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Speech Recognition Experiments with Audiobooks∗

László Tóth†, Balázs Tarján‡, Gellért Sárosi‡, and Péter Mihajlik‡§

Abstract

Under real-life conditions several factors may be present that make the

automatic recognition of speech difficult. The most obvious examples are

background noise, peculiarities of the speaker’s voice, sloppy articulation and

strong emotional load. These all pose difficult problems for robust speech

recognition, but it is not exactly clear how much each contributes to the

difficulty of the task. In this paper we examine the abilities of our best

recognition technologies under near-ideal conditions. The optimal conditions

will be simulated by working with the sound material of an audiobook, in

which most of the disturbing factors mentioned above are absent. Firstly pure

phone recognition experiments will be performed, where neural net-based

technologies will also be tried as well as the conventional Hidden Markov

Models. Then we move on to large vocabulary recognition, where morph-

based language models are applied to improve the performance of the standard

word-based technology. The tests clearly justify our assertion that audiobooks

pose a much easier recognition task than real-life databases. In both types of

tasks we report the lowest error rates we have achieved so far in Hungarian

continuous speech recognition.
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1 Introduction

Creating speech recognizers that operate reliably in practice requires the handling
of several factors that may not arise under laboratory conditions, but are inevitable
in real life. The pressure from industry towards creating robust recognizers forces
researchers to focus more on issues like the handling of noisy and spontaneous
speech. This is of course understandable, but from a scientific point of view it is
unusual to move on to a more difficult task before solving the simple one. And even
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the recognition of clean and well-articulated speech has not yet been fully solved,
and in particular for Hungarian we do not know how our recognizers would behave
under such conditions. We think that the study of simpler recognition problems
should not be abandoned: though the result of these are less applicable directly,
they can shed light on how the various factors contribute to the difficulty of the
recognition of real-life speech, and on how to handle these. Also, there might be
applications where good quality speech can be assumed (for example, in a broadcast
news captioning system both studio quality recording and good articulation are
expected).

In this paper we test our current speech recognition systems on an audiobook.
Our aim is to see how they perform under nearly ideal conditions. In Section 2 we
explain why we regard the audiobook as providing ‘ideal’ speech by giving examples
of the most important factors that are not present in the material of the audiobook.
Then in Section 4 we present pure phone recognition experiments, which are useful
for comparing the performance of various acoustic modeling techniques. In real life,
however, one would expect a word-level output from a recognizer, so in Section 5 we
create language models for the recognition task using both word- and morph-based
techniques. In the last section we summarize our findings and draw some pertinent
conclusions.

2 Factors Hindering Speech Recognition

In real-life situations several factors arise that degrade the performance of automatic
speech recognizers. In this section we list the most important factors and try to
assess their impact on the recognition rates in a real-life situation and also in the
case of an audiobook.

It is hard to imagine such a real-life recognition environment where background
noises could be perfectly excluded. One would find noises even in such high-quality
recordings as broadcast news – e.g. paper being rustled and people taking breaths.
And in fact there are quite a lot of applications that require speech recognition un-
der a high level of noise, as in a car or cockpit. Many studies have been conducted
to compare human and machine speech recognition under noisy conditions, and
the results are usually disappointing [10]. The distorting effect of transfer media
(most typically a phone line) is also counted as noise, and speech recognizers can
be surprisingly sensitive to even a change in the microphone they are used with.
Compared to the average background noise conditions and the quality and vari-
ability of telephone microphones and transfer lines, audiobooks contain practically
no background noise and distortion, as they are normally recorded in sound-proof
studios using professional equipment.

Speech recognizers can perform quite differently for different persons; that is,
they are sensitive to the articulation characteristics and peculiarities of the speaker.
We can demonstrate this by creating a histogram of the recognition accuracies for
various speakers. The MTBA Hungarian Telephone Speech Corpus [23] is really
suitable for such a test, as it contains recordings made from 500 people. Fig. 1
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Figure 1: The distribution of phone recognition accuracy as a function of the
speaker on the MTBA corpus

shows a histogram of phone recognition results obtained using this database that
were presented in an earlier paper by the authors [21]. As can be seen, compared
to the average value of around 74%, the results have quite a huge deviance in both
directions. Though the recording conditions (phone line and background noise) also
vary from speaker to speaker, we observed that the recordings are usually clean,
so we think that the huge deviation in the scores can mostly be blamed on the
sensitivity of the recognizer to the actual speaker’s voice. Compared to the MTBA
database, the sound material of the audiobook we used was presented by just one
person, so the problems that could be caused by changing speakers were totally
excluded.

The speech databases used to train speech recognizers were, for a long time,
created by asking people to read aloud some written text. It was realized not long
ago that there are huge differences between spontaneous articulation and careful
pronunciation (e.g. reading aloud). Research has turned only recently towards
studying real-life spontaneous speech. To assess the influence of spontaneous pro-
nunciation on speech recognition, tests were made where people were asked to
re-read their own passages that had been recorded at a meeting. The speech recog-
nition error jumped by a factor of about two between the two recording (pronun-
ciation) conditions. As regards Hungarian, Tarján et al. ran recognition tests on
both planned and spontaneous speech using the same technology [20]. Although
the results are not precisely comparable, as there were differences other than speak-
ing style between the two recording situations, the error rate increase of a factor of
two that they obtained accords well with the international findings. This drop in
performance is so big that there are various applications where a trained speaker is
applied to repeat the spontaneous parts – for example, in a Japanese system that
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uses speech recognition to close-caption broadcast TV news [27]. These problems
cannot arise with an audiobook that is presented by an actor or actress. We think
this is a guarantee for the cleanest possible articulation.

A further factor that may adversely affect the pronunciation is the presence
of an emotional load. Similar to spontaneous articulation, the study of emotional
speech has become popular only relatively recently. In Hungarian these studies
have just been started [22], so we cannot give concrete examples of its influence on
the recognition rates. In contrast with the above three factors, this one may be
present to some degree in an audiobook, as the reading actor might use an emotional
coloring of his voice to increase the expressive power of his speech. However, in the
concrete recording we chose, such situations did not occur.

3 The Audiobook and its Preparation

Audiobooks have gained increasing popularity in the last couple of years. A lot
of novels have been released in this ‘talking book’ format in Hungarian as well.
We chose an audiobook for which the original novel is old enough so that its text
is no longer copyrighted. Our choice fell on the short story collection by Gyula
Krúdy entitled ‘Sinbad’s Voyages’, presented by the actor Sándor Gáspár. The
total duration of the audiobook was 212 minutes, and we converted it to Microsoft
Wave mono 16 bit PCM format with a sample rate of 16kHz. The whole book
was carefully listened to, looking for differences between the original text and the
sound material. Only a minimal amount of such differences were found, consisting
mostly of the skipping or the insertion of short interjections such as ‘ah’. The music
signals occurring at the end of each chapter were of course removed, and each file
was segmented further into roughly two-minute long parts. Apart from these, no
other modification was required.

For training and test purposes the recordings were divided into two parts. From
the ten short stories eight were used for training (186 minutes) and two for testing
(26 minutes).

4 Phone Recognition Experiments

In the first set of experiments the goal was pure phone recognition. Here no higher
(word or morpheme-level) language model is applied, so the aim of recognition
was to output a phonetic transcript that was as close to the signal’s real phonetic
content as possible. This set of experiments was motivated by our recent phone
recognition results on the MTBA database [21]. That is, we intended to apply the
same methodology as was used there, and by comparing the results we hoped to gain
a good insight into how much the factors mentioned above hinder the recognition
performance. To aid the comparison, the results obtained with the MTBA corpus
will be repeated here (a detailed description of the corpus can be found in [23]).
The acoustic modeling technique used was the same as that we apply and discuss
here.
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In addition to the conventional hidden Markov modeling scheme, in the acous-
tic modeling step we applied a neural net-based technology as well. Hence, after
presenting the data processing steps, we first give a theoretical description of this
approach, and move on to the details of the implementation only afterwards. We
round off this section with the comparison of the phone recognition scores obtained
using the various techniques.

4.1 Preprocessing of the Data

In the feature extraction step, the most conventional 39-dimensional mel-frequency
cepstral (MFCC) feature set (including the delta and acceleration coefficients) was
extracted from the recordings [8]. The MTBA database was represented by PLP
features in the reference that served as our comparison, because we had to comply
with an English system in that paper [21]. However, previous experience tells us
that the recognition results obtained with the two representations rarely show any
significant difference.

Training and testing a phonetic recognizer requires a phone-level transcription
of both the train and the test data. However, for the audiobooks only the ortho-
graphic transcription was readily available, which we had to convert to its most
probable phonetic manifestation. This is usually done by collecting the differ-
ent word forms occurring in the corpus, and transcribing them one by one. The
word-level transcript given for each sentence is then mapped to the most probable
sequence of phonetic segments by so-called forced alignment [8]. We performed this
alignment using a set of phone models trained on the MRBA corpus [24] in earlier
experiments.

Though Hungarian writing is almost phonetic, there are several difficulties which
are not trivial to handle in an automatic phonetic transcription system. The first
one is the case of the two-character letters, which can be identified only by morpho-
logic analysis (a classic example is the word pácsó). The second one is that certain
consonant clusters may or may not undergo assimilation depending on the position
of morpheme boundaries. Lastly, in some cases assimilation is optional, and more
than one pronunciations might be correct. A typical example of this are the word
boundaries, where the consecutive words may be pronounced with a short silence
between, but coarticulation and even assimilation may also occur.

Due to the above, a precise phonetic transcriber is not easy to create. Hence
we decided to construct the phonetic transcript at the level of syllables instead of
words. This idea was motivated by the fact that with careful pronunciation the
vowels are not discarded or reduced (apart from shortening and lengthening). Sec-
ond, assimilation affects only the consonant clusters and does not spread across
vowels. Thus instead of creating a pronunciation dictionary of words, we created
it for consonant clusters (for simplicity we will refer to these as syllables, though
they are different from the linguistic definition of the syllable). We should add that
the space character was also treated as a special consonant, so our ‘syllables’ were
allowed to spread across word boundaries. The text of the audiobook contained
7186 unique word forms, but only 809 different syllables. These units were then
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transcribed manually. This transcription contained all the possible pronunciation
alternatives of the syllable, so for example the letter-sequence ‘T SZ’ has the pro-
nunciations [t sil s], [t s] and [“ts], where sil denotes silence. The drawback of this
method is that it does not see the whole word during transcription, and so it offers
pronunciation alternatives that are not correct in the given context (for example,

[pa:“tSo:] for the word pácsó). We hoped that in such cases the recognizer would
be able to automatically choose the correct transcript during the forced alignment
phase because of its better acoustic match. The phonetic label set used by the
transcriber contained 52 symbols.

Besides the transcriber described above, an alternative phone-level transcription
was also created using the full (language model-supported) recognizer configura-
tion that will be presented in the next section. This resulted in a quite different
series of symbols, because for those experiments a different phonetic transcriber
was used. This was designed based on our earlier experimental findings that in
large vocabulary recognition the explicit handling of the assimilations and similar
phonological phenomena during the phonetic transcription of the dictionary is not
necessary, provided that context-dependent phone models are applied at the phone
level [14]. The explanation is that these models are implicitly aware of the pho-
netic context, and hence are sufficient to cope with most coarticulation artifacts.
Therefore the phonetic transcriber used in these experiments performs only the
most trivial grapheme-phoneme conversions, and does not model such phonological

processes as assimilation. Also, the short and long consonants were not handled
as separate labels by this converter, because fusing them causes only a negligible
amount of confusions at the word level. Thus it operates with a label set of only
38 phonetic symbols.

4.2 Artificial Neural Net-Based Acoustic Modeling

The conventional Hidden Markov Modeling (HMM) technique approximates the
probability distribution of the building blocks (model states) by fitting Gaussian
mixtures (GMM) on the training data. In monophone modeling the states cor-
respond to phone-thirds, while in the case of context-dependent triphone models
the phonetic context is also reflected in the labeling of the building units (often
referred to as senons [8]). This techniques raises the number of states from about
one hundred to several thousands, but also brings considerable improvements in
the performance.

Rather than refining the recognition units, an alternative approach is to improve
the estimation of the probability distributions. One such solution is to use artificial
neural nets (ANN) instead of Gaussian mixtures. The default training algorithm
of neural nets is discriminative, and thanks to this it generally achieves slightly
higher classification accuracies than the generatively trained GMMs. Secondly, the
ANN-based systems are trained on several neighboring frames instead of just one,
which again yields significantly better results. We should mention, however, that
both discriminative training and the use of a longer observation context is possible
with GMMs as well – it is just not part of the mainstream technology.
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Under proper circumstances the output values of the neural net can be inter-
preted as probability estimates, and can be integrated into the conventional HMM
scheme with some slight modifications to it. The resulting construct is known as
the HMM/ANN hybrid model [2]. For smaller subtasks the hybrid was reported to
outperform conventional HMMs. For example, the best phone recognition results
on the TIMIT database were all obtained by applying neural nets [17, 15]. In larger
systems, however, their applicability is much less obvious. First, their extension
to context-dependent phone models is problematic, while on large (hundred hours)
databases context-dependent modeling brings about a huge improvement for clas-
sic HMM models. Second, their combination with the standard language models
seems to be less effective than that with conventional HMMs.

Most of these problems can be circumvented by using the so-called HMM/ANN
tandem technology [6]. Here the neural net outputs are not interpreted as proba-
bility estimates, but as a non-linear transformation of the feature set. Hence, they
can be used as the input for training a conventional HMM. With this trick only
the acoustic preprocessor gets replaced and no other modification of the standard
HMM recognizer is required. The only obvious drawback is that now there will be
two training steps instead of one, and the evaluation will obviously also be slower.

Fig. 2 shows a schematic diagram of the processing steps involved for the
conventional, the hybrid and the tandem methods.

Figure 2: Schematics of the processing steps for the conventional HMM (lower
path), the hybrid (upper path) and the tandem (middle path) models

4.3 Implementation Details

After the theoretical issues here we present the technical details of our implemen-
tation. The neural net we applied was a conventional feed-forward multilayer per-
ceptron net with one hidden layer of 500 neurons. The number of outputs was the
same as the number of phones, that is, 52 in the case of the syllable-based tran-
scriber and 38 for the word-based transcriber. The output layer applied the softmax
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nonlinearity, while the hidden neurons utilized the sigmoid function. The number
of inputs was 351, corresponding to 9 neighboring frames of MFCC vectors. The
net was trained with backpropagation, and cross-validation on 10% of the training
data served as the stopping criterion. The training targets were the phone labels
obtained via forced alignment during the data preparation step. Before using the
net outputs as features in the tandem, they were logarithmized and decorrelated
using PCA. This eases the fitting of the data by Gaussian curves. A further trick
we applied was to concatenate the tandem feature set with the MFCC feature set,
and use them together. Though theoretically the two sets are highly redundant,
the method still brings about a slight improvement in performance in practice.

As the implementation of the conventional HMM recognizer the well-known
HTK package was used [26]. The phone models applied were standard 3-state
left-to-right models with 9 Gaussians per state. In the case of the conventional
HMM configuration both monophone and triphone models were trained. For the
hybrid and tandem systems only monophone models were used. This is because
efficient hybrid/tandem triphone modeling would require training the neural net
with the senons as targets instead of the phones, and handling such a huge net is
problematic. Extending ANN-based modeling to context-dependent cases is thus
the most important topic of this area nowadays [1].

After the conventional maximum likelihood training the HMM models were
further refined by the application of discriminative training, using the maximum
mutual information (MMI) training criteria. Fortunately, the HTK package con-
tains this algorithm.

As we mentioned previously, our goal here is pure phone recognition, so word-
level (and morph-level) language models will be applied only in the next section.
However, it is usual to support the recognition process at this low level by the
application of phone bigrams. These were created from the force-aligned phonetic
transcript of the training database.

4.4 Results and Discussion

Table 1 summarizes the phone accuracy scores obtained with the various acoustic
modeling techniques, both for the syllable-based and the word-based automatic
phonetic transcripts (the MTBA corpus was transcribed manually). For comparison
the performance of the same models on the MTBA database is also shown, where
the corresponding results were available (cf. [21]).

Comparing the results obtained with the syllable-based and the word-based
transcripts, the former are consistently better for all but the simplest configura-
tion. The accuracy obtained with the triphone model is, however, among the three
highest, in spite of the fact that it was trained on the word-level transcript. This
is in accordance with our earlier finding that context-dependent triphone modeling
is able to handle not only the phonetic, but the phonological coarticulation effects
as well, so it does not require the explicit modeling of the latter during phonetic
transcription [14]. All the other models were trained with context-independent tar-
get labels, and they all show a degraded performance on the word-level transcripts.
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Table 1: Phone recognition accuracies with the various acoustic models (the three
highest scores are shown in boldface).

MTBA audiobook audiobook
(manual) (syllabic) (word-level)

HMM (monophone, no lang. model) 53.37% 72.18% 72.95%
HMM (monophone, phone bigram) — 80.64% 76.85%
HMM (triphone, phone bigram) — — 85.88%

Tandem (monophone, no lang. model) 65.09% 79.49% 78.15%
Tandem (monophone, phone bigram) 69.67% 83.62% 80.93%
Tandem (mono., phone bg., discr. tr.) 73.93% 86.26% 82.84%

Hybrid (no language model) — 84.84% 82.10%
Hybrid (phone bigram) — 86.60% 82.69%

This indicates that monophone models do require the help of the phonetic tran-
scriber. A further observation is that the phone-bigram consistently adds smaller
improvements to the scores of the models trained with the word-level transcripts.
A reasonable explanation is that the assimilation rules applied by the syllabic tran-
scriber decrease the perplexity of the phone-bigram (consider, for example, the case
of voiced-unvoiced consonant connections). This points towards the preference of
full phonetic transcriptions when phone recognition output is required (but, of
course, this argument has no importance when higher level language models are
present).

As regards comparing the various modeling techniques, we can see that the
tandem and hybrid models are indeed capable of the same (or even slightly better)
performance than the conventional triphones, in spite of the fact that they use only
monophone labels. Therefore, it would be very important to find such methods that
are able to combine the advantages of the ANN-based and triphone technologies.

Now, comparing the audiobook results with those obtained with the MTBA
corpus, one can find huge differences in each row of the table. These differences re-
flect how much easier it is to recognize the content of an audiobook than recordings
made in real-life situations. The best result obtained on the MTBA is just slightly
better than the worst score with the audiobook. We should also mention here that
the situation could be even worse, because the MTBA corpus contains read speech
(through phone lines). The recognition results of spontaneous phone calls would
presumably be even worse. At the other end, the 86% accuracy score obtained on
the audiobook is quite good: we made a test where a human subject was asked
to read the output of the phone recognizer, and he reported that he was able to
understand the whole story (one of the stories from the test set), apart from a
couple of sentences. But, of course, an objective evaluation would require creating
a language model, so that the whole recognition process would be automated. This
is just what we shall do in the next section.
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5 Large Vocabulary Speech Recognition Experi-

ments

Phone recognition tests can be informative when we compare various acoustic mod-
els, but in a practical situation we of course expect a word-level output from a
recognizer. In this section large vocabulary recognition test will be presented. On
the acoustic modeling side only the conventional triphone HMM technique will be
pursued, but in addition to the speaker-specific model training, comparisons will
be made with models that have been trained on a larger, multi-speaker corpus.
An adaptation of these models to the single speaker of the audiobook will also
be attempted. On the language modeling side, we first present experiments with
conventional word-level n-grams. In Hungarian the number of word forms is much
higher than that in English, so the decomposition of the words into morphs can
be beneficial. We have recently shown the usefulness of this technique on other
domains [13], and we shall apply the same technology here. For the construction of
a word- or a morph-based language model a large corpus of training text corpora
is required. The various methods we applied for this and the parameters of the
corpora assembled will also be presented. After, we will present our findings and
discuss them.

5.1 Speaker-Independent, Speaker-Adapted and

Speaker-Specific Acoustic Modeling

First a speaker independent state clustered cross-word triphone model was trained
using ML (Maximum Likelihood) estimation [26]. Three-state left-to-right HMMs
(Hidden Markov Models) were applied using GMMs (Gaussian Mixture Models) for
each state. The model was trained on the MRBA database [24] augmented with 10
hours of transcribed press conference speech [20]. The feature type was MFCC (Mel
Frequency Cepstral Coefficients) with delta and delta-delta parameters, which were
calculated using blind channel equalization [11] at 8 kHz bandwidth. The resulting
model contained 2100 HMM states with 7 Gaussians for each state. This speaker
independent (SI) acoustic model will be referred to as HMM (triphone, SI).

In the next step, speaker adaptation was applied using the unsupervised MLLR
[9] technique. Speaker independent ASR was performed on the test and training
set altogether, and the results were used as transcripts for a formally supervised
adaptation. Thus the model parameters were retrained while the number of HMM
states and the number of Gaussians per state were not changed. The speaker
adapted (SA) acoustic model will be denoted by HMM (triphone, SA).

In the third configuration the speaker independent model was used only for the
phone labeling of the training set using forced alignment. Then an entirely new,
speaker dependent (SD) model was trained from the MFCC features of the training
data using the forced labels. This model had 1400 HMM states, each consisting a
mixture of 10 Gaussians, and will be referred to as HMM (triphone, SD). The
same HMM-based triphone model was also used in Section 4 (third line of Table 1),
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Table 2: Statistics of the language model training databases

Size
Word Morph Word OOV
Vocab. Vocab. PPL Rate [%]

NM 17.6K 6.3K 2K 604 30.3
AM 1.4M 152K 18K 1792 2.9
SM 11.5M 590K 49k 2136 2.4

so we can make a fair comparison between the phone-level and the LVCSR (Large
Vocabulary Continuous Speech Recognition) results.

5.2 Language Modeling

5.2.1 Collection and Preparation of the Text Corpus

The training transcript of the recorded literary novel contained fewer than 18K
words. This transcription formed the smallest, Novel Matched (NM) corpus.
Thereafter a separate training set – independent of the novel – was collected from
the same author, Gyula Krúdy, which resulted in a 1.4M word size database. The
source of this Author Matched (AM) corpus was the freely accessible Hungarian
Electronic Library [28]. Finally, the corpus size was increased nearly ten times from
the works of other authors from the early twentieth century, thus an 11.5M word
count Style Matched (SM) corpus was created. This expansion includes texts
from the Hungarian Electronic Library, the Digital Academy of Literature [29] and
the Electronic Archive of Periodicals [30].

Following the text collection, the database had to be processed further. No
extraordinary corpus preparation was required for word-based speech recognition,
just the removal of any non-word characters, some number-to-text conversion and
finally the conversion of all letters to lowercase. In contrast, the morph-based
system required a special treatment of the given training text data. In our approach,
first word boundary symbols <w> are placed into the text after each word, and are
considered as separate morphs. (<w> symbols are required for the reconstruction
of word boundaries in the decoder output [7]). Then segmentation is performed on
the word dictionary by using the Morfessor Baseline (MB) algorithm [4]. MB is
an unsupervised, language independent method for splitting words into morpheme-
like lexical units called morphs. The method aims at the determination of the
optimal lexicon and segmentation, that is, a set of morphs that is concise, and
moreover gives a concise representation for the data. The corpus for a morph-based
speech recognition system is obtained by replacing each word of the corpus by the
corresponding morph sequence. For the statistical details of the training databases
see Table 2 (PPL stands for perplexity and OOV denotes the out-of-vocabulary
words).
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5.2.2 Word- and Morph-Based Language Models

All the word- and morph-based n-gram language models were built on the cor-
responding database with full vocabularies applying the modified, interpolated
Kneser-Ney smoothing technique [3] implemented via the SRILM toolkit [18]. Per-
formance tests were run with several order of n-gram models – 2- to 4-grams – to
find the optimal language model parameters. Based on these, full 3-gram language
models were built for the words and full 4-gram models for the morphs (ignoring
3- and 4-grams found only once). No language model pruning was applied in our
experiments.

5.2.3 Pronunciation and context dependency models

Simple grapheme-to-phoneme rules [19] and an exception list were used to generate
word- and morph-to-phoneme mappings. The <w> symbols in the morph-based
models were mapped to optional silences (similar to the ‘short pause’ (sp) model
in [26]), while in the case of word-based models optional silences were added to
the end of each word. The pronunciation models were further processed by apply-
ing triphone context expansion, as shown in equation (1) below. This includes not
only the inter-word dependencies but the cross-word or cross-morph context depen-
dencies as well, taking the optional inter-word silences into consideration. As was
already mentioned in Section 4, phonological co-articulations were not considered
explicitly by this pronunciation model.

5.3 The Recognition Network and the Decoder

The final step was the creation of a triphone level WFST (Weighted Finite State
Transducer) [16] recognition network:

wred(fact(compact(C ◦ S ◦ compact(det(L ◦G)′)))), (1)

where the capital letters are transducers and the others are operators. This pro-
cess commences with the composition and determinization of the language model
(G) and the pronunciation model (L), then a suboptimal minimization process is
applied. The optional silences are replaced with null transitions and silence mod-
els using the (S) transducer. Next, the context expansion is performed using the
(C) transducer, then the network is minimized, factorized, and the weights are
redistributed, resulting in a stochastic transducer suitable for a WFST decoder.

The above-described networks return word or morph sequences during the de-
coding process. Hence, a special operator has to be inserted in the computational
process to obtain a phone sequence as output when the large vocabulary recognizer
is used in phone recognition mode:

wred(fact(compact(C ◦ proj(S ◦ compact(det(L ◦G)′))))), (2)
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Table 3: Phone error rate (PER) results in [%]

Training text
Acoustic NM (17.5K) AM (1.4M) SM (11.5M)
Models Word Morph Word Morph Word Morph

triphone SI 26.9 23.9 13.7 14.2 13.7 14
triphone SA 19 13.2 6.7 6.5 5.8 6
triphone SD 14.6 7.4 3 3.1 2.5 2.7

where the projection operator copies the input labels of the silence model-
substituted LG model in its output labels. All the operations were performed
with “Mtool”∗WFST building tool.

In the tests one-pass recognition was performed using the WFST decoder called
VOXerver.∗ The tests were run on a Core 2 Quad processor at 2.67 GHz with 16
Gbytes of RAM. The RTF (Real Time Factor) of the morph- and the corresponding
word-based system were adjusted so as to be nearly equal using standard pruning
techniques. All tests ran in real-time (RTF<1) except for those that were performed
with speaker independent acoustic models. In the following tests by the term
relative improvement we mean the following:

Relative Improvement =
ERreference − ERnew

ERreference

∗ 100% (3)

5.4 Results and Discussion

In this section, large vocabulary experimental results will be presented. First the
phone error results (PERs) of section 4 are compared to PERs of large vocabulary
recognizers, then word and letter error rates (WERs and LERs, respectively) are
presented. After that, the morph-based improvements will be investigated. While
WER and LER were calculated from the standard output of the large vocabulary
decoder, special recognition networks had to be built to determine PER (see Section
5.3).

The primary aim of these experiments was to improve the phone recognition
accuracy scores by utilizing higher level language models. As can be seen in Table
3, for most configurations we managed to outperform the phone-bigram models
(the best error rates reported in Table 1 were around 14%). The improvement
is especially good if there is a large training corpus available. By using large
vocabulary language models even the distortion caused by poor acoustic modeling
can be compensated for. Namely, the phone error rate that can be obtained with the
combination of the largest language model and the general-purpose acoustic model
is roughly the same as the scores of the best phone-bigram recognizers (∼14%). The

∗These tools were developed at AITIA International, Inc.
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Table 4: Letter error rate (LER) results in [%]

Training text
Acoustic NM (17.5K) AM (1.4M) SM (11.5M)
Models Word Morph Word Morph Word Morph

triphone SI 29.1 25.5 14.3 14.4 14.3 14.4
triphone SA 21.7 15 7 6.3 6.1 5.8
triphone SD 17.7 9.9 3.3 2.8 2.5 2.4

Table 5: Word error rate (WER) results in [%]

Training text
Acoustic NM (17.5K) AM (1.4M) SM (11.5M)
Models Word Morph Word Morph Word Morph

triphone SI 68.3 61.9 37.1 37.4 36 36.8
triphone SA 65 50 24.9 22.6 21.6 20.8
triphone SD 61.6 41.6 17.5 14.2 13.4 12

only case where we got worse accuracies is when both the language and acoustic
models were severely under-trained.

Large vocabulary speech recognizers are commonly characterized by their word
and letter error rates. WER is the most widely applied way of evaluation, however,
the LER provides a more realistic error measure in the case of morphologically rich
languages. In our LER calculation the white spaces between words were modeled
by a dedicated letter. Tables 4 and 5 summarize the word- and morph-based recog-
nition results that were measured applying various acoustic models and training
text corpora of various sizes.

The results clearly reveal the advantage of using a task-specific acoustic model.
The best recognition results were attained with the model trained specially for the
audiobook task. However, in many cases the available transcribed audio data is
insufficient for training a new model. In such a case adapting the speaker indepen-
dent model using the speaker-specific database – even in an unsupervised manner
– provides a reasonable alternative.

A good match between the training and test sets is important, but it is not cru-
cial for effective language modeling. As the results suggest, collecting large amounts
of textual data is more rewarding than applying a well-matched but under-resourced
database for the language model training. By combining the most elaborate mod-
els, the WER value was cut to 12%. To the best of our knowledge, this is the lowest
WER reported on a Hungarian LVCSR task.

Having results with different language and acoustic models provides a great
opportunity to investigate their impact on morph-based recognition improvements.
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Figure 3: Relative improvements of WER due to change-over to morph-based lan-
guage modeling. Improvement rates are measured using various acoustic models
and training text corpora.

A commonly used metric for this is to measure the relative reduction of WER due to
switching from word- to morph-based modeling (Fig 3). Looking at Figure 3 it can
be seen that the fewer resources we have for training a language model the more
beneficial is the morph-based approach. Furthermore, another useful conclusion
is that by using a better matching acoustic model a higher improvement can be
achieved. However, this also can turn into a deterioration in performance when
the acoustic model is weakly-matched. These conclusions are in accord with the
findings of [20].

6 Conclusions

In this paper we investigated the impact of various acoustical and language mod-
eling techniques on the speech recognition accuracy measured on an audiobook
recording. In such a near-ideal task the effect of disturbing acoustic factors (back-
ground noise, sloppy articulation, etc.) is almost negligible, thus the presented
results can serve as baseline for the corresponding technologies in Hungarian con-
tinuous speech recognition. Despite the idealistic acoustic conditions, the task still
represented various challenges in the language modeling step, due to the thematic
and stylistic richness of the literary work the audiobook was based on.

First pure phone recognition experiments were presented, and the results clearly
reflected that – at the acoustic level – the recognition of audiobooks is indeed much
easier than that of a more realistic task. Our results with ANN-based acoustic
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models accord well with the similar international studies which indicate that these
methods can attain similar or even better performance than the classic HMM-based
triphone modeling technology. We also reinforced our earlier findings that triphone
models do not require an explicit handling of phonological coarticulation during
pronunciation modeling, while monophone models do.

In the large vocabulary recognition experiments we first measured phone recog-
nition errors, but now using morph- and word-based language models instead of
simple phone-bigrams. Since the phone-level output of our LVCSR system is not
directly accessible, we had to build special recognition networks for this task. As
expected, most of the large vocabulary supported recognition configurations outper-
formed the phone-based systems. We found that the larger the size of the training
set, the higher the accuracy scores were. Comparing word- and morph-based phone
error rates suggests that morphs are especially useful when the amount of the avail-
able training data is very limited. For instance, in the case of the novel-matched
corpus the baseline phone-bigram phone error rate (∼14%) obtained in Section 4
could be improved only by introducing morph-based language modeling. On the
contrary, when a large corpus is available, well-trained word-based language models
may outperform morph-based ones in terms of PER, due to the ambiguous phonetic
transcriptions at morph boundaries.

Though word-based recognizers may have higher phone-level accuracies, the
morph-based configurations made consistently fewer letter errors. The quality of
the recognized word sequence is closely related to the letter error rate, hence a
morph-based recognizer is usually a better choice for large vocabulary tasks in
Hungarian. Despite the advantages of LER, the word error rate is a more widely
accepted metric. Therefore we used the WER to express the benefit of switching
from word- to morph-based recognition. This improvement is especially good if the
acoustic model suitably matches the recognition task, or when only a small corpus
is available for language model training.

Comparing the error rates in this study to some of our earlier experimental
results [20] we can get an impression of how acoustic factors of speech can degrade
recognition performance. On a spontaneous speech task, which was recorded in
a noisy environment and was both trained and evaluated with multiple speakers,
roughly 50% WER was measured. In the case of press conference speeches – thanks
to the higher signal-to-noise ratio and more planned speech production – the error
rate dropped to 30%. While in near-ideal conditions WER can come close to 10%,
as we see in this paper. Although these results cannot be directly compared due
to differences in language and acoustic model sets, the tendency clearly shows that
still much research have to be done to overcome the issues of real-life recognition
tasks.

Numerous technologies have been investigated in this study, but there is still
space for further development. In the future we would like to combine discriminative
training methods and triphone acoustic models, since both approaches resulted in
a consistent phone error rate improvement. A further important research direction
would be to find a way of combining the advantages of the neural net-based and
the triphone technologies in acoustic modeling. For speaker adaptation, it would
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be worth trying a supervised MAP adaptation of the speaker-independent acoustic
model, since a good quality transcription of the audiobook is available. We expect
that with this technique the performance of the adapted acoustic model could get
closer to the speaker-specifically trained one.
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[23] Vicsi K., Tóth L., Kocsor A., Gordos G., Csirik J. MTBA - Hungarian Tele-
phone Speech Database (In Hungarian). Hı́radástechnika, Vol. LVII, No.8, pp.
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