
Acta Cybernetica 19 (2010) 655–660.

Automata Depository Model with

Autonomous Robots∗

Zoltán Szabó†, Balázs Lájer†, and Ágnes Werner-Stark‡

Abstract

One of the actual topics on robotis research in the recent decades is the
robots’ autonomy. The methods of self-sufficient problem-solving of the ma-
chines brings on several questions in programming, so mobile robots started
to extend as tools of education as well.

Our final goal was in this project to create the model of an automata
depository that constitutes a closed system from the users’ point of view. We
model such circumstances that make autonomy important like extreme high
or low temperature, closeness of dangerous materials.These circumstances
substantiates the need of robots and that they have to solve their problems
self-sufficiently, without any direct human interaction.

The model builds up from two main components: the Central Controlling
Unit (CCU), and the group of robots. The robots ply in the depository using
the line following method. During their activity may turn up some conflict
situations, whose autonomous handling is the main topic of our research.
Using the right wayfinder algorithm and the representation of the map of the
depository, the robots find out after a short information excange, who of them
has to give way to the other in order to solve the conflict in optimal time.

The communication between the LEGO MINDSTORMS NXT Robots
and the Central Controlling Unit is based on a BlueTooth connection.

The robots’ autonomy means that if they loose connection with the CCU,
they can finish their commands that they have already received. Nevertheless
navigating their physical relocation and sense any incidental new barrier is
absolutely their task.

Keywords: autonomous robot, mindstorms nxt, solving conflict situation

1 Introduction

This project has been created for a Scientific Student Conference. Our final goal
was in this project to create the model of an automata depository that consti-
tutes a closed system from the users’ point of view. We model such circumstances

∗This work was supported by the LEGO Hungária Ltd.
†E-mail: {szabo.zoltan,lajer.balazs}@door2world.hu, werner@virt.uni-pannon.hu



656 Zoltán Szabó, Balázs Lájer, and Ágnes Werner-Stark

that make autonomy important like extreme high or low temperature, closeness
of dangerous materials. These circumstances substantiates the need of robots and
that they have to solve their problems self-sufficiently, without any direct human
interaction.

The system consists of two parts: the Central Controlling Unit (CCU) and the
group of robots. The user shall not do any interaction with the robots, only with
the CCU through the user interface. The CCU and the robots bring the user’s
queries into effect independently, so we can mention the systems autonomy as well.

First of all we had to find a proper hardware for the project. After having
examined some robot kits that can be found on the internet, we chose the Lego
Mindstorms NXT set, as the robot can be built up easily and people can start work
on the software before long. We decided to use the Lejos NXJ platform what is a
little JAVA Virtual Machine running on the NXT Bricks, so we could develop our
program in object-oriented method.

2 Build-up and software of the robots

Using the sensors that can be found in the Mindtorms NXT set, we could easily
build up a robot that we could use for this research. The robots stand on a three-
wheel frame that makes them stable enough. We used only two of the available
sensors: the light sensor for the line-following and the ultrasonic sensor on the top
of the robot in order to sense if it reaches a barrier and to know if the robots
fork-lift is fully under the box it is going to lift.

Figure 1: Top view

After having implemented some basic functionalities such as moving forward to
a given distance, turning in a given degree, getting to a given point in a virtual
frame of reference or lifting up and letting down the fork-lift, we started building
their main software. Its tasks are: to process a route computed by the Central



Automata Depository Model with Autonomous Robots 657

Controller Unit, to monitor every important information to the CCU, discover new
barriers, to keep in touch with the other robots. Our first idea was to implement
a recursive routeplanner algorithm that runs on the NXT Brick, but unfortunately
we had to face the fact that the recursion uses all the available memory after the
second step. Because of we had no time and close deadlines with this project, we
decided to use the CCU to plan the route. This algorithm is a breadth-first search
algorithm. The adjacency list stores the path points on the map. By this way we
use every time one of the shortest routes. There is a work in progress to develop
an other non-recursive algorithm that can run on the NXT Bricks.

The base class of the robots’ software is the Controller class. The tasks men-
tioned above are shared between two threads: one thread is responsible for the
navigation and all the other functionalities that help the robot to complete its
assignment, the other thread makes the communication.

3 Navigation

The virtual map of the depository is a frame of reference with synchronizing points
in the middle of each field. We had some trouble because of the imprecision of
the lego parts, that’s why we chose the line-following method. Because of the same
reason, we had to take care to implement some corrections when turning the robots.
If the robot turns 90 degrees in a direction during processing its route, the result
was not always correct. The best solution was that if the robot could not sense the
line after having turned, it starts iteratively swivel in both directions by increasing
angles. This way it will surely find the line. The robots orientate themselves by
keeping their last position in their memory. They know that they have reached a
synchronizing point by sensing again black line after they had left it before. If they
cannot sense black again, then they have left the line because of some reason, so
they have to search for it again using the correction method mentioned above.

Figure 2: The map



658 Zoltán Szabó, Balázs Lájer, and Ágnes Werner-Stark

4 Conflict Situations

In our model we determined three types of conflict situations. One is that two
robots are on their way, and their routes cross each other. The second one is when
only one of them has an actual task (Robot A), the other is idle (Robot B) but
staying on the route that Robot A has to process. In the third situation both
robots have their task, but one of them could go faster on its route, so it comes
up with the other. I this case the conflict handling is very simple, the faster robot
only have to wait for the other.

Figure 3: An example conflict situation

In every monitoring message the robots send the actual coordinates on the map.
They send these information for each other not just the for the CCU, but because
of some issues with the firmware these data go through a pipe in the CCU (it will
be explain below). By this way they can calculate the distance from the other.
They use the Pythagorean theorem, but we are working on an other more effective
method which will use the map for calculating.

When they got the distance they have to determine whether this is a conflict
situation and if it is what kind of conflict situation.

First of all they examine the distance to know if it is under the threshold or
not. If it is over the threshold they can go on. If it is under or equal with the
threshold they have to use one of the avoiding tactics. To determine the avoiding
case they get more information. For first the state of the other robot (idle, busy),
and the route of the other. They can determine wherher their routes have common
point or not. If there is at least one common point then they have to continue the
method else they can go on their own route. If they know that their routes cross
each other then they search the first free path point and send the length of the
avoiding route to the other robot. A free path point is one of the path points on
the map along the other’s route but not on it. The two robots can decide which has
to do avoiding, it depends on who has the shortest route. After the avoiding robot
is out of the way, sends a signal to the other to continue its own route. When the
robot finished provessing the route, sends a resume signal to the avoiding robot to



Automata Depository Model with Autonomous Robots 659

continue the interrupted task. In this case the avoiding robot go to the coordinate
where the task was interrupted, and continues it.

5 System architecture and software

The CCU works as a bridge between the TCP/IP network and the Bluetooth
network. It accepts connections from the users via TCP/IP protocol. The users
can use a string-based protocol to order actions in the system. We are working on
a graphical user interface to ease the users’ work.

On the other side the CCU has to build and keep persistent the connection with
the robots. Because the CCU initiates the connections, it has to know the name
and the address of the Bluetooth devices. The core of the CCU is the ServerCore
class. This is the main controller which is responsible for delegating tasks to the
robots and serving information to the users. It starts two threads to listen to the
user connections and for the robot communication control. These are the channels
for the communication between the two networks.

The robot’s software has the Controller main class which is responsible for
starting the communication thread and for initialising the navigator classes and
reset the position of the fork-lift.

The solution of the problem with the firmware Bluetooth implementation is in
the communication thread. We had to face the fact that in this version of the
firmware we can use only one connection in one time. So we can not communicate
with the CCU and the other robots at the same time as we planned before. So we
modified the protocol of the CCU-Robot communication and made it able to let
through the messages between the robots. We use an interface in these classes to
make it possible to modify the program when multiple connections are available.

6 Problems and future plans

Some minor problems turn up because of the sensitivity and imprecision of the
sensors. We draw the inference that the light sensor need constant circumstances
after its thresholds had been set. It measured false data when the sun shone through
the window or when the lights were on. It was very difficult to find the right values
for the ultrasonic sensor and the right form for the box in the depository to make
them work together.

Our main problem was the imperfection of the BlueTooth connectivity in the
NXJ platform. After the connection between a robot and the CCU has been estab-
lished, we tried to command the robot to build up a connection with the another.
Then the robot’s software suddenly froze, and we did not know what happened.
Having searched for the implementation of the BlueTooth connectivity in the NXJ
code, we found that only one listener can be active in a robot. While we were
searching for some solution on the internet, we could see that several other projects
also missed this feature so we look forward for the next version of the NXJ firmware.



660 Zoltán Szabó, Balázs Lájer, and Ágnes Werner-Stark

7 Conclusion

We succeed to create a model of an automata depository in which the user only
needs to command a computer, there is no interaction needed between human and
robot. The CCU and the robots can manage to bring into effect the changes that
the user had queried. We found the Lego Mindstorms NXT robots very useful in
teaching programming, especially robotics and embedded systems.

References

[1] Druin, A., Hendler, J. Robots for kids: Exploring new technologies for learning.
San Diego, CA: Academic Press, 2000.

[2] Wie hauche ich dem kleinen Roboter “Asuro” das Leben ein? http://www.

dlr.de/schoollab/desktopdefault.aspx/tabid-2980/4537_read-6668/

[3] LEGO, LEGO MINDSTORM set for Schools # 9790. Billund, Denmark: The
LEGO Group, 1999.

[4] http://claraty.jpl.nasa.gov/man/overview/index.php

[5] Lui, M., Hsiao, Y. Middle school students as multimedia designers: A project-
based learning approach. Journal of Interactive Learning Research, 13(4), 311-
337, 2002.

[6] Java for LEGO Mindstorms. http://lejos.sourceforge.net/p_

technologies/nxt/nxj/api/index.html

[7] Cormen, Rivest, Leiserson. Algoritmusok. 2003.

[8] http://mindstorms.lego.com/eng/Overview/Bluetooth.aspx

[9] http://www.daimi.au.dk/˜dam/logs/doku.php?id=projekt2#thursday_

d._13_12-07

Received 3rd January 2009


