ⊑ and ⋐ are propagating.

Proof. Suppose x1x2 < y1y2; then x1x2v = y1y2, where v ∈ Σ∗ is nonempty. If
x1 < y1 or x1 > y1, the condition of the lemma is satisfied. If x1 = y1, then
x2 < y2, and the lemma holds. A symmetric argument works for �.

Suppose x1x2 ⊏ y1y2; then ux1x2v = y1y2, for some u, v ∈ Σ∗, where uv 6= ε.
If ux1 < y1, then x1 ⊏ y1. If ux1 > y1, then x2 ⊏ y2. If ux1 = y1 and u 6= ε, then
x1 ⊏ y1. If ux1 = y1 and u = ε, then x1 = y1, and x2 ⊏ y2, since v 6= ε.

Now suppose that x1x2 ⋐ y1y2; then x1 = a1 · · · aj , x2 = aj+1 · · · an, for some j,
and y1 = v0a1v1 · · · aiv

′
i and y2 = v′′

i ai+1vi+1 · · · anvn, for some i, where vi = v′
iv

′′
i ,

v0, . . . , vn ∈ Σ∗, a1, . . . , an ∈ Σ, and v1 · · · vn 6= ε. If j < i, then x1 ⋐ y1. If
j > i, then x2 ⋐ y2. If j = i, and v0v1 · · · v

′
i 6= ε, then x1 ⋐ y1. If j = i, and

v0v1 · · · v
′
i = ε, then x2 ⋐ y2.

Corollary 8. The prefix-, suffix-, bifix-, factor-, and subword-free classes are closed
under concatenation.
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6.2 Closed languages and concatenation and star

We now consider E-closed languages. A binary relation E is factoring if x E y1y2

implies that x = x1x2 for some x1, x2 ∈ Σ∗ such that x1 E y1, x2 E y2.

Proposition 18. If E is factoring, and K and L are E-closed, then so is KL.

Proof. Suppose K and L are E-closed, but M = KL is not. Then there exist
x 6∈ M , y1 ∈ K, y2 ∈ L such that x ⊳ y1y2. Since E is factoring, x = x1x2, where
x1 E y1 and x2 E y2. If K and L are E-closed, then x1 ∈ K, x2 ∈ L, and x ∈ M—a
contradiction.

Lemma 2. The binary relations ≤, �, ⊑ and ⋐ are factoring.

Proof. Suppose x ≤ y1y2; then xv = y1y2 for some v ∈ Σ∗. For x ≤ y1, since
ε ≤ y2, we have x1 = x, and x2 = ε. If x > y1, then x = x1x2, where x1 = y1 and
x2v = y2. Then x1 ≤ y1, and x2 ≤ y2. A symmetric argument works for �.

Suppose x ⊑ y1y2; then uxv = y1y2, for some u, v ∈ Σ∗. If ux ≤ y1, then
x1 = x ⊑ y1 and x2 = ε ⊑ y2. If ux > y1 and u < y1, then x = x1x2, where
ux1 = y1 and x2v = y2. Then x1 ⊑ y1, and x2 ⊑ y2. If ux > y1 and u ≥ y1, then
x1 = ε ⊑ y1 and x2 = x ⊑ y2.

Now suppose that x ⋐ y1y2 = v; then x = a1 · · · an and v = v0a1v1 · · · anvn,
where v0, . . . , vn ∈ Σ∗, a1, . . . , an ∈ Σ, and, for some i we have y1 = v0a1v1 · · · aiv

′
i

and y2 = v′′
i ai+1vi+1 · · · anvn, where vi = v′

iv
′′
i . If i = n, then x1 = x ⋐ y1

and x2 = ε ⋐ y2. If i < n, then x = x1x2, where x1 = a1 · · · ai ⋐ y1 and
x2 = ai+1 · · · an ⋐ y2.

Corollary 9. The prefix-, suffix-, bifix- (= factor-), and subword-closed classes are
closed under concatenation.

A binary relation E is ε-full if ε E w for all w ∈ Σ∗. Note that all our example
relations are ε-full.

Proposition 19. If E is antisymmetric, factoring, and ε-full, and L is E-closed,
then so is L∗.

Proof. We adapt Thierrin’s proof [20] given for the case where E is the subword
relation. Suppose L is E-closed. If L = ∅, then L∗ = {ε}. If there is no w ∈ Σ∗,
w 6= ε, such that w E ε, then L∗ is E-closed. If there is such a w, then ε E w,
since E is ε-full. However, this contradicts the antisymmetry of E. Thus, if L = ∅,
then L∗ is E-closed. Therefore assume that L 6= ∅. Since E is ε-full, we must have
ε ∈ L. We argue that L∗ is E-closed if Ln is E-closed for each n ≥ 0. As we have
shown above, L0 = {ε} is E-closed. If n = 1, then Ln = L, and L is E-closed
by assumption. For n > 1, since E is factoring, Ln is E-closed by Proposition 18.
Since the union of E-closed languages is E-closed by Proposition 11, we have our
result.

Corollary 10. The prefix-, suffix-, bifix- (= factor-), and subword-closed classes
are closed under star.
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7 Conclusions

We have provided a common framework for several classes of languages, and we
have shown that closure properties of these classes can be studied using binary
relations on Σ∗. Table 2 summarizes our closure results. In case closure holds only
for some of the relations, we specify these relations in the table.

Table 2: Closure results for prefix, suffix, factor, and subword relations.

convex closed converse closed free
intersection yes yes yes yes
union no yes yes no
complement no no no no
concatenation no yes yes yes
Kleene star no yes no no
positive closure no yes yes no
left quotient prefix prefix prefix prefix

subword subword subword subword
right quotient suffix suffix suffix suffix

subword subword subword subword
homomorphism no no no no
inverse homomorphism yes yes yes yes

The problems of deciding whether a language specified by a deterministic or
nondeterministic finite automaton is prefix-, suffix-, factor-, or subword-convex,
-free, or -closed have been recently studied in [8].
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