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Alphabetical Satisfiability Problem for Trace

Equations∗
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Abstract

It is known that the satisfiability problem for equations over free partially

commutative monoids is decidable but computationally hard. In this paper

we consider the satisfiability problem for equations over free partially com-

mutative monoids under the constraint that the solution is a subset of the

alphabet. We prove that this problem is NP-complete for quadratic equations

and that its uniform version is NP-complete for linear equations.

Keywords: free partially commutative monoid, trace equation, NP-complete

problem

1 Introduction

The theory of word equations is an important subfield of the combinatorics on words
firstly introduced in 1954 by Markov [9] who, given an alphabet Σ of constants, a
set of unknowns Ξ and a word equation WL = WR with WL,WR ∈ (Σ ∪ Ξ)∗ pro-
posed the problem of stating whether an assignment ϕ : Ξ → Σ∗ exists such that
ϕ(WL) = ϕ(WR). This problem was solved more than 20 years later by Makanin
[8] who gave a very complicated algorithm to decide whether or not a word equa-
tion with constants has a solution. Later several authors considered the problem of
satisfiability of equations by a solution {ϕ(x)| x ∈ Ξ} satisfying some constraints.
In particular Robson and Diekert considered in [12] the problem of determining
whether equations on free monoids have or not a solution with fixed lengths and
they gave a linear algorithm for solving this problem for quadratic equations.
In the second half of ’90 attention was paid also to equations on free partially
commutative monoids. Free partially commutative monoids, firstly introduced in
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combinatorics [3], became very important in computer science for the theory of
concurrence in connection with the semantics of labelled Petri nets [11] and the
investigation of parallel program schemata [7]. The decidability of the satisfiability
problem for equations on free partially commutative monoids, trace equations for
short, was proved by Matiyasevich in [10] and by Diekert and al. [4, 5].
In this paper we consider the alphabetical satisfiability problem for trace equa-
tions with constants and unknowns, i.e. we look for the existence of a solution
{ϕ(x) ∈ Σ|x ∈ Ξ}. The alphabetical satisfiability problem for trace equations
presents some motivations coming from molecular biology and from reconstruction
of sentences in natural languages. For instance, recently much attention was paid
to partial words in the sense of [2], with motivations coming from different areas.
Several of these motivations suggest that also partial traces, i.e. the generaliza-
tion of partial words to trace monoids, deserve some attention. The alphabetical
satisfiability problem is the generalization of the compatibility problem of partial
words to the case of partial traces.
Using an argument which closely follows the proof of Theorem 1 in [6], we prove
that the general problem of alphabetical satisfiability for quadratic word equations
over a given free partially commutative monoid is NP-complete. Then we look
for the complexity class of the alphabetical satisfiability problem for linear trace
equations and we prove that the general problem is polynomial under particular
assumptions on the independence alphabet while the uniform problem (i.e. the
problem where even the independence alphabet is considered as variable parame-
ter) is NP-complete.
In Section 2 we start giving some necessary notations and definitions, Section 3
shows that the general problem of alphabetical satisfiability for quadratic trace
equations is NP-complete, while Sections 4 and 5 deal with the alphabetical sati-
sfiability for linear trace equations.

2 Preliminaries

Let Σ be a finite alphabet and let I ⊆ Σ×Σ be a binary irreflexive and symmetric
relation, called independence relation. We denote by D = (Σ × Σ) \ I the depen-
dence relation, and by ∼I the least congruence over Σ∗ generated by the relations
ab = ba, for all (a, b) ∈ I. The pairs (Σ, I) and (Σ, D) are called, respectively,
independence and dependence alphabet. For a subset A of Σ, let IA = (A×A) ∩ I.
If IA = ∅, then A is called a clique of the dependence alphabet, or a D-clique. If
IA = A×A, then A is called a clique of the independence alphabet, or a I-clique.
The free partially commutative monoid (or trace monoid) over (Σ, I), is the quo-
tient M(Σ, I) = Σ∗/ ∼I and it can be also denoted by M, when no confusion arises.
The elements of M are called traces and the trace with representative x ∈ Σ∗ is
denoted by [x].
Let Ξ be a finite set of unknowns and Θ = Σ ∪ Ξ. A trace equation with con-
stants over (Σ, I) has the form WL ≡ WR with WL,WR ∈ Θ+. A trace equation
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WL ≡WR is called linear if each unknown occurs at most once in WLWR and it is
called quadratic if each unknown occurs at most twice in WLWR.
An assignment is a map ϕ : Ξ→ Σ∗. It can be extended to the monoid homomor-
phism ϕ∗ : Θ∗ → Σ∗ by putting ϕ(a) = a for all a ∈ Σ. We say that the trace
equation WL ≡WR is satisfiable if ϕ∗(WL) ∼I ϕ

∗(WR) for some assignment ϕ. In
such case we say also that ϕ satisfies WL ≡WR and the set {ϕ(x) | x ∈ Ξ} is called
a solution of WL ≡WR. In the sequel, for simplicity, ϕ∗ is still denoted by ϕ.
We say that the trace equation WL ≡ WR is alphabetically satisfiable if it is satis-
fied by an assignment ϕ : Ξ → Σ, then ϕ is called an alphabetical assignment and
{ϕ(x) | x ∈ Ξ} an alphabetical solution of the trace equation.
We look for alphabetical solutions of WL ≡WR. It is obvious that, if |WL| 6= |WR|,
no assignment ϕ : Ξ → Σ satisfies WL ≡ WR, hence we always assume that
|WL| = |WR| and when we refer to an assignment, we always consider an alphabe-
tical assignment, if it is not differently specified.

3 Alphabetical satisfiability for quadratic trace

equations

In this section we prove that the general problem of checking whether a quadratic
trace equation over a given trace monoid M(Σ, I) has an alphabetical solution is
an NP -complete problem.
We recall the following well-known result:

Proposition 1. Let (Σ, D) =
⋃k

i=1(Ai, Di) be a union of subalphabets with Ii =
(Ai × Ai) \ Di, Mi = M(Ai, Ii) and let [πi] : M(Σ, I) → Mi be the canonical
homomorphisms for all i ∈ {1, 2, . . . k}.
Then the map π : M(Σ, I)→M1 × . . .×Mk, t 7→ (π1(t), . . . , πk(t))
is an injective (canonical) homomorphism.

Remark 1. If the sets Ai are D-cliques, Proposition 1 says that two traces are
equal if and only if their projections on the cliques Ai are equal.

In order to use the above Remark 1 in the case of trace equations and for all
A ⊆ Σ such that A×A ⊆ D, we define the homomorphism πA : (Σ∪Ξ)∗ → (A∪Ξ)∗

such that, for all x ∈ Σ ∪ Ξ,

πA(x) =

{

ǫ if x /∈ A ∪ Ξ
x otherwise

For any w ∈ (Σ ∪ Ξ)∗, the image πA(w) is called A-projection of w.
As a direct consequence of Proposition 1 we get the following result:

Lemma 1. Let A1, . . . , Ak be cliques of the dependence alphabet of the trace monoid
M(Σ, I). Then the trace equation WL ≡WR has a alphabetical solution if and only
if there exists a family of assignments {ϕi : Ξ→ Ai ∪ {ǫ}| i = 1, . . . , k} such that:

1. for each i ∈ {1, . . . , k}, ϕi satisfies the equation πAi
(WL) = πAi

(WR);



482 L. Breveglieri, A. Cherubini, C. Nuccio, and E. Rodaro

2. for all x ∈ Ξ there exists i ∈ {1, . . . , k} such that ϕi(x) ∈ Ai;

3. for all i ∈ {1, . . . , k}, x ∈ Ξ, if ϕi(x) ∈ Ai then, for all l ∈ {1, . . . , k} \ {i},
ϕl(x) = ǫ if ϕi(x) /∈ Ai ∩Al or ϕi(x) = ϕl(x) if ϕi(x) ∈ Ai ∩Al.

We recall that a system of word equations is quadratic if each unknown occurs
at most twice in the system. We use the following lemma whose proof is very close
to the proof of Theorem 1 in [6]:

Lemma 2. Let |Σ| ≥ 2. The following problem is NP-complete.
INSTANCE A system of quadratic word equations.
QUESTION Is there an assignment ϕ : Ξ→ Σ ∪ {ǫ} that satisfies the system?

Proof. It is easy to verify that the problem is in NP. To prove that it is NP-hard we
give a reduction from 3-SAT. Let F = C0∧C1∧ . . .∧CM−1 be a Boolean formula in
3-CNF over a finite set of variables Γ. Each clause has the form Ci = l3i∨l3i+1∨l3i+2

where l3i+h denotes a literal. We can assume that each variable has both positive
and negative occurrences.
We associate the formula F with the following quadratic system S(F,Ξ) of word
equations with constants a, b, a 6= b and the following set Ξ of unknowns:

• yi, ti, 0 ≤ i ≤M − 1,

• xj , 0 ≤ j ≤ 3M − 1,

• zX , uX , for all X ∈ Γ,

• vX,s, for all X ∈ Γ, 0 < s ≤M − 1.

For each clause Ci we consider the equation

x3ix3i+1x3i+2 = ayiti (1)

Now let X ∈ Γ and consider the set of positions D(X) = {i1, i2, . . . , ir} of the
literal X in F and the set of positions C(X) = {j1, j2, . . . , jk} of the literal ¬X in
F . For each X ∈ Γ we introduce another equation

L(X) = R(X) (2)

where, if r ≤ k,

L(X) = xi1xi2 . . . xir
vX,1vX,2 . . . vX,k−ruXa

kbxj1xj2 . . . xjk
zX

and
R(X) = akbakb

or, if r > k,

L(X) = xi1xi2 . . . xir
uXa

rbxj1xj2 . . . xjk
vX,1vX,2 . . . vX,r−kzX

and
R(X) = arbarb.



Alphabetical Satisfiability Problem for Trace Equations 483

It is easy to see that F is satisfiable if and only if the system S(F,Ξ), formed by
the above equations (1),(2), has a solution whose lengths are not greater than 1.
In fact if ϕ : Ξ→ Σ ∪ {ǫ} is a possible assignment which satisfies the system then,
encoding the value true for the variable X of F in the fact that ϕ(xi) = a for
all i ∈ D(X), ϕ(xj) = ǫ for all j ∈ C(X) and the value false in the fact that
ϕ(xj) = a for all j ∈ C(X), ϕ(xi) = ǫ for all i ∈ D(X), the equations of the form
(1) guarantee that at least one literal in each clause assumes the value true, while
the equations of type (2) guarantee that the values of the literals are given in a
coherent way.

The next example illustrates the construction done in the proof of Lemma 1.

Example 1. Let us consider the following Boolean formula in 3-CNF over the set
of variable Γ = {X1, X2, X3}:

F = (X1 ∨ ¬X2 ∨X3) ∧ (X1 ∨ ¬X2 ∨ ¬X3) ∧ (¬X1 ∨X2 ∨X3).

We build the quadratic system S(F,Ξ) of word equations with constants a, b, a 6= b
and this set Ξ of unknowns:

• yi, ti, 0 ≤ i ≤ 2

• xj , 0 ≤ j ≤ 8

• vX1,1, vX2,1, vX3,1, vX1,2, vX2,2, vX3,2

• uX1
, zX1

, uX2
, zX2

, uX3
, zX3

where the unknowns yi, ti are associated with the i-th clause Ci, the unknown xi

to the i-th literal in F and the unknowns uXi
, zXi

, vXi,s to the variable Xi.
We associate with the three clauses of F these three word equations:

x0x1x2 = ay0t0

x3x4x5 = ay1t1

x6x7x8 = ay2t2

Then we introduce a word equation for each variable Xi. For example, for the
variable X1 we build the following word equation:

x0x3uX1
a2bx6vX1,1zX1

= a2ba2b. (3)

The left side of the equation is built as follows. The variable X1 occurs in the first,
forth and seventh literal so in the equation we use the unknowns x0, x3, x6. The
factor uX1

a2b, where the exponent of a is the maximum between the numbers of
positive and negative occurrences of X1, is a separator between the unknowns that
encode the positive and negative occurrences of X1. After the unknown x6 (that
corresponds to the negative occurrence of X1) we put a number of unknowns vX1,s

equal to the difference between the number of positive and negative occurrences of
X1 and at the end we put the variable zX1

. The right side of the word equation
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is a2ba2b where again the exponent of a is the maximum between the number of
positive and negative occurrences of X1.
Similarly, we proceed for the variable X2 but, since the number of positive oc-
currences of X2 is smaller than the number of its negative occurrences, after the
unknown x7 (encoding the positive occurrence of X2 in the eighth literal) we put a
number of unknowns vX2,s equal to the difference between the number of negative
and positive occurrences of X2. We obtain the following equation:

x7vX2,1uX2
a2bx1x4zX2

= a2ba2b

Analogously we build the word equation relative toX3 and we obtain this quadratic
system of word equations:































x0x1x2 = ay0t0
x3x4x5 = ay1t1
x6x7x8 = ay2t2
x0x3uX1

a2bx6vX1,1uX1
= a2ba2b (3)

x7vX2,1uX2
a2bx1x4zX2

= a2ba2b
x2x8uX3

a2bx5vX3,1zX3
= a2ba2b

The formula F is satisfiable if and only if there exists an assignment ϕ : Ξ →
{a, b} ∪ {ǫ} that satisfies the previous system. Suppose that such an assignment
exists and consider the word equation (3). Since its right side is a2ba2b and the left
side contains the factor a2b, it follows that

ϕ(x0) = ϕ(x3) = a, ϕ(uX1
) = b and ϕ(x6vX1,1zX1

) = ǫ (4)

or

ϕ(x0x3uX1
) = ǫ and ϕ(x6) = ϕ(vX1,1) = a, ϕ(zX1

) = b (5)

Notice that if we encode the value true (resp. false) for the variable X in the
fact that ϕ(xi) = a (resp. ϕ(xi) = ǫ) for all indices i ∈ D(X) and ϕ(xj) = ǫ
(resp. ϕ(xj) = a) for all indices j ∈ C(X), conditions (4) and (5) mean that the
assignment of truth value to X1 is coherent. A similar argument applies for the
coherence in the truth assignments to X2 and X3.
Now consider the first three word equations of the system relative to the three
clauses of F . The presence of the letter a in the right side encodes that at least one
literal in each clause takes the value true and so each clause is satisfied. Hence
a truth assignment satisfying F corresponds to the assignment ϕ satisfying the
system.
Viceversa, it is easy to verify that to each truth assignment that satisfies F , corre-
sponds an assignment ϕ : Ξ→ {a, b} ∪ {ǫ} satisfying the systems.

As a consequence of Lemma 2 we can prove the following result:

Theorem 1. The general problem of alphabetical satisfiability of a quadratic trace
equation is NP-complete.
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Proof. It is quite obvious that this problem is in NP. Then to check that it is NP-
hard we consider an alphabet Σ = {a, b, c, ♯} with the dependence relation D whose
maximal D-cliques are {a, b, ♯}, {c, ♯} and the set of unknowns Ξ defined in Lemma
2 and we give a reduction from 3-SAT. Using the notation introduced in the proof
of Lemma 2 we consider the following equation:

M−1
∏

i=0

(x3ix3i+1x3i+2♯)
∏

X∈Γ

(L(X)♯) =

M−1
∏

i=0

(ayiti♯)
∏

X∈Γ

(R(X)clX ♯) (6)

Let I = (Σ∗ ×Σ∗) \D. By Lemma 1, this equation has an alphabetical solution in
M(Σ, I) if and only if its projections on the D-cliques A1 = {a, b, ♯} and A2 =
{c, ♯} are satisfied respectively by the assignments ϕ1 and ϕ2 as in Lemma 1.
Moreover such an assignment ϕ1 exists if and only if there exists an assignment
ϕ : Ξ → {a, b} ∪ {ǫ} which satisfies the system S(F,Ξ). Indeed, notice that, for
each assignment ϕ1 satisfying the A1-projection of equation (6) that assigns ♯ to
the unknowns of a subset Υ ⊆ Ξ, there exists an assignment ϕ : Ξ → {a, b} ∪ {ǫ}
which satisfies the system S(F,Ξ) and such that

∀z ∈ Ξ ϕ(z) =

{

ǫ if z ∈ Υ
ϕ1(z) otherwise

Finally notice that, for each assignment ϕ1 satisfying the A1-projection of equation
(6), there always exists an assignment ϕ2 satisfying the A2-projection of equation
(6) such that ϕ1 and ϕ2 fulfill conditions in Lemma 1. Whence to decide whether
equation (6) has an alphabetical solution is equivalent to decide whether the system
S(F,Ξ) has a solution whose lengths are not greater than 1. Then the problem is
NP-complete.

Remark 2. If in the proof of Theorem 1 we replace each occurrence of the sym-
bol ♯ with the string ba2M+1b where M is the number of clauses in the formula
F , we obtain a new equation having ({a, b, c}, {(a, a), (b, b), (a, b), (b, a), (c, c)}) as
dependence alphabet. With some minor changes we can prove that such equation
is satisfiable if and only if the system S(F,Ξ) has a solution whose lengths are not
greater than 1. Then the general problem of the alphabetical satisfiability of a
quadratic trace equation is NP-complete even when |Σ| = 3.

4 The uniform problem of alphabetical satisfiabi-

lity for linear trace equations

Let w ∈ (Σ ∪ Ξ)+, the sets L(w) = {ϕ(w)| ϕ : Ξ → Σ} and [L](w) = {[v]|v ∈
L(w)} are called respectively the language associated with w and the trace language
associated with w.
Let WL ≡WR be a linear trace equation on the free partially commutative monoid
M(Σ, I). The equation is satisfied by an alphabetical assignment ϕ : Ξ → Σ if
and only if the finite trace languages associated with WL and WR have non empty
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intersection. Since the membership problem for a regular trace language (i.e. for
a trace language T = {[v]| v ∈ R}, where R is a regular language) can be solved
in polynomial time with respect to the length of the input word [1], there is a
naive algorithm for checking whether a trace equation has or not an alphabetical
solution. Obviously this algorithm has exponential time complexity because, for
all w ∈ (Σ∪Ξ)+, the number of words in [L](w) is exponential with respect to the
number of unknowns occurring in w.
It is natural to ask whether the alphabetical satisfiability problem is or not NP-
complete. In particular, we obtained the following result:

Theorem 2. The uniform problem of the alphabetical satisfiability for linear trace
equations is NP-complete.

Proof. Again, the difficult part is to prove that the problem is NP-hard. We give
a reduction from 3-SAT. Let F = C0 ∧ C1 ∧ . . . ∧ CM−1 be a Boolean formula in
3-CNF over a set of n variables Γ = {X1, . . . , Xn}, where

∀ j ∈ {0, 1, . . . ,M − 1} Cj = l3j ∨ l3j+1 ∨ l3j+2

and l3j+h, with 0 ≤ h ≤ 2, are literals. We define the alphabet ΣF and the
independence relation IF in the following way:

ΣF =
⋃

i∈{1,...,n}
j∈{0,1,...,M−1}

{ dj
i , c

j
i , z

j
i , u

j
i , e, ⊥j , ♯j , tj }

IF =

(

⋃

i,j∈{1,...,n}
h,k∈{0,1,...,M−1}

(

⋃

k≥h

i6=j

{(zh
i , d

k
j ), (uh

i , c
k
j ), }∪

⋃

k≥h

{(uh
i , tk), (uh

i , d
k
j ), (zh

i , c
k
j ), (zh

i , tk)}∪

⋃

h>k

{(uh
i ,⊥k), (uh

i , ♯k), (zh
i ,⊥k), (zh

i , ♯k), (⊥k, d
h
j ), (♯k, d

h
j ), (⊥k, c

h
j ), (♯k, c

h
j )}∪

⋃

h6=k

{(uh
i , u

k
j ), (zh

i , z
k
j )} ∪ {(uh

i , z
k
j ) |h 6= k, i 6= j} ∪ {(⊥h, tk), (♯h, tk)}∪

{(uh
i , e), (z

h
i , e), (⊥k, e), (♯k, e)}

))sym

where, for a binary relation R on an alphabet Σ, Rsym denotes the least symmetric
relation on Σ containing R. Now, starting from the formula F , we build a trace
equation with constants in ΣF and set of unknowns Ξ = {yi| i = 0, 1, . . . , 4M − 1}
such that its subsets {yi| i = 0, 1, . . . , 3M} and {yi| i = 3M + 1, . . . , 4M − 1} are in
one to one correspondence respectively with the set of literals and with the set of
clauses. In this equation the letters dj

i and cji encode the fact that the variable Xi
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has respectively a positive or negative occurrence in the clause Cj . The letters zj
i

and uj
i mean that the variable Xi assumes respectively the value false or true in

the clause Cj . The letters e encode the fact that the truth values of some variables
occurring in a clause C are not relevant in order to satisfy the formula F . In the
sequel these variables of C and the unknowns associated with the literals of C where
they occur are called irrelevant variables of C and irrelevant unknowns associated
with C. The other variables and the unknowns associated with the literals where
they occur are call relevant variables of C and relevant unknowns associated with C.
Finally the letters ⊥j , ♯j , tj act like filters with the aim of assuring two conditions:

1. there is exactly one relevant unknown associated with each clause;

2. if y, y′ are unknowns associated respectively with literals of two different
clauses Ch and Ck where the same variable Xi occurs, then no assignment
ϕ such that either ϕ(y) = zh

i and ϕ(y′) = uk
i or ϕ(y) = uh

i and ϕ(y′) = zk
i

satisfies the equation.

This last condition corresponds to the fact that if a variable Xi is relevant in
different clauses of F then the truth values assigned with Xi are coherent, i.e. Xi

cannot assume the value true in a clause and the value false in another clause.
For each j ∈ {0, 1, . . . ,M − 1} and 0 ≤ h ≤ 2, we associate with the literal l3j+h

the unknown y3j+h ∈ Ξ and a letter aj
h ∈ ΣF where

aj
h =

{

dj
r if l3j+h = Xr

cjr if l3j+h = ¬Xr

In this way, each Cj = l3j ∨ l3j+1 ∨ l3j+2 is associated with the following word

wj = y3j y3j+1 y3j+2 a
j
0 a

j
1 a

j
2 ∈ (ΣF ∪ Ξ)+.

Finally, we associate the formula F with the following words wF , w
′
F ∈ (ΣF ∪Ξ)+:

wF = w0♯0⊥0w1♯1⊥1 . . . ♯M−2⊥M−2wM−1♯M−1⊥M−1tM−1tM−2 . . . t1t0,

w′
F = e2a0e

2a1 . . . e
2aM−1tM−1y3M tM−2y3M+1 . . . t0y4M−1♯⊥,

where, for all j ∈ {0, 1, . . . ,M−1}, aj = aj
0a

j
1a

j
2 and ♯⊥ = ♯0⊥0♯1⊥1 . . . ♯M−1⊥M−1.

Then the formula F is satisfiable if and only if the trace equation wF ≡ w′
F has a

solution.
We note that this equation is linear by the definition of the indices of the unknowns
y and that it has polynomial size with respect to F .
First, assume that the Boolean formula F is satisfiable, that is for each Cj there is
at least one literal assuming the value true. Pick for each Cj an hj ∈ {0, 1, 2} such
that the literal l3j+hj

assumes the value true. Then consider the assignment ϕ :
Ξ→ ΣF defined in the following way: ϕ(y3j+hj

) = uj
r if l3j+hj

= Xr, ϕ(y3j+hj
) =

zj
r if l3j+hj

= ¬Xr and ϕ(y3j+h) = e, for all h 6= hj . For each j = 0, 1, . . . M−1, put
ϕ(y4M−1−j) = ϕ(y3j+hj

). Then from the definition of the independence relation it
easily follows that

ϕ(wF ) ∼IF e2a0 . . . e
2aM−1tM−1ϕ(y3M )tM−2ϕ(y3M+1) . . . t0ϕ(y4M−1)♯⊥



488 L. Breveglieri, A. Cherubini, C. Nuccio, and E. Rodaro

and so the equation wF ≡ w
′
F is satisfied by the assignment ϕ.

Conversely, assume that the equation wF ≡ w′
F is satisfied by an alphabetical

assignment ϕ : Ξ → ΣF and prove that there exists an assignment of truth values
to the variables of F which satisfies the formula.

Claim 1. The assignment ϕ has to assign the value e to at least 2M unknowns
occurring in wF . Moreover, for each j = 0, 1, . . . ,M − 1, two unknowns assigned
to e have to occur in the words wj , since the constants e are dependent on all the
elements in the set {di

r, c
i
r| 0 ≤ i ≤M − 1, 1 ≤ r ≤ n}.

Claim 2. The remaining unknown occurring in wj not assigned to e, say ξj ,
is such that ϕ(ξj) ∈ {z

s
r , u

s
r| 0 ≤ s ≤ j, 1 ≤ r ≤ n}. Indeed, ϕ(ξj) has to take a

value independent of e and of all the constants occurring in at for all t ≥ j. But if
ϕ(ξj) ∈ {⊥s, ♯s| 0 ≤ s < j} then j > 0 and so it is impossible to get the equivalence
of ϕ(wF ) with a word whose suffix is ♯⊥.

Claim 3. Either ϕ(ξj) = zj
r when cjr occurs in aj or ϕ(ξj) = uj

r when dj
r occurs

in aj for some r ∈ {1, . . . , n}. Indeed, if s < j then ϕ(ξj) and ⊥j−1 are dependent,
hence ♯⊥ cannot be the suffix of a word equivalent to ϕ(wF ).

The occurrences of dj
r or cjr in aj indicate respectively that the literals Xr or

¬Xr occur in Cj , then encoding with the letter uj
r the value true and with the

letter zj
r the value false for the variable Xr in Cj , the assignment ϕ(ξj) guarantees

that at least one literal in Cj assumes the value true. It remains to prove that
each assignment satisfying the equation wF ≡ w′

F corresponds to a coherent way
of assigning truth values to the variables in F .

Claim 4. No j, s ∈ {0, 1, . . . ,M − 1} exist such that ϕ(ξj) = uj
r and ϕ(ξs) = zs

r .
Indeed for each ϕ satisfying the equation we get

ϕ(wF ) ∼IF e2a0e
2a1 . . . e

2aM−1ϕ(ξ0)ϕ(ξ1) . . . ϕ(ξM−1)tM−1 . . . t1t0♯⊥.

Then the assignment ϕ has to satisfy the trace equation

ξ0ξ1 . . . ξM−1tM−1 . . . t1t0 ≡ tM−1y3M tM−2y3M+1 . . . t0y4M−1,

and this assures the claim 4. In fact suppose by contradiction that such j and s
exist and that j > s. Then, since uj

r and zs
r are dependent and zs

r depends on
ts−1, it follows that the assignment ϕ does not satisfy the last equation. So either
the unknowns ξj , j = 0, 1, . . . ,M − 1, which are not assigned to e correspond to
different variables of F , or if some of them correspond to the same variable Xr, ϕ
gives them either the values uj

r and us
r or the values zj

r and zs
r .

We can conclude that each assignment satisfying the equation encodes a truth
assignment to the variables of F which satisfies the formula.

The following example illustrates the construction done in the proof of Theorem
2 and also explains the rationale behind the definition of the alphabet and the
independence relation.

Example 2. Let us consider the formula F = (X1∨X2∨¬X3)∧(¬X1∨¬X2∨¬X4).



Alphabetical Satisfiability Problem for Trace Equations 489

Then we have:

ΣF =
⋃

i∈{1,2,3,4}
j∈{0,1}

{ dj
i , c

j
i , z

j
i , u

j
i , ⊥j , ♯j , tj e} Ξ = {y0, y1, . . . , y7}.

The left side and the right side of the trace equation associated with F are respec-
tively:

wF = y0 y1 y2 d
0
1 d

0
2 c

0
3 ♯0⊥0 y3 y4 y5 c

1
1 c

1
2 c

1
4 ♯1⊥1 t1 t0

w′
F = e2 d0

1 d
0
2 c

0
3 e

2 c11 c
1
2 c

1
4 t1 y6 t0 y7 ♯0⊥0 ♯1⊥1 .

We can associate with each coherent assignment of truth values the variables sa-
tisfying the formula F with an alphabetical assignment ϕ that satisfies the trace
equation associated with F . For instance, the formula F is satisfied giving the
value true to X1 and the value false to X2, independently from the truth values
assigned to the remaining variables. Then the relevant unknown associated with
the first clause is y0 and the relevant unknown associated with the second clause is
y4. It is easy to see that the assignment ϕ : Ξ→ ΣF such that ϕ(y0) = ϕ(y7) = u0

1,
ϕ(y4) = ϕ(y6) = z1

2 , ϕ(y1) = ϕ(y2) = ϕ(y3) = ϕ(y5) = e satisfies the trace equation
wF ≡ w

′
F .

Conversely assume that there exists an alphabetical assignment ϕ that satisfies the
trace equation wF ≡ w′

F . Then at least four unknowns of wF have to assume the
value e. Only two unknowns in each set {y0, y1, y2}, {y3, y4, y5} can take the value
e because (e, d0

1), (e, c
1
1) /∈ IF . Then assume, for instance, ϕ(y1) = ϕ(y2) = ϕ(y4) =

ϕ(y5) = e. Since e2 d0
1 d

0
2 c

0
3 is a prefix of ϕ(w′

F ), ϕ(y0) has to be independent from
the letters of that prefix, hence ϕ(y0) ∈ {u

0
1, u

0
2, z

0
3}. In such case, by cancellativity,

the assignment ϕ has to satisfy the following trace equation

ϕ(y0)♯0⊥0 y3 e
2 c11 c

1
2 c

1
4 ♯1⊥1 t1 t0 ≡ e

2 c11 c
1
2 c

1
4 t1 y6 t0 y7 ♯0⊥0 ♯1⊥1

whence ϕ(y3) ∈ {z
1
1 , z

1
2 , z

1
4} ∪ {♯0,⊥0} ∪ {z

0
i , u

0
i | 1 ≤ i ≤ 4} and so

ϕ(y0)♯0⊥0 ϕ(y3) e
2 c11 c

1
2 c

1
4 ♯1⊥1 t1 t0 ∼IF e2 c11 c

1
2 c

1
4 ϕ(y0)♯0⊥0 ϕ(y3)t1 t0♯1⊥1 .

Using again cancellativity we obtain that the assignment ϕ has to satisfy the trace
equation

ϕ(y0)♯0⊥0 ϕ(y3) t1 t0 ≡ t1 y6 t0 y7 ♯0⊥0 (7)

It is easy to deduce that {ϕ(y6), ϕ(y7)} = {ϕ(y0), ϕ(y3)}, i.e. the unknowns of the
right side of the trace equation have always to assume the same values taken by
the relevant unknowns of the left side.
Now we want to show that actually ϕ(y3) ∈ {z

1
1 , z

1
2 , z

1
4}. By contradiction, let for

instance ϕ(y3) = ♯0, then we have ϕ(y0)♯0⊥0 ϕ(y3) t1 t0 ∼IF t1ϕ(y0) t0♯0⊥0♯0. So
the trace equation (7) is not satisfied by ϕ because the word ϕ(t1 y6 t0 y7 ♯0⊥0)
cannot be equivalent to a word whose suffix is ⊥0♯0. Analogously we can prove
that ϕ(y3) 6= ⊥0.
Now suppose that ϕ(y3) ∈ {z

0
i , u

0
i | 1 ≤ i ≤ 4} and, for instance, let ϕ(y3) = z0

1 .
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Then ϕ(y0)♯0⊥0 ϕ(y3) t1 t0 ∼IF t1 ϕ(y0) t0♯0⊥0z
0
1 and (z0

1 ,⊥0) /∈ IF . It follows that
the trace equation (7) is not satisfied by ϕ because ϕ(t1 y6 t0 y7 ♯0⊥0) cannot be
equivalent to a word whose suffix is ⊥0z

0
1 .

We can deduce that ϕ(y3) ∈ {z
1
1 , z

1
2 , z

1
4} but notice that the choice of the values of

ϕ(y0) and ϕ(y3) is tied, as required in the condition 2 in the proof of Theorem 2. If,
for instance, ϕ(y0) = u0

1 then it is necessary that ϕ(y3) 6= z1
1 . Indeed, if ϕ(y3) = z1

1

then ϕ(y0)♯0⊥0 ϕ(y3) t1 t0 ∼IF u0
1z

1
1t1 t0♯0⊥0 hence, using cancellativity, by the

equation (7) it follows that ϕ has to satisfy the trace equation u0
1z

1
1t1 t0 ≡ t1y6t0y7.

But this is impossible since (u0
1, z

1
1), (t0, z

1
1) /∈ IF . This last fact allows to control

the coherent assignment of the truth values to the relevant variables in F . Indeed
ϕ(y0) = u0

1 and ϕ(y3) = z1
1 would encode that X1 is a relevant variable for both

the first and the second clause and also that X1 assumes in an incoherent way the
value true in the first clause and the value false in the second one.
We can conclude that the assignment ϕ satisfying the trace equation encodes a
coherent assignment of truth values to the variables of F which satisfies the formula.

5 Linear trace equations on free products of free

commutative monoids

In this section we consider a linear trace equation WL ≡ WR on a trace monoid
M(Σ, I) that is a free product of free commutative monoids. This conditions means
that the maximal I-cliques C1, . . . , Cr of the independence alphabet (Σ, I) are
disjoint. We give a polynomial time algorithm to solve the alphabetical satisfiability
problem for such equation.

Remark 3. Let [u], [v] ∈ M, and let u = u1 . . . um be a decomposition of u such
that, for each i ∈ {1, . . . ,m}, ui ∈ C

+
ji

for some ji ∈ {1, . . . , r} and ji 6= ji+1. Then
[v] = [u] if and only if v = v1 . . . vm and, for each i ∈ {1, . . . ,m}, vi ∼I ui.

In the sequel, for each word W we denote by W (i) the i-th letter of W and by
W [i, k], i ≤ k the factor W (i)W (i+ 1) . . .W (k) of W .
As an immediate consequence of Remark 3, we obtain the following lemma:

Lemma 3. Let ϕ be an alphabetical assignment that satisfies the trace equation
WL ≡ WR and let i ∈ {1, . . . , |WL|}, k ∈ {1, . . . , r} such that WL(i) = c ∈ Ck and
WR(i) = x ∈ Ξ (resp. WL(i) = x ∈ Ξ and WR(i) = c ∈ Ck). Then ϕ(x) ∈ Ck.
Moreover there exist 1 = j0 < j1 < . . . < js = |WL| + 1, such that ϕ(WL) =
∏s−1

i=0 ϕ(WL[ji, ji+1− 1]), ϕ(WR) =
∏s−1

i=0 ϕ(WR[ji, ji+1− 1]), with ϕ(WL[ji, ji+1−
1]) ∈ C+

ki
for some ki ∈ {1, . . . , r}, ki 6= ki+1 and, for each i ∈ {0, . . . , s − 1},

ϕ(WL[ji, ji+1 − 1]) ∼I ϕ(WR[ji, ji+1 − 1]).

Now we introduce a function ψ : {0, 1, . . . , |WL| + 1} → {−2,−1, 0, 1, . . . , r} to
express when WL(i) and WR(i) belong to the same or to different maximal I-cliques
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or if they are unknowns. This function is defined in the following way:

∀i ∈ {0, 1, . . . , |WL|+ 1} ψ(i) =







































−2 if i ∈ {0, |WL|+ 1}
−1 if WL(i) ∈ Ch, WR(i) ∈ Ck

with h 6= k
0 if WL(i),WR(i) ∈ Ξ
h if WL(i),WR(i) ∈ Ch

or WL(i) ∈ Ch and WR(i) ∈ Ξ
or WL(i) ∈ Ξ and WR(i) ∈ Ch

Definition 1. A microblock associated with the trace equation WL ≡ WR is a
couple (i, j) of indices of {1, 2, . . . , n} with i ≤ j such that

1. ∀k ∈ {i, . . . , j − 1} ψ(k) = ψ(k + 1) /∈ {−1,−2};

2. ψ(i− 1) 6= ψ(i) and ψ(j) 6= ψ(j + 1).

A microblock (i, j) is called microblock of unknowns if ψ(i) = 0 and microblock of
type h if ψ(i) = h.

Notice that if a microblock (j, k) of unknowns is preceded and followed by two
microblocks of the same type h then, without loss of generality, we can suppose that
an alphabetical assignment that satisfies the trace equation assigns the unknowns
of WL[j, k] and of WR[j, k] in the same I-clique Ch. An analog argument holds if
the first or the final microblock are microblocks of unknowns. This fact is stated
in the following lemma:

Lemma 4. Let (i, j − 1), (j, k − 1), (k, l) with 1 ≤ i < j < k ≤ l ≤ |WL| be mi-
croblocks associated with the linear trace equation WL ≡WR such that (j, k−1) is a
microblock of unknowns and (i, j−1), (k, l) are microblocks of type h. Then the trace
equation WL ≡WR is alphabetically satisfiable if and only if there exists an alphabe-
tical assignment ϕ satisfying WL ≡WR such that ϕ(WL[j, k−1]), ϕ(WR[j, k−1]) ∈
C+

h .
Analogously, let (1, k − 1), (k, l) with 1 < k ≤ l ≤ |WL| (resp. (j, k − 1), (k, |WL|)
with 1 ≤ j < k ≤ |WL|) be the first two (resp. the last two) microblocks associated
with the linear trace equation WL ≡WR such that (1, k − 1), (resp. (k, |WL|)) is a
microblock of unknowns and (k, l), (resp. (j, k−1)) is a microblock of type h. Then
the trace equation WL ≡ WR is alphabetically satisfiable if and only if there exists
an alphabetical assignment ϕ satisfying WL ≡WR such that ϕ(WL[1, k− 1]) ∈ C+

h ,
(resp. ϕ(WL[k, |WL|]) ∈ C

+
h ).

Proof. Let WL ≡ WR be a satisfiable linear equation and let ϕ be an alphabetical
assignment satisfying WL ≡WR such that ϕ(WL[j, k−1]) /∈ C+

h and ϕ(WL[j, k−1])
contains the minimum number f of factors in C+

t for any t ∈ {1, . . . , r} \ {h}.
Suppose that f ≥ 1 and let s ∈ {j, . . . , k−1} be the first index such that ϕ(WL[s, s+
p]) ∈ C+

t and ϕ(W (s + p + 1)) /∈ Ct for some t ∈ {1, . . . , r}, t 6= h and for some
natural number p with s+p ≤ k−1. Then, by Lemma 3, ϕ(WR[s, s+p]) ∈ C+

t and
ϕ(WL[s, s+ p]) ∼I ϕ(WR[s, s+ p]). Let φ be an alphabetical assignment such that
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φ(WL(q)) = φ(WR(q)) = z ∈ Ch for all q ∈ {s, . . . , s + p} and φ(x) = ϕ(x) for all
x ∈ Ξ that do not occur in WL[s, s+p] and WR[s, s+p]. Then φ is an alphabetical
assignment that satisfies WL ≡ WR such that φ(WL[j, k − 1]) contains less factors
in C+

t for any t ∈ {1, . . . , r} \ {h} than ϕ(WL[j, k − 1]). This is a contradiction,
hence f = 0.

The previous lemma justifies the following definition:

Definition 2. Let h ∈ {1, . . . , r}. A block of type h associated with the linear trace
equation WL ≡ WR is a couple of indices (i, j), i, j ∈ {1, 2, . . . , |WL|}, i ≤ j such
that there exist i = i1 < i2 < . . . < is = j + 1 satisfying the following properties:

1.
WL[i, j] =

∏

1≤k<s

WL[ik, ik+1 − 1]

2. there exists h ∈ {1, . . . , r} such that (i, i2 − 1), (is−1, is − 1) are microblocks
of type h and, for all k ∈ {i, . . . , j}, ψ(k) ∈ {0, h}.

The factors WL[i, j] and WR[i, j] are called respectively left factor and right factor
associated with the block (i, j). Obviously each microblock is a block.
A macroblock of type h associated with the trace equation WL ≡WR is a couple of
indices i, j ∈ {1, 2, . . . , |WL|} with i ≤ j such that there exists a block (i′, j′) of type
h satisfying the following properties:

1. i ≤ i′ ≤ j′ ≤ j;

2. if i 6= i′ (resp. j 6= j′) then, for all k ∈ {i, . . . , i′} (resp. k ∈ {j′, . . . , j}),
ψ(k) = 0.

Now we describe a linear algorithm to state whether the linear trace equation
WL ≡WR on the trace monoid on M(Σ, I) is satisfiable when the maximal I-cliques
C1, . . . , Cr of the independence alphabet (Σ, I) are disjoint. Roughly speaking,
the algorithm works in the following way. It identifies the blocks associated with
WL ≡ WR and checks if WL[i, j] ≡ WR[i, j] in each block (i, j). If so the equation
is satisfiable. If for some block (i, j) the trace equation WL[i, j] ≡ WR[i, j] is
not satisfied and no block of unknowns is adjacent to (i, j), the algorithm exits
and outputs ”NO”. Otherwise it extends the block (i, j) to a macroblock (i′, j′)
including also these new unknowns and it checks whether WL[i′, j′] ≡ WR[i′, j′] is
satisfiable. The procedure is described in Algorithm 1.
Now we check the correctness of the Algorithm 1. The procedure from line 1 to
line 13 identifies the blocks associated with the trace equation by building an array
η whose odd and even cells contain respectively the beginning and the end of a
block of a certain type h with h 6= 0. The initial and final blocks identified by
the previous procedure can be macroblocks. In fact if the trace equation begins or
finishes with microblocks of unknowns, thanks to Lemma 4 we can assume without
loss of generality that an alphabetical assignment satisfying the trace equation gives
to the unknowns of these microblocks values in the same I-cliques of the adjacent
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Algorithm 1 Equation satisfiability with disjoint maximal I-cliques

1: η(1)← 1, k ← 2,c← 1
2: for i = 1 to |WL| do
3: if ψ(i) = −1 then
4: Exit and write ”NO”
5: end if
6: if ψ(i) 6= 0 then
7: if ψ(c) /∈ {ψ(i), 0} then
8: η(k)← c, η(k + 1)← i, k ← k + 2
9: end if

10: c← i
11: end if
12: end for
13: η(k)← |WL|
14: in← 1
15: for t = 1 to k/2 do
16: out← η(2t)
17: for i = 1 to |Σ| do
18: KR(i)← 0
19: KL(i)← 0
20: end for
21: for i = in to out do
22: for j = 1 to |Σ| do
23: if WL(i) = a(j) then
24: KL(j)← KL(j) + 1
25: end if
26: if WR(i) = a(j) then
27: KR(j)← KR(j) + 1
28: end if
29: end for
30: end for
31: θ ← 0
32: for j = 1 to |Σ| do
33: H(j)← KR(j)−KL(j)
34: if H(j) > 0 then
35: θ ← θ +H(j)
36: end if
37: end for
38: λ← out− in+ 1−

∑|Σ|
s=1KL(s)

39: if λ− θ ≤ 0 then
40: if η(2t+ 1)− out− 1 < |λ− θ| then
41: Exit and write ”NO”
42: else
43: in← out+ |λ− θ|+ 1
44: end if
45: else
46: in← out+ 1
47: end if
48: end for
49: Exit and write ”YES”
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block. Hence we can directly consider the initial and final macroblocks.
Let (in, out) with in = 1 be the first block associated with the trace equation and
suppose that it is of type l. By Lemmas 3 and 4 we can assume, without loss of
generality, that an alphabetical assignment satisfying the trace equation gives to
the unknowns some values in the same maximal I-clique Cl. So we can check if such
an assignment exists just counting the number of occurrences of a letter a(i) ∈ Σ in
the left and right factors associated with (in, out). Hence the procedure from line
17 to line 30 defines two arrays KL and KR whose i-th cell contains respectively
|WL[in, out]|a(i) and |WR[in, out]|a(i), i.e. the number of the occurrences of the
letter a(i) respectively in the left and in the right factor associated with the block
(in, out). If KR(j)−KL(j) > 0 (resp. KR(j)−KL(j) < 0) for some j, it means that
a(j) is a right surplus constant (resp. left surplus constant), i.e. a(j) has a number
of occurrences in the right (resp. left) factor associated with (in, out) greater than
in the left (resp. right) factor. Hence a suitable number of unknowns of WL[in, out]
(resp. WR[in, out]) has to be assigned to a(j). Obviously if KR(j)−KL(j) = 0 we
have no constraints on the assignments to the unknowns.
Now we have to check if the number of unknowns in the left (resp. right) factor
associated with (in, out) is sufficient to match with the right (resp. left) surplus
constants. Therefore we introduce the following notations:

• λ: number of unknowns in the left factor associated with (in, out);

• β: number of unknowns in the right factor associated with (in, out);

• θ: number of the right surplus constants of (in, out);

• ρ: number of the left surplus constants of (in, out).

So we have to consider the differences λ − θ and β − ρ. Using the arrays KL and
KR we have:

λ = out− in+ 1−

|Σ|
∑

s=1

KL(s) β = out− in+ 1−

|Σ|
∑

s=1

KR(s)

θ =
∑

i∈{1,...,|Σ|},

KR(i)>KL(i)

(KR(i)−KL(i)) ρ =
∑

i∈{1,...,|Σ|},

KL(i)>KR(i)

(KL(i)−KR(i))

A trivial verification shows that λ − θ = β − ρ, hence the procedure from line 31
to 38 determines θ and λ. If λ− θ ≤ 0, it means that the number of unknowns in
the left factor are not sufficient to match with the right surplus constants, hence
the trace equation WL[in, out] ≡ WR[in, out] is not alphabetically satisfiable. It
follows that the initial trace equation WL ≡WR can be satisfied only if there exists
a block (out+ 1, out+ s) of unknowns such that s ≥ |λ− θ|. In that case the trace
equation WL[in, out+ |λ− θ|] ≡ WR[in, out+ |λ− θ|] is alphabetically satisfiable.
If |λ− θ| < s, the procedure from line 39 to line 47 adds the remaining s− |λ− θ|
unknowns of the factors associated with (out+ 1, out+ s) to the factors associated
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with the block following (out + 1, out + s) obtaining a new macroblock. Then the
entire process is iterated considering the successive macroblock (in, out).
Notice that the algorithm works in linear time. Clearly the procedure 1-14 require a
linear time, hence let us consider the cycle of lines 15-48. It runs on the number k/2
of macroblocks associated with the trace equation. Let us denote by (in(i), out(i))
the macroblock in the ith iteration and put li = out(i)−in(i). Since the cycle of lines
21-30 scans the macroblock (in(i), out(i)) and [in(i), out(i)]∩[in(i+1), out(i+1)] =
∅ (where, for all p, q ∈ N such that p ≤ q, [p, q] is the subset of natural numbers
{p, p+ 1, . . . , q}), we obtain that

k/2
∑

i=1

li ≤ n.

Hence, an easy calculation allow to conclude that the number of steps in the cycle
15-48 is O(n).

Example 3. Let Σ = {a, b, c, d} and let I = {(a, b), (b, a), (c, d), (d, c)} be the
independence relation. Hence C1 = {a, b}, C2 = {c, d} are the maximal I-cliques.
Let us consider the trace equation WL ≡WR, where

WL = ax1adx2x3ddcdddx4x5x6a

and

WR = bay1cy2y3cdcy4ccy5y6y7b.

The division of the equation in blocks is the following:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a x1 a d x2 x3 d d c d d d x4 x5 x6 a
b a y1 c y2 y3 c d c y4 c c y5 y6 y7 b

The array η relative to the beginning and the end of each block of type 1 or 2 is
η = (1, 3, 4, 12, 16, 16).
It is easy to see that WL[1, 3] ≡WR[1, 3] is alphabetically satisfiable.
In the next block (4, 12) we have

KL = (0, 0, 1, 6), KR = (0, 0, 5, 1), H = (0, 0, 4,−5), θ = 4, λ = 2

so λ − θ < 0 and the trace equation WL[4, 12] ≡ WR[4, 12] is not alphabetically
satisfiable. But η(5) − 12 − 1 ≥ |λ − θ| hence we can extend the block (4, 12) to
the macroblock (4, 14) obtaining a trace equation WL[4, 14] ≡ WR[4, 14] that is
alphabetically satisfiable.
We include the remaining unknowns in position 15 to the factors associated with
the next block (16, 16) that therefore becomes the macroblock (15, 16). It is evident
that WL[15, 16] ≡ WR[15, 16] is alphabetically satisfiable, so we can conclude that
the initial trace equation WL ≡WR is alphabetically satisfiable too.
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6 Conclusion

It is still an open problem to determine the complexity class of the general alphabe-
tical satisfiability problem for a linear trace equation. The problem is polynomial
when the number of unknowns in one side of the equation is logarithmic with re-
spect the length of a member of the equation.
In Section 5 we proved that there is a polynomial time algorithm to check the al-
phabetical satisfiability problem on free products of free commutative monoids. We
also have a (not yet published) polynomial time algorithm to solve the satisfiability
problem for linear trace equations on free products with amalgamation of free com-
mutative monoids, i.e. partially free commutative monoids whose maximal I-cliques
C1, . . . , Cr satisfy the condition Ci∩Cj =

⋂r
k=1 Ck for all i, j ∈ {1, . . . , r}. Previous

monoids are both particular cases of free partially commutative monoids that are
free products of free products with amalgamation of free commutative monoids, i.e.
monoids whose independence alphabet (Σ, I) fulfils the following conditions: Σ is
a disjoint union of Σi such that each I-clique of (Σ, I) is contained in some Σi and
for each pair of I-cliques Ch,Ck contained in Σi for some i, Ch ∩ Ck is equal to
the intersection of all the I-cliques contained in Σi. So we strongly conjecture that
also in this case there is a polynomial algorithm for the alphabetical satisfiability
problem for linear trace equations.
It would be interesting to consider in the future the complexity class of the alpha-
betical satisfiability problem for linear equations under some other constraints on
the independence alphabet in order to have some hint for the general case.
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