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Abstract

The aim of this paper is to generalize to nonassociative concatenation the

well-known property that the family of left-linear languages is exactly the

family of regular languages. For this purpose, we introduce a generalized

Kleene star operation.

1 Introduction

It is well-known that the family of left-linear languages is exactly the family of
regular languages. This classical result comes from the formal languages theory,
which has been developed over free monoids generated by alphabets and equipped
with an associative concatenation.
The purpose of this paper is to generalize this statement to the case where the
concatenation is no longer associative [13, 14, 15]. The theory of quasigroups
[9, 12, 17, 20] is originated from a certain idea of Suschkewitsch [25], which idea
we use here for this goal. Given a group (G, ⋆), Suschkewitsch observed in 1929
that the proof of Lagrange theorem does not make any use of the associative law:
X ⋆ (Y ⋆Z) = (X ⋆Y )⋆Z. This law can be replaced by his more general postulates,
A and B namely. Postulate A of [25] can be written as: for all A,B ∈ G there is a
unique C ∈ G such that for all X ∈ G we have (X ⋆ A) ⋆ B = X ⋆ C. The element
C depends upon the elements A and B only and not upon X. If we denote C by
A ◦ B, i.e. (X ⋆ A) ⋆ B = X ⋆ (A ◦ B), it is easy to prove that ◦ is associative. It
has been shown recently in [19] by the author that Postulate A is a particular case
of the concept of relative associativity introduced by Roubaud [21].
Suschkewitsch also considers a special case of Postulate A which is however more
general than the associative law. He states his Postulate B as: for all B ∈ G there

is a unique
∼

B∈ G such that for all X,Y ∈ G we have X ⋆(Y ⋆B) = (X ⋆Y )⋆
∼

B. The

elements B and
∼

B depend only upon each other. Every B is completely defined

by the corresponding
∼

B and conversely. Using Postulate B, it has been shown in
[7] that each left-linear language defined with a nonassociative concatenation is a
pseudo-regular language, i.e. it can be written by using a generalized Kleene star
operation.
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The converse property (pseudo-regularity implies left-linearity) is established in
this paper via a new method. To do this, we are lead to define the inverse − of the
operation ∼ of Suschkewitsch. Certain coherence problems arise. Then the original
groupoid M (i.e. the monoid without associativity) has to be embedded in a larger
one. It is absolutely necessary to check that this embedding creates no additional
weak associative relation in M , as for example ((xy)(zt))(uv) = (x(yz))((tu)v).
Afterwards a pseudo-Kleene star operation is defined as a generalization of the
standard Kleene star over the monoid. Then we show that the family of left-
linear languages defined with a nonassociative concatenation is exactly the family
of pseudo-regular languages using this new star operation.
Another approach consists of considering trees in place of words, since the notion
of a tree strongly reflects nonassociativity. A huge amount of literature relies upon
this concept [6].

2 Notations and definitions

Let V = {a, b, c, d . . .} be an alphabet, i.e. a finite nonempty set of letters. We
denote by M = M(V ) the free groupoid over V equipped with a nonassociative
concatenation •. The symbol • will be omitted as long as no confusion is possi-
ble. To write words of M , parentheses cannot be omitted due to nonassociativity:
x(yz) 6= (xy)z. By λ we denote the empty word of zero letters. The set of all
non-empty words over V is denoted M+.
To the finite alphabet V , we associate the (infinite) set V which is the set of letters
of V with as a superscript an arbitrary number of symbols − and ∼.
We denote by M = M(V) the free groupoid over V equipped with the nonasso-
ciative concatenation •. Let us define M+ = M(V) − {λ}. Since M ⊂ M, a
word in M is called a real word. We call a word of M−M a metaword. Given
w ∈ M, we denote by |w| the length of w, i.e. the number of letters of V in w,
each letter is counted as many times it occurs. Let us denote by Mn the set of
words such that |w| = n. For example, w

′

= ((ab)(cd))(e(bd)) ∈M7 is a real word

and w
′′

= (e(
−
−
a

∼
c))((a

∼
∼
b )

−
c) ∈ M6 is a metaword. The skeleton of a word

w ∈M is defined as the real word sk(w) obtained by cancelling all the occurrences
of the symbols − and ∼. The free word of w ∈M is defined as the word f(w) ob-
tained by cancelling all the occurrences of the symbols −, ∼, ( and ). For example,
sk(w

′′

) = (e(ac))((ab)c) and f(w
′′

) = eacabc.
We call a left (respectively right) word any word where all the open (respectively
close) parentheses occur at the beginning (respectively at the end) of the word. For

example, (((((a
−

b)
∼
c)b)a)

∼
c) is a left word and (

∼
a (b(

−
a (c(a

−

d)))) is a right word.
A weak associative equality of order n is an equation of the form w

′

= w
′′

where

w
′

, w
′′

∈Mn. For example, a(b(c(
−

d
−
e))) = ((ab)c)(

∼

d
∼
e) is a weak associative equal-

ity of order 5. A weak associative equality is called real if the two words of the
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equality are real, i.e. there is no occurrences of − and ∼ inside the two words.

Definition 1. We define the Suschkewitsch algebra S = S(M) as the extension of
M with unary operations − and ∼ such that the following properties hold for all
P,Q,R ∈M+:



(PQ)R = P (Q
−

R)

P (QR) = (PQ)
∼

R

−
∼
P =

∼
−
P = P

PQ =
−

P
−

Q

P̃Q =
∼

P
∼

Q

We will establish later that no real words in S are forced to collapse by the five
previous axioms.

3 Preliminary results

Definition 2. Let us define the relation→ on S as the smallest preordering, invari-

ant with respect to −, ∼ and •, i.e. if P → Q then
−

P→
−

Q,
∼

P→
∼

Q and PR → QR,
RP → RQ for all R ∈M, and satisfying for all P,Q,R ∈M+:

P (QR)→ (PQ)
∼

R

.

Lemma 1. We have AB → CD iff either (1)

{
A→ C

B → D

or there exists S ∈M+ such that (2)

{
B → S

−

D
AS → C

Proof. The conditions are obviously sufficient since AB → A(S
−

D) → (AS)

∼
−

D=
(AS)D → CD.
For proving the necessity, let us consider A,B,C,D ∈M+. We define the relation
≺ onM: AB ≺ CD, iff conditions either (1) or (2) are verified.
≺ is reflexive and invariant with respect to −,∼ and •. Let us prove the transitivity
of ≺, i.e. if AB ≺ CD and CD ≺ EF then we have AB ≺ EF . Among the four
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cases to study, we only detail the following one.
If there exist S, T ∈M+ such that

{
B → S

−

D
AS → C

and {
D → T

−

F
CT → E

then there exists U ∈M+ such that
{

B → U
−

F
AU → E

.

Indeed, U = S
−

T verifies: B → S
−

D → S(
−

T

−−
F ) → (S

−

T )

∼
−−
F = U

−

F and

AU = A(S
−

T )→ (AS)

∼
−
T = (AS)T → CT → E.

Remark 1. The rewrite relation → is convergent because it is well-known that
the rewriting system x(yz) (xy)z is convergent. Thus any word w has a unique
normal form denoted by l(w) which is a left word.

Lemma 2. If A,B,C,D ∈M+, assume that:
(1) AB → CD,
(2) AB is a real word,
(3) CD is a left word,

(4) there exists S ∈M+ such that B → S
−

D and AS → C.
Then we can always choose S as a real word.

Proof. |D| = 1 i.e. D ∈ V since CD is a left word. |B| ≥ 2 since |S| ≥ 1. Thus we

can write B = B1B2. If |B2| = 1, then B2 = d ∈ V and we can choose D =
∼

d and
S = B1 which is a real word. If |B2| ≥ 2 and if d is the last letter of B2, we can
write B2 = (B2,k(. . . (B2,3(B2,2(B2,1d)k. Then

B2 = (B2,k(. . . (B2,3(B2,2B2,1)
k−1

∼

d
k−1

and

B = B1B2 = (B1(B2,k(. . . (B2,3(B2,2B2,1)
k

∼

d
k

. We can choose

S = (B1(B2,k(. . . (B2,3(B2,2B2,1)
k and D =

∼

d
k+1

. Thus S is a real word.

Lemma 3. The following rewriting system  :

(R1) (xy)z  x(y
−
z)

(R2)
−
∼
x  x
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x(y(
−

z
=
u))

((xy)z)u

R1R1

R1 R1

R1 R4

(x(y
−

z ))u (xy)(z
−

u)

x(y(z
−

u))x((y
−

z )
−

u)

R1

(xy)z

R4 R4

R4R1

R1R4

x(y
−

z ) (xy)
−

z

(
−

x
−

y)
−

z
−

x(y
−

z )

R5

R3

R5 R5

R5 R1

˜
x(y

−

z )

(̃xy)z

∼

x(
∼

y
≃

z )

∼

x
˜
(y

−

z ) (
∼

x
∼

y)
∼

z

(̃xy)
∼

z

−

x(
−

y
=
z)

R2

∼

x(
∼

yz)

∼

x(
∼

y
∼

z )

Figure 1: Three convergent critical pairs of  

(R3)
∼
−
x  x

(R4) xy  
−
x
−
y

(R5) x̃y  
∼
x
∼
y

is convergent. Thus any term t has a unique normal form which is a right word
denoted by r(t).

Proof. Termination is easily proved because  is included in the Knuth-Bendix
ordering. We choose as precedence relation − ≻∼≻ • and as weights wgt(−) =
wgt(∼) = 0 and wgt(•) = 1. The superposition of (R1) on (R1), of (R1) on
(R4) and of (R1) on (R5) determines three critical pairs which are convergent: see
Figure 1. Thus this rewriting system is convergent [1, 10]. Normal forms are right
words.

4 Nonassociativity

Definition 3. Given w ∈Mn, let us call associahedron ASn(w) the diagram which

is obtained from w by applying all possible → and
−1
→ relations.

See for example the associahedron AS5((x(y(zt)))u) in Figure 2.

Theorem 1. For all n and w ∈ Mn, the associahedron ASn(w) is coherent, i.e.
there are no w

′

, w
′′

∈ ASn(w) such that w
′

6= w
′′

and sk(w
′

) = sk(w
′′

). Therefore
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x((yz)(
∽

t
=
u))

x(((yz)
∽

t )
−

u)

(x(yz))(
≈

t
−

u)

((xy)(
∽

z
∽

t ))u((xy)
∽

z )(
≈

t
−

u)

x(y((zt)
=
u)) (xy)(

∽

z (
∽

t
=
u))

(xy)((
∽

z
∽

t )
−

u)

(x((yz)
∽

t ))u

((x(yz))
≈

t )u

(((xy)
∽

z )
≈

t )u

x((y(zt))
−

u)

(x(y(zt)))u

x(y(z(t
≡

u)))

Figure 2: The associahedron AS5((x(y(zt)))u)

there exist in ASn(w) unique words l(w) and r(w) which are respectively left and
right words.

Proof. If n = 4, the property holds for the five pentagons: see Figure 3. By
induction on n, suppose that for n ≥ 5 and for some v ∈ Mn we have in ASn(v):
w = AB → w

′

= C
′

D
′

and w = AB → w
′′

= C
′′

D
′′

with |w| = |w
′

| = |w
′′

| = n,
w

′

6= w
′′

and sk(w
′

) = sk(w
′′

). Then we obtain sk(C
′

) = sk(C
′′

) and sk(D
′

) =
sk(D

′′

). We apply Lemma 1.
If A→ C

′

, B → D
′

and if A→ C
′′

, B → D
′′

then we have |A| ≤ n−1, |B| ≤ n−1
and by the induction hypothesis C

′

= C
′′

and D
′

= D
′′

since sk(C
′

) = sk(C
′′

)
and sk(D

′

) = sk(D
′′

). A contradiction follows since w
′

6= w
′′

.

If A→ C
′

, B → D
′

, suppose that there exists S
′′

∈ S+ such that B → S
′′

−

D
′′

and
AS

′′

→ C
′′

. Therefore we have |B| = |D
′

| = |S
′′

|+ |D
′′

| and |D
′

| = |D
′′

| because
sk(D

′

) = sk(D
′′

). A contradiction follows since w
′′

6= λ.

Now let us assume that there exist S
′

, S
′′

∈M+ such that B → S
′

−

D
′

, AS
′

→ C
′

,

B → S
′′

−

D
′′

, AS
′′

→ C
′′

. If D
′

6= D
′′

then we have l(D
′

) 6= l(D
′′

) by induction
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because |D
′

| ≤ n − 1 and |D
′′

| ≤ n − 1. Then B → S
′

−

D
′

→ l(S
′

)l(
−

D
′

) and

B → S
′′

−

D
′′

→ l(S
′′

)l(
−

D
′′

). We have sk(l(S
′

)l(
−

D
′

)) = sk(l(S
′′

)l(
−

D
′′

)) but

l(S
′

)l(
−

D
′

) 6= l(S
′′

)l(
−

D
′′

) because l(D
′

) 6= l(D
′′

). Thus, a contradiction follows.
Therefore we obtain D

′

= D
′′

= D, B → l(S
′

)D, B → l(S
′′

)D. Since sk(l(S
′

)D) =
sk(l(S

′′

)D) and |B| ≤ n − 1, we deduce by induction that l(S
′

)D = l(S
′′

)D, i.e.
l(S

′

) = l(S
′′

). Now let us consider the following diagram:

C
′

← AS
′

→ Al(S
′

) = Al(S
′′

)← AS
′′

→ C
′′

.

The induction hypothesis can be applied because |C
′

| = |C
′′

| ≤ n − 1. Then
sk(C

′

) = sk(C
′′

) implies C
′

= C
′′

and a contradiction holds. The existence of l(w)
(respectively r(w)) is proved using Lemma 1 (respectively Lemma 3).

Remark 2. The associahedrons ASn(w) endowed with the relation→ are lattices
for all n and w ∈ Mn. This is an immediate consequence of the fact that the
skeleton of ASn(w) is the well-known n-th Tamari lattice. Tamari lattices have
been extensively studied for algebraic and combinatorial purposes. A number of
references on this subject is available in [18].

x(y(z
=
t ))

(x(yz))t

((xy)
∼
z )t

x((y(z)
−

t )

(xy)(
∼
z
−

t )

((xy)z)t

(xy)(z
−

t )

x((y(
−
z )

−

t )

x(y(
−
z
=
t ))

(x(y
−
z ))t

((xy)z)
∼

t

(xy)(zt)

(x(y
−
z ))

∼

t

x((y(
−
z )t)

x(y(
−
z
−

t ))

(xy)(
∼
z t)

(x(yz))
∼

t

((xy)
∼
z )

∼

t

x((y(z)t)

x(y(zt))

x((y(z)
∼

t )

(xy)(
∼
z
∼

t )

(x(yz))
≈

t

((xy)
∼
z )

≈

t

x(y(z
−

t ))

Figure 3: The five associahedrons of size 4

Theorem 2. The embedding of M into S is faithful.

Proof. Let us prove that the embedding ofM into S does not create any weak real
associativity equality of order n, that is whatever n one cannot find two real words
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w
′

, w
′′

∈ Mn such that w
′

= w
′′

and sk(w
′

) 6= sk(w
′′

), when applying the five
relations of Definition 1.
If n = 4, the property holds for the five pentagons: see Figure 3. By induction on
n, suppose that for n ≥ 5 there exist two real words w

′

= A
′

B
′

, w
′′

= A
′′

B
′′

∈Mn

such that w
′

= w
′′

with sk(w
′

) 6= sk(w
′′

). Following Lemma 3: r(w
′

) = r(w
′′

) = v.
In ASn(v) there exists a unique left word CD such that A

′

B
′

→ CD and A
′′

B
′′

→
CD. Since CD is a left word, we have |D| = 1. We apply Lemma 1.
If A

′

→ C, B
′

→ D, A
′′

→ C, B
′′

→ D, then we have |A
′

| = |A
′′

| = |C| = n − 1
and the diagram A

′

→ C ← A
′′

with A
′

and A
′′

real, contradicting the induction
hypothesis.

If A
′

→ C, B
′

→ D, suppose that there exists S
′′

∈ M+ such that B
′′

→ S
′′ −

D
and A

′′

S
′′

→ C. Since |D| = 1 and B
′

real, then D is a real word, i.e. D = d ∈ V

and thus B
′′

→ S
′′ −

d. If the arrow → is applied to a real word, we can obtain
letters with superscript ∼ only. Hence, a contradiction follows.

Suppose now that there exist S
′

, S
′′

∈ M+ such that B
′

→ S
′ −

D, A
′

S
′

→ C,

B
′′

→ S
′′ −

D, A
′′

S
′′

→ C. Following Lemma 2, since B
′

and B
′′

are real words,
we can choose S

′

and S
′′

as real words. Then we have A
′

S
′

→ C ← A
′′

S
′′

with
A

′

S
′

and A
′′

S
′′

which are real words. Since |A
′

S
′

| = |A
′′

S
′′

| = |C| = n − 1, we
can apply the inductive hypothesis and we obtain A

′

S
′

= A
′′

S
′′

. Hence A
′

= A
′′

and S
′

= S
′′

= S. The diagram B
′

→ S
−

D← B
′′

follows. Since |B
′

| ≤ n − 1, the
induction hypothesis holds and then B

′

= B
′′

.

5 Catalan sequences

Definition 4. If w ∈ Mn is a real word, the left word l(w) which is the normal
form of w contains only ∼ symbols and no − symbols. If f(w) = x1x2 . . . xn, we

thus can write l(w) = (n−1x1x2)
∼
x3

l1
)

∼
x4

l2
) . . .)

∼
xn

ln−2

). The sequence L(w) =
(l1, l2, . . . , ln−2) is called the left-sequence of w ∈Mn.

Lemma 4. If w
′

∈ Mn and w
′′

∈ Mm with L(w
′

) = (l
′

1, l
′

2, . . . , l
′

n−2) and

L(w
′′

) = (l
′′

1 , l
′′

2 , . . . , l
′′

m−2), then the left-sequence of the concatenation of w
′

and

w
′′

is L(w
′

w
′′

) = (l
′

1, l
′

2, . . . , l
′

n−2, 0, 1, l
′′

1 + 1, l
′′

2 + 1, . . . , l
′′

m−2 + 1).

Proof. If f(w
′

) = x1x2 . . . xn and f(w
′′

) = y1y2 . . . ym, then we have: l(w
′

) =

(n−1x1x2)
∼
x3

l
′

1
) . . .

∼
xn

l
′

n−2
) and l(w

′′

) = (m−1y1y2)
∼
x3

l
′′

1
) . . .

∼
ym

l
′′

m−2
). Therefore we

can write:

w′w′′ = (n−1x1x2)
∼
x3

l
′

1
) . . .

∼
xn

l
′

n−2
)(m−1y1y2)

∼
y3

l
′′

1
) . . .

∼
ym

l
′′

m−2
)→

(nx1x2)
∼
x3

l
′

1
) . . .

∼
xn

l
′

n−2
)(m−2y1y2)

∼
y3

l
′′

1
) . . .

∼
ym

l
′′

m−2+1
)→

(n+1x1x2)
∼
x3

l
′

1
) . . .

∼
xn

l
′

n−2
)(m−3y1y2)

∼
y3

l
′′

1
) . . . ỹm−1

l
′′

m−3+1
)

∼
ym

l
′′

m−2+1
)→ . . .→

(n+m−2x1x2)
∼
x3

l
′

1
) . . .

∼
xn

l
′

n−2
)y1)

∼
y2)

∼
y3

l
′′

1 +1
) . . .

∼
ym

l
′′

m−2+1
) = l(w

′

w
′′

).
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Theorem 3. An integer sequence (li)1≤i≤n−2 is the left-sequence of a word ofMn

iff l1 ∈ {0, 1} and for all i ∈ [1, n− 3]: 0 ≤ li+1 ≤ li + 1.

Proof. The proof comes by induction on n using Lemma 4.

The five left-sequences of the words ofM4 are {00, 01, 10, 11, 12}. The fourteen
left-sequences of the words ofM5 are in lexicographic order:

{000, 001, 010, 011, 012, 100, 101, 110, 111, 112, 120, 121, 122, 123}

The left-sequence characterized just above is exhausted among the 66 Catalan sets
in [24, p. 222] where it is denoted by (u). The right-sequence of w defined from
the right word r(w) has been studied in [7] and appears in [24, p. 222] under the
notation (s).

6 Rational formal power series

We use the classical notations on formal power series described in [2, 11, 22].
Given a semiring A, we denote by A[[S]] the set of formal series

s =
∑

σ∈S

< s, σ > σ

where < s, σ >∈ A.
The sum of two series is defined in the classical manner. The product s = s

′

s
′′

is
defined by < s, σ >=< s

′

, σ
′

>< s
′′

, σ
′′

> if σ = σ
′

σ
′′

and < s, σ >= 0 otherwise.
s ∈ A[[S]] is proper if the coefficient of the right unit λ (i.e. the constant term of
s) vanishes: < s, λ >= 0.
In this case, the series

s⋆ = λ + s + s
−
s +(s

−
s)

−
s +((s

−
s)

−
s)

−
s +(((s

−
s)

−
s)

−
s)

−
s + . . .

is defined. We have also

s⋆ = λ + s + s
−
s +s(

−
s
−
−
s ) + s(

−
s (
−
−
s

−
−−
s )) + s(

−
s (
−
−
s (

−
−−
s

−−
−−
s ))) + . . .

.

Definition 5. We call s⋆ the pseudo-Kleene star of the series s ∈ A[[S]].

Lemma 5. Let r, s ∈ A[[S]] with s proper. Then the unique solution u of the
left-linear equation u = r + us is the series u = rs⋆.
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Proof. One has s⋆ = λ + s⋆ −
s whence rs⋆ = r + r(s⋆ −

s) and rs⋆ = r + (rs⋆)
∼
−
s =

r + (rs⋆)s. Conversely, from u = r + us it follows that u = r + (r + us)s =

r + rs + (us)s = r + rs + u(s
−
s) and inductively u = r(λ + s + s

−
s +(s

−
s)

−
s

+ . . . + (ns
−
s)

−
s) . . .)

−
s) + u(n+1s

−
s)

−
s) . . .)

−
s). Thus going to the limit, one gets

u = rs⋆ since s is proper.

7 Kleene theorem

Definition 6. A formal series is pseudo-rational if it is an element of the smallest
subset Rat[[S]] of A[[S]] containing S and closed for the sum, product and pseudo-
Kleene star operation ⋆.

Definition 7. A left-linear system of order N with pseudo-rational coefficients is
a system of the form

ui = ri +
∑

1≤j≤N

ujsi,j

with 1 ≤ i ≤ N where all ri, si,j ∈ Rat[[S]].

Theorem 4. The components of the N -tuple solution of a left-linear system with
proper pseudo-rational coefficients are pseudo-rational series. Conversely, a pseudo-
rational series can be obtained as a component of a N -tuple solution of such a
system.

Proof. The proof is done by induction on N . According to Lemma 5, the solution
of u = r + us is u = rs⋆ which is a pseudo-rational series since r, s ∈ Rat[[S]].
In a system of order N , uN is rationally computed from u1, u2, . . . , uN−1 and the
induction hypothesis is applied.
Conversely, let us prove that the components which are solutions of left-linear sys-
tems with pseudo-rational coefficients verify the conditions of Definition 6. Let us
denote by u1 (respectively u

′

1) the first component of the N -tuple solution (respec-
tively N

′

-tuple solution) of a system S (respectively S
′

):

S : ui = ri +
∑

1≤j≤N

ujsi,j , 1 ≤ i ≤ N

and
S

′

: u
′

i = r
′

i +
∑

1≤j≤N
′

u
′

js
′

i,j , 1 ≤ i ≤ N
′

where all ri, r
′

i, si,j , s
′

i,j ∈ Rat[[S]].

It is easy to exhibit a system which admits as solution c1u1 + c
′

1u
′

1 with c1, c
′

1 ∈ A.

Now, let
∧
ui= u

′

1ui. Then

u
′

1ui = u
′

1ri +
∑

1≤j≤N

u
′

1(ujsi,j)
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and
u

′

1ui = u
′

1ri +
∑

1≤j≤N

(u
′

1uj)s̃i,j

Thus
∧
u1= u

′

1u1 is the first component of the N -tuple solution of the system
∧

S:

∧

S :
∧
ui= u

′

1ri +
∑

1≤j≤N

∧
uj s̃i,j , 1 ≤ i ≤ N

To conclude, let
∨
ui= u∗

1ui. Then

u⋆
1ui = u⋆

1ri +
∑

1≤j≤N

u⋆
1(ujsi,j)

and
u⋆

1ui = u⋆
1ri +

∑

1≤j≤N

(u⋆
1uj)s̃i,j

Thus
∨
u1= u⋆

1u1 = u⋆
1 − λ is the first component of the N -tuple solution of the

system
∨

S:

∨

S :
∨
ui= u⋆

1ri +
∑

1≤j≤N

∨
uj s̃i,j , 1 ≤ i ≤ N

8 Conclusion

Theorem 4 characterizes à-la-Kleene pseudo-rational series defined with a nonas-
sociative concatenation. The key point in the proof of Theorem 4 is the fact that

− and ∼ are mutually inverse operations. The axiom (xy)z = x(y
−
z) allows to

factor out r in the solution of the equation u = r + us and therefore to obtain

u = rs∗ where s∗ is defined in terms of −. The converse axiom x(yz) = (xy)
∼
z

allows to show that products and stars of solutions of left-linear systems are yet
solutions of certain other left-linear systems that can be computed in terms of ∼.
The embedding of the original groupoid into the Suschkewitsch algebra creates no
weak associative relation. It means that this embedding is faithful.
Theorem 4 is a generalization of the famous Kleene theorem, one of the corner-
stones of theoretical computer science. See also [8, 23] for linear languages, [3] for
clock languages, [26] for ∞-languages, [4] for a Conway-like approach and [5] for
binoid languages.
If A has the additional structure of a ring (i.e. subtraction is allowed), let us define

on A[[S]] the bracket: [s, t] = s
−

t −t
−
s. We can easily verify that the Jacobi

identity holds: [s, [t, u]]+[t, [u, s]]+[u, [s, t]] = 0. This remark could be the starting
point of a later study.
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