
Acta Cybernetica 19 (2010) 635–653.

Modeling a Domain in a Tutorial-like System Using

Learning Automata∗

B. John Oommen
†
and M. Khaled Hashem

‡

Abstract

The aim of this paper is to present a novel approach to model a knowledge
domain for teaching material in a Tutorial-like system. In this approach, the
Tutorial-like system is capable of presenting teaching material within a So-
cratic model of teaching. The corresponding questions are of a multiple choice
type, in which the complexity of the material increases in difficulty. This en-
ables the Tutorial-like system to present the teaching material in different
chapters, where each chapter represents a level of difficulty that is harder
than the previous one. We attempt to achieve the entire learning process us-
ing the Learning Automata (LA) paradigm. In order for the Domain model
to possess an increased difficulty for the teaching Environment, we propose to
correspondingly reduce the range of the penalty probabilities of all actions by
incorporating a scaling factor �. We show that such a scaling renders it more
difficult for the Student to infer the correct action within the LA paradigm.

To the best of our knowledge, the concept of modeling teaching material
with increasing difficulty using a LA paradigm is unique. The main results
we have obtained are that increasing the difficulty of the teaching material
can affect the learning of Normal and Below-Normal Students by resulting
in an increased learning time, but it seems to have no effect on the learning
behavior of Fast Students. The proposed representation has been tested for
different benchmark Environments, and the results show that the difficulty
of the Environments can be increased by decreasing the range of the penalty
probabilities. For example, for some Environments, decreasing the range of
the penalty probabilities by 50% results in increasing the difficulty of learning
for Normal Students by more than 60%.

Keywords: domain modeling, tutorial-like systems, learning automata, mod-

∗The first author was partially supported by NSERC, the Natural Sciences and Engineering
Research Council of Canada. A preliminary version of this paper was presented at the Proceedings
of ICMLC 2007, the 2007 International Conference of Machine Learning and Cybernetics, Hong
Kong, China, August 2007.

†Chancellor’s Professor; Fellow: IEEE and Fellow: IAPR. This author can be contacted
at: School of Computer Science, Carleton University, Ottawa, Canada, K1S 5B6. This
author is also an Adjunct Professor with the University of Agder in Grimstad, Norway.
oommen@scs.carleton.ca.

‡This author can be contacted at: School of Computer Science, Carleton University, Ottawa,
Canada, K1S 5B6. k hashem@yahoo.com.



636 B. John Oommen and M. Khaled Hashem

eling of adaptive systems.

1 Introduction

Representing the domain knowledge in Tutorials systems, in an effective way, is a
challenging task. This includes how the knowledge is represented, and how it should
be structured so as to reflect the nature of increasing the complexity/difficulty of the
material to be taught in the Tutorial system [4]. The Domain model is, typically,
the model that permits such a customization, and is usually application dependent.

From a systems perspective, the Domain model is the control center that encom-
passes the entire domain knowledge. The Teacher utilizes the domain knowledge
as represented in the Domain model. Further, he1 incorporates it into his teaching
model to present the material to the Students in a manner that is customizable to
each Student.

Analogous to traditional Tutorial systems, our Tutorial-like system utilizes the
Domain model to represent the domain knowledge in a manner that enables the
Teacher to conduct the learning to the Students in an effective way. The aim of
this paper is to present how the domain knowledge can be modeled and imple-
mented in such Tutorial-like systems. The domain knowledge is presented using a
Socratic model and via multiple choice questions within the Learning Automata
(LA) paradigm. For each question, every choice has an associated probability that
this choice is correct, and the answer to any specific question is the choice with the
highest reward probability.

Our model utilizes concepts from the field of LA, where the Domain model in-
corporates a novel mechanism to present the teaching material. The salient features
of this mechanism can be summarized as follows:

∙ The knowledge is presented via multiple choice questions, which also serve to
test the learning mechanism.

∙ The collection/set of questions also constitutes a chapter in the knowledge to
be imparted.

∙ Subsequent chapters are more difficult than preceding ones.

∙ The answers to the question for subsequent chapters are not predictable by
virtue of prior knowledge.

All of these details will be clarified presently.
In order for the Domain model to render a question to be more difficult, we pro-

pose that it reduces the so-called penalty probabilities for the choices pertinent to
that question. This makes the Environment’s response to the choices of that ques-
tion less predictable. The experimental results of our model, as will be presented

1For the ease of communication, we request the permission to refer to the entities involved (i.e.
the Teacher, Student, etc.) in the masculine.



Modeling a Domain Using LA 637

later in the paper, demonstrate that this approach is feasible in representing the
knowledge in a Tutorial-like system. The approach has been tested in benchmark
Environments and the results are both intuitively appealing and rather fascinating
considering that the Students and Teacher are not real-life entities, but rather,
“models”. Increasing the difficulty of the teaching environment proved to make the
learning more difficult for Normal and Below-Normal Students, while Fast-learning
Students were apparently not adversely effected by the increased difficulty. For
example, for Below-Normal learners, when the range of the reward probabilities
was decreased by 50% in the benchmark Environments, the difficulty within the
teaching Environments increased by more than 60%. We believe that our Domain
model representation is a novel approach within the field of LA modeling, which
permits the LA Environments in this field to consistently increase their difficulties
so as to mimic the teaching of material with increasing complexities.

The different components of Tutorial-like systems are also modeled, namely, the
Student model, the Teacher model, and the Student-Classroom interaction model.
These models have been studied in detail elsewhere [15, 14], but briefly mentioned
here to permit readability.

1.1 Tutorial-like Systems

Our entire research will be within the context of Tutorial-like systems [14]. In
these systems, there need not be real-life Students, but rather each Student could
be replaced by a Student Simulator that mimics a real-life Student. Alternatively,
it could also be a software entity that attempts to learn. The Teacher, in these
systems, attempts to present the teaching material to a School of Student Simula-
tors. The Students (synonymously referred to also as Student Simulators) are also
permitted to share information between each other to gain knowledge. Therefore,
such a teaching environment allows the Students to gain knowledge not only from
the Teacher but also from other fellow Students.

In the Tutorial-like systems which we study, the Teacher has a stochastic nature,
where he has an imprecise knowledge of the material to be imparted. The Teacher
also doesn’t have a prior knowledge about how to teach the subject material. He
“learns” that himself while using the system, and thus, hopefully, improves his
skills as a teacher. Observe that, conceptually, the Teacher, in some sense, is also
a “student”.

On the other hand, the Student Simulators need to learn from the Stochastic
Teacher, as well as from each other. Each Student needs to decide when to request
assistance from a fellow Student and how to “judge” the quality of information he
receives from them. Thus, we require each Student to possess a mechanism whereby
it can detect a scenario of procuring inaccurate information from other Students.

In our model of teaching/learning, the teaching material of the Tutorial-like
system follows a Socratic model, where the domain knowledge is represented in the
form of questions, either to be of aMultiple Choice sort or, in the most extreme case,
of a Boolean sort. These questions, in our present paradigm, carry some degree of
uncertainty, where each question has a probability that indicates the accuracy for



638 B. John Oommen and M. Khaled Hashem

the answer of that question.

1.2 Stochastic Learning Automaton

Learning Automaton2 (LA) have been used in systems that have incomplete knowl-
edge about the Environment in which they operate [1, 17, 20, 21, 23, 30, 37]. The
learning mechanism attempts to learn from a stochastic Teacher which models the
Environment. In his pioneer work, Tsetlin [38] attempted to use LA to model bi-
ological learning. In general, a random action is selected based on a probability
vector, and these action probabilities are updated based on the observation of the
Environment’s response, after which the procedure is repeated.

The term “Learning Automata” was first publicized in the survey paper by
Narendra and Thathachar. The goal of LA is to “determine the optimal action out
of a set of allowable actions” [1]. The distinguishing characteristic of automata-
based learning is that the search for the optimizing parameter vector is conducted
in the space of probability distributions defined over the parameter space, rather
than in the parameter space itself [36].

In the first LA designs, the transition and the output functions were time in-
variant, and for this reason these LA were considered “fixed structure” automata.
Tsetlin, Krylov, and Krinsky [38] presented notable examples of this type of au-
tomata. Later, Vorontsova and Varshavskii introduced a class of stochastic au-
tomata known in the literature as Variable Structure Stochastic Automata (VSSA).
In the definition of a VSSA, the LA is completely defined by a set of actions (one
of which is the output of the automaton), a set of inputs (which is usually the
response of the Environment) and a learning algorithm, T . The learning algorithm
[21] operates on a vector (called the Action Probability vector)

P(t) = [p1(t), . . . , pr(t)]
T,

where pi(t) (i = 1, . . . , r) is the probability that the automaton will select the
action �i at time ‘t’,

pi(t) = Pr[�(t) = �i], i = 1, . . . , r, and it satisfies∑r

i=1 pi(t) = 1 ∀ t.
Note that the algorithm T : [0,1]r × A× B→ [0,1]r is an updating scheme where

A = {�1, �2, . . . , �r}, 2 ≤ r < ∞, is the set of output actions of the automaton,
and B is the set of responses from the Environment. Thus, the updating is such
that

P(t+1) = T (P(t), �(t), �(t)),
where P(t) is the action probability vector, �(t) is the action chosen at time t, and
�(t) is the response it has obtained.

If the mapping T is chosen in such a manner that the Markov process has
absorbing states, the algorithm is referred to as an absorbing algorithm. Many
families of VSSA that posses absorbing barriers have been reported [21]. Ergodic
VSSA have also been investigated [21, 25]. These VSSA converge in distribution
and thus, the asymptotic distribution of the action probability vector has a value

2In the interest of completeness, we have included a fairly good review of the field of LA here.
This can be deleted or abridged as per the desire of the Referees.



Modeling a Domain Using LA 639

that is independent of the corresponding initial vector. Thus, while ergodic VSSA
are suitable for non-stationary environments, automata with absorbing barriers are
preferred in stationary environments.

In practice, the relatively slow rate of convergence of these algorithms con-
stituted a limiting factor in their applicability. In order to increase their speed
of convergence, the concept of discretizing the probability space was introduced
[25, 35]. This concept is implemented by restricting the probability of choosing an
action to a finite number of values in the interval [0,1]. If the values allowed are
equally spaced in this interval, the discretization is said to be linear, otherwise, the
discretization is called non-linear. Following the discretization concept, many of
the continuous VSSA have been discretized; indeed, discrete versions of almost all
continuous automata have been presented in the literature [25].

Pursuit and Estimator-based LA were introduced to be faster schemes, charac-
terized by the fact that they pursue what can be reckoned to be the current optimal
action or the set of current optimal schemes [25]. The updating algorithm improves
its convergence results by using the history to maintain an estimate of the proba-
bility of each action being rewarded, in what is called the reward-estimate vector.
While, in non-estimator algorithms, the action probability vector is updated solely
on the basis of the Environment’s response, in a Pursuit or Estimator-based LA,
the update is based on both the Environment’s response and the reward-estimate
vector. Families of Pursuit and Estimator-based LA have been shown to be faster
than VSSA [36]. Indeed, even faster discretized versions of these schemes have been
reported [1, 25].

With regard to applications, the entire field of LA and stochastic learning, has
had a myriad of applications [17, 20, 21, 30, 37], which (apart from the many
applications listed in these books) include solutions for problems in network and
communications [19, 22, 27, 29], network call admission, traffic control, quality
of service routing, [2, 3, 40], distributed scheduling [34], training hidden Markov
models [16], neural network adaptation [18], intelligent vehicle control [39], and
even fairly theoretical problems such as graph partitioning [26]. Besides these
fairly generic applications, with a little insight, LA can be used to assist in solving
(by, indeed, learning the associated parameters) the stochastic resonance problem
[10], the stochastic sampling problem in computer graphics [11], the problem of
determining roads in aerial images by using geometric-stochastic models [6], the
stochastic and dynamic vehicle routing problem [7], and various location problems
[9]. Similar learning solutions can also be used to analyze the stochastic properties
of the random waypoint mobility model in wireless communication networks [8],
to achieve spatial point pattern analysis codes for GISs [31], to digitally simulate
wind field velocities [28], to interrogate the experimental measurements of global
dynamics in magneto-mechanical oscillators [12], and to analyze spatial point pat-
terns [5]. LA-based schemes have already been utilized to learn the best parameters
for neural networks [18], optimizing QoS routing [41], and bus arbitration [22] – to
mention a few other applications.



640 B. John Oommen and M. Khaled Hashem

1.3 Contributions of this paper

This paper presents a novel approach to model the domain knowledge in a Tutorial-
like system. The representation of the knowledge can be crucial in building effective
Tutorial systems. Thus, the salient contributions of this paper are as follows:

∙ The modeling of the domain knowledge using an LA paradigm using a Socratic
model.

∙ Questions, in this model, are represented to be of a multiple-choice type, with
stochastic solutions.

∙ The Student needs to learn the domain knowledge by responding to the ques-
tions.

∙ Enabling the Domain model to increase the complexity/difficulty of the do-
main knowledge.

∙ The knowledge is presented in chapters, where subsequent chapters are more
difficult than preceding ones.

2 Intelligent Tutorial and Tutorial-like Systems

Since our research involves Tutorial-like systems, which are intended to mimic
Tutorial systems, a brief overview of these follows.

Intelligent Tutorial Systems (ITSs) are special educational software packages
that involve Artificial Intelligence (AI) techniques and methods to represent the
knowledge, as well as to conduct the learning interaction [24]. ITSs are charac-
terized by their responsiveness to the learner’s need. They adapt according to
the knowledge/skill of the users. They also incorporate experts’ domain specific
knowledge.

An ITS mainly consists of a number of modules, typically three [13], and some-
times four when a communication module (interface) is added [42]. The former
three modules are the domain model (knowledge domain), the student model, and
the pedagogical model, (which represent the tutor model itself). Self [33] defined
these components as the tripartite architecture for an ITS – the what (domain
model), the who (student model), and the how (tutoring model). Figure 1 depicts
a common ITS architecture.

2.1 Tutorial-like Systems

Tutorial-like systems share some similarities with the well-developed field of Tu-
torial systems. Thus, for example, they model the Teacher, the Student, and the
Domain knowledge. However, they are different from “traditional” Tutorial systems
in the characteristics of their models, etc. as will be highlighted below.



Modeling a Domain Using LA 641

System Interface

Tutoring Model

Domain Model
Student Model

Figure 1: A Common ITS Architecture.

1. Different Type of Teacher. In Tutorial systems, as they are developed
today, the Teacher is assumed to have perfect information about the material
to be taught. Also, built into the model of the Teacher is the knowledge of
how the domain material is to be taught, and a plan of how it will communi-
cate and interact with the Student(s). This teaching strategy may progress
and improve over time. The Teacher in our Tutorial-like system possesses
different features. First of all, one fundamental difference is that the Teacher
is uncertain of the teaching material – he is stochastic. Secondly, the Teacher
does not initially possess any knowledge about “How to teach” the domain
subject. Rather, the Teacher himself is involved in a “learning” process and
he “learns” what teaching material has to be presented to the particular Stu-
dent. To achieve this, as mentioned, we assume that the Teacher follows the
Socratic model of learning by teaching the material using questions that are
presented to the Students. He then uses the feedback from the Students and
their corresponding LA to suggest new teaching material.

Although removing the “How to teach” knowledge from the Teacher would
take away the “bread and butter” premise of the teaching process in a Tutorial
system, in a Tutorial-like system, removing this knowledge allows the system
to be modeled without excessive complications, and renders the modeling of
knowledge less burdensome. The success of our proposed methodology would
be beneficial to systems in which any domain knowledge pertinent to tutoring
teaching material could be merely plugged into the system without the need
to worry about “how to teach” the material.

2. No Real Students. A Tutorial system is intended for the use of real-life
students. Its measure of accomplishment is based on the performance of these
students after using the system, and it is often quantified by comparing their
progress with other students in a control group, who would use a real-life
Tutor. In our Tutorial-like system, there are no real-life students who use the
system. The system could be used by either:



642 B. John Oommen and M. Khaled Hashem

a) Students Simulators, that mimic the behavior and actions of real-life stu-
dents using the system. The latter would themselves simulate how the
Students improve their knowledge and their interaction with the Teacher
and with other Students. They can also take proactive actions interact-
ing with the teaching environment by one of the following measures:

i. Asking a question to the Teacher

ii. Asking a question to another Student

iii. Proposing to help another Student

b) An artificial Entity which, in itself, could be another software component
that needs to “learn” specific domain knowledge.

3. Uncertain Course Material. Unlike the domain knowledge of “tradi-
tional” Tutorial systems where the knowledge is, typically, well defined, the
domain knowledge teaching material presented in our Tutorial-like system
contains material that has some degree of uncertainty. The teaching mate-
rial contains questions, each of which has a probability that indicates the
certainty of whether the answer to the question is in the affirmative.

4. Testing Vs. Evaluation. Sanders [32] differentiates between the concepts
of “teaching evaluation” and “teaching testing”. He defines “teaching evalu-
ation” as an “interpretive process”, in which the Teacher “values, determines
merit or worth of the students performance, and their needs”. He also defines
“teaching testing” as a “data collection process”. In a Tutorial system, an
evaluation is required to measure the performance of the Student while using
the system and acquiring more knowledge. In our Tutorial-like system, the
Student(s) acquire knowledge using a Socratic model, where it gains knowl-
edge from answering questions without having any prior knowledge about the
subject material. In our model, the testing will be based on the performance
of the set of Student Simulators.

5. School of Students. Traditional Tutorial Systems deal with a Teacher who
teaches Students, but they do not permit the Students to interact with each
other. A Tutorial-like system assumes that the Teacher is dealing with a
School of Students where each learns from the Teacher on his own, and can
also learn from his “colleagues” if he desires, or is communicating with a
cooperating colleague. Notice that we will have to now consider how each
Student learns, and also how the entire School learns.

3 Learning of Students in a LA Teaching Environ-

ment

In Tutorial-like systems, Students (or Student Simulators) try to learn some domain
knowledge from the Teacher and from the interaction between themselves. As
mentioned earlier, there are no real-life Students who use the Tutorial-like systems.



Modeling a Domain Using LA 643

Students are modeled using Student Simulators, that try to mimic the actions and
behavior of real-life Students. Student Simulators are, in turn, modeled using LA
which attempt to learn the domain knowledge from the Teacher, who also may be
a modeled entity.

First of all, the Tutorial-like system models the Students by observing their
behavior while using the system and examining how they learn. The Student
modeler tries to infer what type of Student it is providing the knowledge to. This
enables the Teacher to customize his teaching experience to each Student according
to his caliber.

If we are dealing with real-life Students, it would have been an easy task to im-
plement these concepts in a real Tutorial system. But since the goal of the exercise
is to achieve a teaching-learning experience, in which every facet of the interaction
involves a model (or a non real-life Student), the design and implementation of
the entire Tutorial-like system must be couched in a formal established learning
paradigm. As mentioned earlier, although there are host of such learning method-
ologies, we have chosen to work within the LA paradigm, as explained in Section
1.2. Thus, the questions encountered, before this endeavor is successful, involve:

∙ How can we model the Teacher in terms of an LA Environment?

∙ How can we model the different types of Students that could be involved in
the learning?

∙ How can we model the Domain, from which the learning material is presented?

∙ How can we model chapters of teaching material with increasing complexity?

We shall address all of these issues now, and report the experimental results
obtained from such a modeling exercise.

Modeling The Student: In our model, typically, a Student can be one of
these three types (although it is easy to generalize this to a larger spectrum of
Students):

∙ Fast Student. This type of Students can be simulated using a Pursuit scheme,
which is, typically, a fast convergence scheme.

∙ Normal Student. The Student Simulator can mimic this type of Students
using a VSSA scheme.

∙ Slow Student. Such a Student can be implemented using a FSSA, or a VSSA
with a lower value of �.

Modeling the Choices: The Tutorial-like system uses the Socratic model
of teaching by presenting multiple-choice questions to the Students. The Student
selects an option from the set of available actions �, in which �i is the action
corresponding to selecting choice ‘i’ in the multiple-choice question.

Modeling the stochastic Teacher: The Teacher who imparts the domain
knowledge is modeled as an LA Environment, which possesses a set of penalty



644 B. John Oommen and M. Khaled Hashem

probabilities c, in which ci is the penalty probability associated with the fact that
the Environment penalizes choice ‘i’. The Student is unaware of the values of these
penalty probabilities.

Modeling the Rewards/Penalties: When the Student selects an action �i,
the Environment can either reward (� = 0) or penalize (� = 1) his actions. This
feedback provides the Student the information required to learn from his actions,
and from this feedback loop, the cycle is repeated. The Student can incrementally
learn until his LA, hopefully, converges to the best action, which is the one which
has the minimum penalty probability.

The crucial issue that has not been addressed as yet is that of modeling the do-
main itself to consider “chapters” of increasing complexity. That will be addressed
and formalized in the next section.

4 Domainsem/Teaching Material with Increasing
Difficulty

The Teaching material in the Tutorial-like system is modeled as a Socratic model
that contains multiple choice questions. Each choice has an associated probability
that represents the probability that this choice is correct. Each question is repre-
sented using an LA Environment, where the Environment has a penalty probability
associated with that choice.

When the Domain model is required to increase the complexity of a question,
we propose that it reduces the penalty3 probabilities of the choices for that question
with a scale factor, �. This results in the reduction of the range of all the penalty
probabilities, which makes it more difficult for the Student to determine the best
choice for the question, primarily because the reduced penalty probabilities tend
to cluster together. This is the primary hypothesis of our model, and this will be
demonstrated presently.

Formally, the Domain model for the teaching Environment is as follows:
{�, �, c, �}, where:
� = {�1, �2, . . . , �R}, in which

�i is the action corresponding to selecting choice ‘i’ in the multiple choice
question.

� = {0, 1}, in which
� = 0 implies a Reward for the present action (i.e, choice) chosen, and
� = 1 implies a Penalty for the present action (i.e, choice) chosen.

c = {c1, c2, . . . , cR}, in which
ci is the penalty probability associated with the fact that the Environment

will penalize choice ‘i’.
� (0 < � ≤ 1) is the scaling factor which is used to control the complex-

ity/difficulty of any question. The value of �=1.0 represents a question with a
“normal” difficulty, while the difficulty increases as � decreases.

3It is easy to see that a similar scaling can be achieved by manipulating the reward probabilities.



Modeling a Domain Using LA 645

The Domain model increases the complexity of the domain knowledge without
changing the order of the choices to the question. If the Student is permitted to
remember the choices of previous questions, he is indirectly given prior knowledge
about the optimal answer to the particular question at hand. However, for the
present we assume that as far as the Student is concerned, the chapter presented
by the Environment is not related to a previous one4.

5 Experimental Results

This section presents the experimental results obtained by using the proposed Do-
main model to represent the teaching material, and to increase its complexity.
Numerous simulations were performed in order to study how the knowledge could
be modeled, and how the difficulty of the teaching material led to increase the
learning time for the different types of Students.

The simulations were performed for different benchmark Environments, two
4-action Environments and two 10-action Environments. The Environments con-
tained multiple choice questions that represented the teaching material that had to
be taught to the Students. In these experiments, an algorithm was considered to
have converged, if the probability of choosing an action was greater than or equal
to a threshold T (0 < T ≤ 1). An automaton was considered to converge correctly
if it converged to the best choice (i.e. to the action with the highest probability of
being rewarded).

The simulations were performed against three types of Students, who commu-
nicated with the Teacher and learned the teaching material as follows:

∙ Fast learning Students. In order for the Student Simulator to mimic Students
of this type, we used a Pursuit PLRI scheme, with � being in the range 0.0041
to 0.0127. In this scheme, the action probability vector is updated if the LA
obtained a reward. As for the Pursuit algorithm, the estimate vector for the
reward probabilities was always updated.

∙ Normal learning Students. In this case, we used a VSSA to simulate Students
of this type. In particular, we utilized the LRI scheme with � being in the
range 0.0182 to 0.0192.

∙ Below-Normal Students (“Slow Learners”). In this case too, the Student
Simulators used VSSA to simulate learners of this type. Again, our model
used the LRI scheme, but with a lower value of �, which was between 0.0142
to 0.0152.

4The question of how to deal with chapters of increasing complexity is dealt with elsewhere
[14]. Without belaboring the point, we mention that in order for the Domain model to keep the
identity of superior actions in subsequent chapters hidden from the Student, in [14] we propose
to shuffle the order of the choices that are presented to the Student. Therefore, the Student can
not use his prior knowledge to “short-cut” an answer to more difficult learning material.



646 B. John Oommen and M. Khaled Hashem

The simulations were performed for the different 4-action and 10-action bench-
mark Environments, for which the threshold T was set to be 0.99, and the number
of experiments (NE) = 75. The results of these simulations are described below.

5.1 Results using 4-action and 10 action Environments

The teaching Environments in the simulations have been represented by two bench-
mark sets of Environments. The first set includes two 4-action Environments (E4,A

and E4,B), and the second set contains two 10-action benchmark Environments
(E10,A and E10,B). The 4-action Environment represents a multiple-choice ques-
tion with 4 options, whereas the 10-action Environment represents a more difficult
multiple-choice question, namely with 10 options. The Students in the simula-
tions needed to learn the responses for the questions and determine the choice that
possessed the minimum penalty probability.
For E4,A and E10,A, the � of the Student Simulators LA were set to be:

∙ 0.0127 for the Fast learning Student.

∙ 0.0192 for the Normal learning Student.

∙ 0.0142 for the Below-Normal learning Student.

Also, for E4,B and E10,B, the � of the Student Simulators LA were:

∙ 0.0041 for the Fast learning Student.

∙ 0.0182 for the Normal learning Student.

∙ 0.0152 for the Below-Normal learning Student.

For the 4-action Environments, the reward probabilities were:
E4,A = {0.7 0.5 0.3 0.2} and
E4,B = {0.1 0.45 0.84 0.76}.

Similarly, for the 10-action Environments, the two settings for the reward prob-
abilities were:

E10,A = {0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2} and
E10,B = {0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3}.

The simulations were performed for the different Environments and types of
Students, as described above. Also, the experiments were conducted by controlling
the Domain model with different factors of difficulty �, from the range of 1.0 (no
difficulty) to 0.3. The results of these simulations are provided in Table 1.

The results demonstrate that the difficulty of the Domain knowledge increased
by decreasing � for both the Normal and Below-Normal learners. As opposed to
this, Fast learners were apparently not adversely affected by the increasing diffi-
culty of the Domain knowledge. For example, in the E4,A Environment, a Normal
learner Student LA converged in 975 iterations to learn the material in an Envi-
ronment without any enhanced level of difficulty (�=1.0), while it converged in
1,474 iterations when � decreased to 0.6, which represents an increase of 51% in



Modeling a Domain Using LA 647

Env. No. of Chapter � No. iterations for No. iterations for No. iterations for

actions (diffic. factor) Fast Learner Normal Learner Below Norm. Learner

to converge to converge to converge

1 1.0 563 975 1,380

2 0.9 542 1,051 1,497

3 0.8 530 1,192 1,628

E4,A 4 4 0.7 515 1,321 1,722

5 0.6 506 1,474 2,085

6 0.5 473 1,682 2,245

7 0.4 492 1,918 3,077

8 0.3 523 2,393 3,512

1 1.0 1,480 2,046 2,459

2 0.9 1,420 2,326 2,799

3 0.8 1,388 2,247 2,894

E4,B 4 4 0.7 1,445 2,500 3,525

5 0.6 1,443 2,631 3,533

6 0.5 1,378 2,897 3,887

7 0.4 1,445 3,569 4,652

8 0.3 1,407 3,651 5,036

1 1.0 680 1,320 1,728

2 0.9 684 1,442 1,972

3 0.8 660 1,485 2,256

E10,A 10 4 0.7 667 1,731 2,386

5 0.6 641 1,963 2,845

6 0.5 650 2,226 3,424

7 0.4 656 2,604 3,965

8 0.3 711 3,105 5,085

1 1.0 1,631 2,286 2,773

2 0.9 1,623 2,282 2,662

3 0.8 1,580 2,608 3,319

E10,B 10 4 0.7 1,555 2,879 3,644

5 0.6 1,590 2,928 3,580

6 0.5 1,527 3,478 4,460

7 0.4 1,644 3,717 4,628

8 0.3 1,715 4,015 5,776

Reward probabilities for 4-action Environments are:
E4,A : 0.7 0.5 0.3 0.2
E4,B : 0.1 0.45 0.84 0.76

Reward probabilities for 10-action Environments are:
E10,A : 0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2
E10,B : 0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3

Table 1: Convergence of the Student Simulators learning in the benchmark
Four/Ten-Action Environments by increasing the level of difficulty in the Domain
knowledge.



648 B. John Oommen and M. Khaled Hashem

the learning time for the Student. When the difficulty increased further by set-
ting �=0.3, the iterations needed for learning increased to 2,393, which represents
an increase of 145% of the time required to learn when compared to the original
benchmark Environment.

Similar results were also recorded for the Below-Normal learner, where he
learned the material in 1,380 iteration in an Environment without any added dif-
ficulty. When the difficulty of the material increased corresponding to a value of
�=0.6, the number of iterations increased to 2,085, which represents a 51% increase
in the learning time. The learning time increased to 3,512 iterations when the con-
trol parameter � was 0.3, which represents a 154% increase in the learning time
from the original benchmark.

On the other hand, the results showed that Fast learners were not adversely
affected by increasing the difficulty in the Environment. Indeed, the number of
iterations needed to learn the teaching material were almost constant. This seems
to also be the case for real-life Students.

Similar results are also observed for the other Environments (E4,B, E10,A, and
E10,B), as seen from Table 1.

Figure 2 depicts graphically the results of the simulations. For each benchmark
Environment, it displays the relationship between the number of iterations and �.
The reader should observe the apparent “proportional” increase in the number of
iterations by increasing the complexity (i.e. by decreasing �) for both Normal and
Below-Normal learners. It also shows that Fast learners were not affected by the
increased complexity of the problem.

6 Conclusion

This paper introduced a novel approach of modeling the Domain knowledge in a
Tutorial-like system. In this model, the Domain knowledge is presented in dif-
ferent chapters, where the difficulty of the learned knowledge increased with the
subsequent chapters.

The Domain knowledge has been modeled using the concept of Environments
in a LA paradigm, from which the Student Simulator LA are trying to learn. The
model presented in the paper showed that the difficulty of the Domain knowledge
(as increasingly more complex chapters were encountered) could be increased by
decreasing the range of the penalty probabilities of all the pertinent actions by
multiplying them with a factor, �. The main results that we have obtained is that
the learning time increased for Normal and Below-Normal learners as the difficulty
of the Domain knowledge increased. This was not the case for Fast learners, which
seems to be consistent with our experience with real-life Students.

The Teacher will be using the Domain model to present the teaching material in
a chapter-wise fashion to the Students. He will need to determine when the chapter
complexity can be increased, and how prior knowledge can be used by the Student
LA in such Tutorial-like systems. This is currently being done elsewhere [14].

For future work, we are considering how we can use this approach to model



Modeling a Domain Using LA 649

E4,A

0

1000

2000

3000

4000

5000

6000

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
µ

N
o
. 

o
f 

it
e
ra

ti
o
n
s

Fast Learner

Normal Learner

Below-Normal

E4,B

0

1000

2000

3000

4000

5000

6000

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 µ

N
o
. 

o
f 

it
e
ra

ti
o
n
s

Fast Learner

Normal Learner

Below-Normal

E10,A

0

1000

2000

3000

4000

5000

6000

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 µ

N
o
. 

o
f 

it
e
ra

ti
o
n
s

Fast Learner

Normal Learner

Below-Normal

E10,B

0

1000

2000

3000

4000

5000

6000

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 µ

N
o

. 
o

f 
it
e

ra
ti
o

n
s

Fast Learner

Normal Learner

Below-Normal

Figure 2: The effect of increasing the difficulty of the Domain model on the different
types of Students in the four benchmark Environments.



650 B. John Oommen and M. Khaled Hashem

the increasing complexity of real-life domain knowledge, where the multiple choice
questions that the Student answers are from a real domain. A more distant future
work is to port this approach to be used in traditional Tutorial systems, where the
Students can be taught uncertain domain knowledge.

References

[1] Agache, M. and Oommen, B. J. Generalized pursuit learning schemes: New
families of continuous and discretized learning automata. IEEE Transactions
on Systems, Man, and Cybernetics-Part B: Cybernetics, 32(6):738–749, De-
cember 2002.

[2] Atlassis, A. F., Loukas, N. H., and Vasilakos, A. V. The use of learning
algorithms in atm networks call admission control problem: A methodology.
Computer Networks, 34:341–353, 2000.

[3] Atlassis, A. F. and Vasilakos, A. V. The use of reinforcement learning algo-
rithms in traffic control of high speed networks. Advances in Computational
Intelligence and Learning, pages 353–369, 2002.

[4] Atolagbe, T. A. and Hlupic, V. SimTutor: A multimedia intelligent tutoring
system for simulation modeling. In Andraddttir, S., Healy, K. J., Withers,
D. H., and Nelson, B. L., editors, Proceedings of the 29th Conference on Winter
Simulation, pages 504–509, Atlanta, Georgia, 1997.

[5] Baddeley, A. and Turner, R. Spatstat: An R package for analyzing spatial
point patterns. Journal of Statistical Software, 12:1–42, 2005.

[6] Barzohar, M. and Cooper, D. B. Automatic finding of main roads in aerial im-
ages by using geometric-stochastic models and estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 7:707–722, 1996.

[7] Bertsimas, D. J. and Ryzin, G. Van. Stochastic and Dynamic vehicle routing
in the euclidean plane with multiple capacitated vehicles. Operations Research,
41:60–76, 1993.

[8] Bettstetter, C., Hartenstein, H., and Pérez-Costa, X. Stochastic properties of
the random waypoint mobility model. Journal Wireless Networks, 10:555–567,
2004.

[9] Brandeau, M. L. and Chiu, S. S. An overview of representative problems in
Location Research. Management Science, 35:645–674, 1989.

[10] Collins, J. J., Chow, C. C., and Imhoff, T. T. Aperiodic stochastic resonance
in excitable systems. Physical Review E, 52:R3321–R3324, 1995.

[11] Cook, R. L. Stochastic sampling in computer graphics. ACM Trans. Graph.,
5:51–72, 1986.



Modeling a Domain Using LA 651

[12] Cusumano, J. P. and Kimble, B. W. A stochastic interrogation method for ex-
perimental measurements of global dynamics and basin evolution: Application
to a two-well oscillator. Nonlinear Dynamics, 8:213–235, 1995.

[13] Fischetti, E. and Gisolfi, A. From computer-aided instruction to intelligent
tutoring systems. Educational Technology, 30(8):7–17, 1990.

[14] Hashem, M. K. Learning Automata Based Intelligent Tutorial-like Systems.
PhD thesis, School of Computer Science, Carleton University, Ottawa, Canada,
2007.

[15] Hashem, M. K. and Oommen, B. J. On using learning automata to model a stu-
dent’s behavior in a tutorial-like system. In Proceedings of the IEA/AIE 2007:
The 20th International Conference on Industrial, Engineering & Other Ap-
plications of Applied Intelligent Systems, pages 813–822, Kyoto, Japan, June
2007.

[16] Kabudian, J., Meybodi, M. R., and Homayounpour, M. M. Applying con-
tinuous action reinforcement learning automata (CARLA) to global training
of hidden markov models. In Proceedings of the International Conference on
Information Technology: Coding and Computing , ITCC’04, pages 638–642,
Las Vegas, Nevada, 2004.

[17] Lakshmivarahan, S. Learning Algorithms Theory and Applications. Springer-
Verlag, 1981.

[18] Meybodi, M. R. and Beigy, H. New learning automata based algorithms for
adaptation of backpropagation algorithm pararmeters. International Journal
of Neural Systems, 12:45–67, 2002.

[19] Misra, S. and Oommen, B. J. GPSPA: A new adaptive algorithm for maintain-
ing shortest path routing trees in stochastic networks. International Journal
of Communication Systems, 17:963–984, 2004.

[20] Najim, K. and Poznyak, A. S. Learning Automata: Theory and Applications.
Pergamon Press, Oxford, 1994.

[21] Narendra, K. S. and Thathachar, M. A. L. Learning Automata: An Introduc-
tion. Prentice-Hall, New Jersey, 1989.

[22] Obaidat, M. S., Papadimitriou, G. I., Pomportsis, A. S., and Laskaridis, H. S.
Learning automata-based bus arbitration for shared-medium ATM switches.
IEEE Transactions on Systems, Man, and Cybernetics: Part B, 32:815–820,
2002.

[23] Obaidat, M. S., Papadimitrious, G. I., and Pomportsis, A. S. Learning au-
tomata: Theory, paradigms, and applications. IEEE Transactions on Systems,
Man, and Cybernetics-Part B: Cybernetics, 32(6):706–709, December 2002.



652 B. John Oommen and M. Khaled Hashem

[24] Omar, N. and Leite, A. S. The learning process mediated by intelligent tutoring
systems and conceptual learning. In International Conference On Engineering
Education, page 20, Rio de Janeiro, 1998.

[25] Oommen, B. J. and Agache, M. Continuous and discretized pursuit learning
schemes: Various algorithms and their comparison. IEEE Transactions on
Systems, Man, and Cybernetics-Part B: Cybernetics, 31:277–287, 2001.

[26] Oommen, B. J. and Croix, E.V. de St. Graph partitioning using learning
automata. IEEE Transactions on Computers, C-45:195–208, 1995.

[27] Oommen, B. J. and Roberts, T. D. Continuous learning automata solutions
to the capacity assignment problem. IEEE Transactions on Computers, C-
49:608–620, 2000.

[28] Paola, M. Digital simulation of wind field velocity. Journal of Wind Engineer-
ing and Industrial Aerodynamics, 74-76:91–109, 1998.

[29] Papadimitriou, G. I. and Pomportsis, A. S. Learning-automata-based TDMA
protocols for broadcast communication systems with bursty traffic. IEEE Com-
munication Letters, pages 107–109, 2000.

[30] Poznyak, A. S. and Najim, K. Learning Automata and Stochastic Optimization.
Springer-Verlag, Berlin, 1997.

[31] Rowlingson, B. S. and Diggle, P. J. SPLANCS: spatial point pattern analy-
sis code in S-Plus. University of Lancaster, North West Regional Research
Laboratory, 1991.

[32] Sanders, J. R. In Twenty-fourth Annual Meeting of The Joint Committee on
Standards for Educational Evaluation, October 1998.

[33] Self, J. The defining characteristics of intelligent tutoring systems research:
ITSs care, precisely. International Journal of AI in Education, 10:350–364,
1999.

[34] Seredynski, F. Distributed scheduling using simple learning machines. Euro-
pean Journal of Operational Research, 107:401–413, 1998.

[35] Thathachar, M. A. L. and Oommen, B. J. Discretized reward-inaction learn-
ing automata. Journal of Cybernetics and Information Science, pages 24–29,
Spring 1979.

[36] Thathachar, M. A. L. and Sastry, P. S. Varieties of learning automata: An
overview. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cy-
bernetics, 32(6):711–722, December 2002.

[37] Thathachar, M. A. L. and Sastry, P. S. Networks of Learning Automata:
Techniques for Online Stochastic Optimization. Kluwer Academic, Boston,
2003.



Modeling a Domain Using LA 653

[38] Tsetlin, M. L. Automaton Theory and the Modeling of Biological Systems.
Academic Press, New York, 1973.

[39] Unsal, C., Kachroo, P., and Bay, J. S. Simulation study of multiple intelligent
vehicle control using stochastic learning automata. Transactions of the Society
for Computer Simulation International, 14:193–210, 1997.

[40] Vasilakos, A., Saltouros, M. P., Atlassis, A. F., and Pedrycz, W. Optimizing
QoS routing in hierarchical ATM networks using computational intelligence
techniques. IEEE Transactions on Systems Science, and Cybernetics, Part C,
33:297–312, August 2003.

[41] Vasilakos, A. V., Saltouros, M. P., Atlassis, A. F., and Pedrycz, W. Optimizing
QoS routing in hierarchical ATM networks using computational intelligence
techniques. IEEE Transactions on Systems, Man, and Cybernetics: Part C,
33:297–312, 2003.

[42] Winkels, R. and Breuker, J. What’s in an ITS? a functional decomposition.
In Costa, E., editor, New Directions for Intelligent Tutoring Systems. Spring-
Verlag, Berlin, 1990.

Received 18th July 2008


