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Pickup and Delivery Vehicle Routing with

Multidimensional Loading Constraints∗

Tamás Bartók† and Csanád Imreh‡

Abstract

In this paper we introduce a new, pickup and delivery vehicle routing
model where weight limits and also packing constraints are taken into account.
In the model the vehicles have to transport 3-dimensional boxes from their
pickup points into their delivery points. The boxes have weights and the
vehicles has to satisfy a weight limit. We present a heuristic algorithm for
the solution of the problem. The efficiency of the algorithm is evaluated by
an experimental analysis.
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1 Introduction

In logistics there are two important problems related to combinatorial optimization.
One is the routing of the vehicles and the other problem is the container loading.
Both areas have huge literature and many different models have been investigated.
If both problems are taken into account then more difficult models appear, but
they give a more adequate description of the real life problems.

In the area of vehicle routing many models are investigated, one can find a
detailed description of the models in the surveys [4] and [16]. Usually the goal is
to minimize the cost of the transportation, but in some recent works other cost
functions like minimizing pollution are also considered (see [2]). One of the most
important subfields of vehicle routing is the area of pickup and delivery problems.
In these problems the requests are goods with a pickup point and a delivery point
and the vehicles must transport them from the pickup point to the delivery point
with minimal cost. These problems are NP-hard and several exponential time exact
solution algorithms and metaheuristics are developed for their solution. One can
find an overview about pickup and delivery problems in the survey [3].

Loading the vehicles leads to a 3-dimensional bin packing problem. If weight
limits are taken into account, then we receive a common generalization of the vector
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packing and box packing problems (see [1]). Algorithms for models, where both
the routing and loading of vehicles are considered have been published only in the
recent years. The capacitated vehicle routing problem (where each request has
to be collected into a depot) with two dimensional loading constraints has been
investigated first in the paper [9]. An algorithm which gives the exact optimal
solution is presented for the case of two dimensional loading constraints in [10].
Improved tabu search algorithms are presented for the solution of that problem in
[9] and [17]. An algorithm based on ant colony optimization is presented in [6].
The first paper on capacited vehicle routing with 3-dimensional loading constraints
is presented in [8]. An improved tabu search based algorithm for 3-dimensional
constraints is presented in [17], and an ant colony based algorithm is given in
[7]. Pickup and delivery vehicle routing problems with two dimensional loading
constraints are presented in [13]. An overview about the results on vehicle routing
problems with loading constraints can be found in [11] and [18].

In this paper we consider a pickup and delivery problem with 3-dimensional
loading constraints and with weight limit on the vehicles. As far as we know no
algorithm for this model is presented in the literature. In the next section we give
the mathematical model which is used in this paper. Then in Section 3 a heuristic
algorithm is presented to solve the problem. Section 4 contains the description of
the tests, we used to analyze the algorithm.

2 The mathematical model

In this model we are given an undirected simple graph G = (V,E) which describes
the road system which can be used by the vehicles. The input of the problem is a
list of demands denoted by D and a list of vehicles denoted by R. The demands
have the following parameters:

• the size which is a 3-dimensional box given by the sides xj , yj , zj ,

• the weight which is a positive real number wj ,

• pickup and delivery points: sj ∈ V , ej ∈ V .

The vehicles have the following parameters

• the size of the cargo which is a 3-dimensional box given by the sides Xv, Yv, Zv,

• the weight limit which is a positive real number Wv,

• the speed of the vehicle spv

• the start and end point of the vehicle sv and ev

• a cost function cv which defines for each edge of G the travelling cost for
vehicle v, we suppose that this is proportional to the distance, thus the time
spent by the vehicle travelling on edge e is cv(e)/spv
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• time limit of the vehicle lv which gives an upper bound on the time which
the vehicle can travel before delivering its last demand

Our goal is to transport all of the demands by the given vehicles by a minimal
cost solution, while not violating the defined constraints. In this model we do not
allow to change the vehicle during the transportation of a demand, the vehicle must
pick up the demand at its pick up point and deliver it to the delivery point. A
vehicle can transport an unlimited number of freights at the same time as long
as the size and weight constraints are not violated. We suppose that the cost of
the solution is the total cost of the routes done by the vehicles. During the route
of the vehicles the constraints must be satisfied at each time, which means that
the demands have to packed into it without overlapping and the total weight is not
allowed to be more than the weight limit. We note that in this model rotation of the
items is not allowed. This assumption is realistic for automation based container
loading. Moreover there is an extra assumption on the routes: each route has to
be finished before the time limit of the vehicle. Here we do not take into account
the time which is used to return to the end point, the limit is on the last delivery
time. On the other hand one can easily modify our algorithm to the case when the
time limit is for the arrival time at the end point.

Therefore the solution can be described as follows: Each vehicle v has a travel
plan Pv which contains a list p1, . . . , pk(v) of vertices which - with the graph being
simple - is a walk and for each vertex two sets are given: in(pi) ⊆ S contains
the demands packed into the vehicle at vertex p(i) and out(pi) ⊆ S contains the
demands packed out from the vehicle at vertex p(i), where S is a set of (a, b) couples
( a, b ∈ V ), where there is at least one transport request from a to b.

The solution is feasible if the following conditions are satisfied:

• sj = pi for each j ∈ in(pi) and vj = pi for each j ∈ out(pi), which means that
a demand can be packed into a vehicle at its pickup point and can be packed
out of the vehicle at its delivery point,

• (cv(sv, p1) +
∑k(v)−1

i=1 cv(pi, pi+1))/spv ≤ lv is valid for each vehicle v, which
means that the route without the return trip has to be finished within the
time limit,

• at each point pi the items which are in the vehicle (j ∈ S with j ∈ in(Pr)
and j ∈ out(Pq) for some r ≤ i < q) must satisfy the loading constraints (the
weight limit and the 3-dimensonal packing constraint)

Then the objective function is

∑
v∈R

(cv(sv, p1) + cv(pk(v), ev) +

k(v)−1∑
i=1

cv(pi, pi+1))
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3 The heuristic algorithm

After initialization we build routes on the given graph for each vehicle, considering
pairs of vertices, where there are requests in between. We are repeating this step as
long as we have any unassigned pair of vertices. After this step we apply a simple
local search method, with which we are swapping vertices along a route as long as
we can decrease the total distance of a route, while keeping the linear ordering of
the vertices. After the simple local search step, comes the execution of the packing
step. The algorithm used here, is what is described in [1]. Then, we repeat the steps
above, as long as we have any uninitialized vehicle and at least one untransported
item. The last step is an advanced local seach method, with which we are changing
vertices between routes, while keeping the feasibility of the packing.

Detailed description of the proposed algorithm

Example
In order to make the algorithm easier to understand, we use a simple example

to demonstrate the steps of the algorithm.
In our example we have a simple graph, which consists of 7 vertices and 10 sym-

metrical edges. The vertices are named 1,2,...,7. The edges are as follows: 1-3, 1-4,
1-5, 2-3, 2-5, 3-4, 4-5, 4-7, 5-6, 6-7. The weight of the edges in the same order: 10,
10, 15, 15, 10, 5, 10, 5, 5, 15. We have 2 vehicles (v1 and v2), and 3 demands to ful-
fill. The vehicles are defined as follows: sv1=1, ev1=7, sv2=2, ev2=7, spv1=spv2=1,
Xv1=Yv1=Zv1=Wv1=Xv2=Yv2

=Zv2=Wv2=1, lv1=lv2
=30. The items are defined

as follows: xj=zj=0.75, yj=0.5, wj=0.5 for all demands. s1=1, e1=4, s2=3, e2=4,
s3=5, e3=6. The cost of travelling on edge e: cv(e) = weight of e for both vehicles,
thus it will be easier to follow the examples.

Phase 1 (Initialization)

First of all, given a graph G(V,E), we create the set S (defined in previous
chapter). Moreover, let Si be the set of (a, b) couples, that are already inserted,
initialized as an empty set. Let us assign a vehicle (taken from the initial set of
vehicles R) to all couples in S, where cv(sv, a) + cv(b, ev) is minimal.

Note: The assigment does not mean, that a certain demand can only be satis-
fied by v, it only means, if (a, b) is chosen as a first pair of vertices for a new route,
then v is assigned to this route.

Example: S={ (1, 4), (3, 4), (5, 6) }. The assigned vehicle will be v1 for (1, 4)
and (3, 4), and v2 for (5, 6).

Phase 2 (Route Building)

During this phase we repeatedly do the following steps:

Step 2.1 Choose a couple (a, b) from S\Si, for which cv(s, a, b, e) is minimal, where
Si denotes the set of investigated couples and cv(s, a, b, e) = cv(s, a)+cv(a, b)+
cv(b, e) with the vehicle v assigned to the pair (a, b) in the initialization. Let
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Figure 1: Routes after Phase 2

r denote the route starting at s and continued by a and b, and ending at e.
Insert (a, b) into Si.

Step 2.2 Iteration: While the current route r can be continued with any couple
from S \ Si: Insert the couple (a, b) from S \ Si, where total distance after
inserting (a, b) into r before the position of e is minimal. Insert (a, b) into Si.
A route can be continued by a vertex, if the total time travelled (length of r
from s to the last delivery point after the insertion divided by spv, where spv
is the speed of v) is not greater than lv, where lv is the time limit for v.

Step 2.3 If vehicle v has been assigned to other couples in S \ Si before, repeat
the vehicle assignment for those couples, allowing only unused vehicles. We
have to do this reassignment since v cannot be used to serve these couples.

Step 2.4 If S \ Si is not empty and there is at least one unused vehicle that can
be continued with any couple from S \ Si, go to step 2.1.

Note: If there are no unused vehicles left, and no route can be continued by
any item from S \ Si, we still can not report the actual problem to be unsolvable,
because the two local search methods in the later phases can still make it solvable.

Example: We start with couple (1, 4), and we use v1, as v1 is the assigned
vehicle for couple (1, 4). We can insert both (1, 4) and (3, 4) into the route of v1,
at this point cv1(r)=25, but the total time, which is checked with lv1 is 20. We
can not insert the last couple (5, 6) as it would increase the total time to 35, which
is >lv1 . After these steps: S \ Si={ (5, 6) }. (No reassignment of the vehicles is
needed in Step 2.3, because v1 is not assigned to (5, 6) ). After the second iteration,
the two routes are demonstrated on Figure 1.

Phase 3 (Simple Local Search)

This simple local search phase consists of many internal swaps within a single
route, and no swaps are allowed between different routes. This is an essential step,
if we consider that the vertices are inserted into the routes without any ordering.
We repeat the following steps for route r = p1, . . . , pk(v) assigned to vehicle v:

Step 3.1 Let M be a set of pairs of positions in the route, initialized as an empty
set. We will use this set for memorizing the already investigated pairs of
vertices.

Step 3.2 Choose a (i, j) pair of positions, where 0 ≤ i < k(v) and pi 6= pj and
(i, j) or (j, i) is not in M . If there is no such pair of positions, go to Step 3.5.
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Figure 2: Routes after Phase 3

Step 3.3 Check if the swap at positions i and j would cause any of the requests,
that are assigned to route r, unsatisfiable. This happens, if there is at least
one request, for which, the start point does not precede the possible end
points along r. If this swap would cause unfeasibility, insert (i, j) into M , go
to Step 3.2. Otherwise, let us denote the new route r′, go to Step 3.4.

Step 3.4 Let cv(r) denote the travelling cost for r, using v. If cv(r′) < cv(r), let
r := r′, and delete every occurrence of i and j from M . Doing so, we allow
further swaps of pi and pj in their new position. Continue with Step 3.2.

Step 3.5 If S \ Si is not empty, try to insert a pair of vertices from S \ Si into r,
using the same method that was described in Phase 2. If any pair from S \Si

was successfully inserted, go to Step 3.2, otherwise proceed to the final step
of phase 3.

After the iteration the length of the route is not greater than before the iteration,
and no demand has been made unsatisfiable, which had been satisfiable before.

Final step of Phase 3
We may have the same vertex on r multiple times, and we also note that we

had a constraint that cv(a, a)=0, for every v ∈ R, where a ∈ V , therefore in many
cases after the iteration we may have more instances of a vertex along r next to
each other. In this final step, we iterate through r, and remove all surplus instances
of a, so that a can not be followed by an other instance of a.

Note: We note that Phase 3 is indispensable in the algorithm. Without this
phase the routes might contain several instances of a vertex and this would increase
the cost a lot.

Example: Considering the route of v1, which is 1 → 1 → 4 → 3 → 4 → 7, the
only swap, which is possible, does not create unfeasibility and shortens the route (
thus decreasing total cost ) is the swap at positions 3 and 4 (p3=4, p4=3). After
processing the swap the resulting route will be 1 → 1 → 3 → 4 → 4 → 7, thus
the length of the route decreases from 25 to 20. For v2 we can not process any
swaps, which could decrease the total length of the route and retain feasibility at
the same time. During the final step the duplicate instances are deleted, resulting
in the routes demonstrated on Figure 2.

Phase 4 (Packing)

During this phase we try to load as many items into the vehicle along the route
as many is possible. We treat the items with priority, that are more difficult to be
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packed. An item can be transported by vehicle v, if and only if it can be loaded
in the loading area of the vehicle for every vertex along the route r between the
item’s pickup and delivery point. Hereby we note that the same vertex can be
on r multiple times, so we need to check all feasible possibilities. If the item can
be loaded in the loading area of v for any of these possibilities, it is considered
transportable. The input for this phase is the list of vertices for route r, and a
list of items, item j is determined by its size xj , yj , zj , by its weight wj and by its
pickup and delivery points, sj and ej , where sj and ej are vertices along the route
r. We note the loading area of v (Xv, Yv, Zv) and weight limit Wv, specific for v.
To pack the items we use the following alteration of the Block algorithm which is
defined in [1]. In this application of the Block algorithm we do not aim to pack
all the items in a given set to a minimal number of bins, but we pack the given
items into one single vehicle’s loading area. At each vertex in the route we use the
following algorithm to pack the items.

Block algorithm

Step 4.1 (Classifying Phase) In this phase the items are divided into classes by
their x-coordinates. Let f0 = L < f1 < f2 < · · · < fk = X be the list
of the border points let Ci be the set of the boxes having the x-coordinate
between fi−1 and fi. The border points are determined by algorithm IPM
given below.

Step 4.2 (y-Block Building Phase)

Step 4.2.1 For each class Ci first order the elements by the y-coordinate.

Step 4.2.2 If the list in the class is empty then we move to the next class.
Otherwise we take the longest prefix of this list, which still fits into the
container and does not exceed the maximal weight of the container.

Step 4.2.3 We remove these items from the list and replace them with a
single item (y-Block), which has the x-value of the greatest x-value and
a z value of the greatest z-value in the list, and a height(y) of Y . Go to
Step 4.2.2. using the new actual list.

Step 4.3 (z-Block Building Phase) We take only those boxes into account in each
iteration, which are in the i-th interval according to its x-coordinate. These
are only y-Blocks.

Step 4.3.1 We sort these boxes by their z-coordinates into decreasing order.

Step 4.3.2 We form z-Blocks from this list using first-fit strategy, we always
choose the first element which fits into the container and does not exceed
the maximal weight of the whole container. If no more such element
exists we move to Step 4.3.3.

Step 4.3.3 We remove these y-Blocks from the list and replace them with a
single item (z-Block), which has the x value of the greatest x-value, a
z-value of Z, and a y-value of Y .
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Step 4.4 (The packing phase) After the z-Block building phase there are blocks
with size of the form (xi, Y, Z,wi).

Step 4.4.1 Order the elements (z-Blocks) into decreasing order by xjwj . Go
to Step 4.4.2.

Step 4.4.2 Pack the elements into the bins using a greedy strategy. This
algorithm packs an element into the bin when it fits. If it does not fit
then we skip the block. Note that in this case an element fits into the
bin if it can be packed without overlapping and it does not violate the
weight limit.

Considering the values of f1, . . . , fk we use the following algorithm to determine
them. The algorithm puts at most K elements into each class, moreover it ensures
that the sum of the elements is at least K for each consecutive pair of intervals.

Interval Preparation Method

Initialization part: Let I = {1, X} be an ordered list of border points. Let K
be the number of elements, we aim to have in each interval.

Step IPM1 Let fi be the border point, for which the [fi, fi+1) interval contains
the most elements. If this amount is at most K, then proceed with Step
IPM2. Else, we divide this interval, with inserting a new border point into
the list between fi and fi+1, with value of (fi + fi+1)/2. Refresh the interval
assignments and repeat Step 1.

Step IPM2: Let i be an index of I, for which the sum of elements in intervals
[fi, fi+1) and [fi+1, fi+2) is minimal. If this sum is larger than K, then exit.
Else concatenate these intervals by deleting border point fi+1 from the list I.
Refresh element assignments and repeat Step IPM2.

Final step of Phase 4
If an item j is not transportable by v, and (sj , ej) ∈ Si, where sj and ej are

the pickup and delivery points for j, then delete (sj , ej) from Si. This step is
needed to ensure, that only those pair of vertices are prohibited from insertion
into further routes, for those there are not unsatisfied demands. If S \ Si is not
empty (means that there are untransported items), and there are unused vehicles,
continue with Phase 2, Step 2.1. If there are not any unused vehicles, but there
are untransported items, we still can not state, that we can not provide a feasible
solution, because the local search method, described in Phase 5, can still make
space for the untransported items.

Example: During this step the loading is trivial at all positions, and all items
are transportable. Items 1 and 2 are packed to v1 (picked up at positions 1 and 2),
item 3 is packed to v2 (picked up at position 2).

Phase 5 (Advanced Local Search)
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The input for this phase is a set of routes, an assigned vehicle for each route,
and a list of transported items for each route. During this phase, we will investigate
all possible vertices, and we will try to move a vertex into an another route, keeping
in mind to maintain the feasibility of the transportation.

Step 5.1 Choose a point a in route r1, which cannot be the start or end point
of r1, and has not been investigated before, and choose a route r2. If all
possibilities are investigated, go to Step 5.7.

Step 5.2 Generate the ”must-move neighbourhood” of the designated point. This
contains the vertices, which have to be moved to the other route together
with the designated point. This ”must-move neighbourhood” is a sublist of
positions of a route, vertices included are: the designated point, and all points
that are start points of a request fulfilled during this route, and ending at the
designated point, or endpoints of such request, starting at the designated
point. Let us denote this by La. The ordering of the points must be also
kept within La. Note, that this could also be used recursively, generating
the Kleene closure of the designated point, using it, we would not need the
following step, but practically, this closure is usually close the whole route,
and exchanging almost whole routes with one-another would not end up in
decrease of total distance.

Step 5.3 Determine the sublist L′a of La. L′a represents those positions of La,
that can be deleted from their original route r1. A vertex at a position can
be deleted from its previous route if there are no such demands assigned to this
route, that have their start point in La and their endpoint not in La or vice
versa. La \L′a represents the set of points in the ”must-move neighbourhood”
of a, where the points are tied to the original route and to La at the same
time.

Step 5.4 Insert La into r2, while keeping the linear order of points from La, delete
L′a from r1.

Step 5.5 Execute phases 2, 3 and 4 for the new r1 and r2 to determine, whether
all the items, that were previously transportable, are still transportable. If
no, discard the changes, go to Step 5.1.

Step 5.6 If the new total sum of costs has been decreased by the swaps, save the
changes, else discard them. Go to Step 5.1.

Step 5.7 If the total result value has been improved during the previous run of
this local search procedure, restart the procedure (go to Step 5.1), otherwise
proceed to Step 5.8.

Note: It may also happen, because of the various speeds of vehicles, that
the total amount of distance travelled increases, but the total amount time
consumed decreases.
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Figure 3: Solution after Phase 5

Step 5.8 If S \ Si is not empty, reexecute the algorithm, starting at Phase 2 Step
2.2, for each route. This reexecution places untransported items, whereever it
may be possible. If there are still untransported items, report them as items
not transported and a possible infeasibility of the input.

Example: Let us investigate the case, when r1 denotes the route of v2 and r2
denotes the route of v1. We can not choose vertex 2 from r1, because it is a starting
point, so let us choose vertex 5 (at position 2). The ”must-move neighbourhood”
La of vertex 5 will be: {2, 3}, representing vertices {5, 6}. L′a will be set to {2, 3},
because there aren’t other demands in r1, which could retain an instance of vertex
5 or 6 in r1. As we proceed to Step 5.4, we try to insert vertices 5 and 6 to r2, while
keeping the order of them. One possibility is to insert them between positions 2
and 3 (in r2), but this would increase the length of r2 from 20 to 50, and the total
time would be 45 (the length of the route minus the last edge, which has a weight of
5), which is > lv1 , therefore the insertion at these points is not feasible. We refrain
from presenting all infeasible possible insertions, so we continue to check insertion
between positions 3 and 4. This increases the length of the route to 40, but the
time consumed is only 30. (the last edge on this route is 6-7, which has a weight of
10). This can be accepted, because lv1=30. As we can not find any better insertion,
we proceed to Step 5.5. Fortunately all demands can be fulfilled (trivial), so we
can continue with Step 5.6. The new total sum of costs can be decreased from 50
to 40, so we decide to keep the changes. We note that vehicle v2 will not transport
any items, therefore it will not be included in the solution. We demonstrate the
final solution in Figure 3.

4 Description of tests

To our knowledge pickup and delivery vehicle routing with 3-dimensional loading
constraints has not been investigated before, therefore no test instances have been
published yet. We generated our test instances, combining the following methods:

• Graph: For the graph we used a part of the public roadsystem of county cap-
itals of Hungary. Below we can see the visualization of the graph, reflected
on the map of Hungary:
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Figure 4: The graph

• Items: We extended the method with weights, which was used in [14] to
generate the test demands (items), both uniform and gaussian (standard de-
viation: 1.0, the mean exactly halves the given interval) distributions were
investigated. The pickup and delivery points were generated uniformly ran-
dom among points from the input graph.

• Vehicles: Loading area generated as in [14], start- and endpoints are (uni-
formly) random points from the graph. Time limit is uniformly random from
the 1000-2000 interval.

We were using the following testbed: Intel Core i5 750@3.15Ghz, Kingston 2x2
GB DDR3 1600Mhz, Gigabyte P55-UD3, MS Win7 x64, Java 1.6.0 23 x64

Testcases
For both distributions we performed 10 types of tests (the same intervals are

used for generating the size as in [14]). We define in each test a maximal loading
area for the vehicles it is X×Y ×Z and a weight limit denoted by W . In all testcases
the sizes of the loading area of the vehicles are chosen as follows: 50% : 1.0 ·MS,
10% : 0.9 ·MS, 10% : 0.8 ·MS . . . 10% : 0.5 ·MS respectively, where MS is the
maximal possible size of the loading area.

In the first 5 types of tests X = Y = Z = 100 and W = 10000. The intervals
which are used for the uniform distribution are the following:

• Type 1: x ∈ [1, 1/2X], y ∈ [2/3Y, Y ], z ∈ [2/3Z,Z], w ∈ [1, 2/3W ].

• Type 2: x ∈ [2/3X,X], y ∈ [1, 1/2Y ], z ∈ [2/3Z,Z], w ∈ [1, 2/3W ].

• Type 3: x ∈ [2/3X,X], y ∈ [2/3Y, Y ], z ∈ [1, 1/2Z], w ∈ [1, 2/3W ].

• Type 4: x ∈ [1/2X,X], y ∈ [1/2Y, Y ], z ∈ [1/2Z,Z], w ∈ [1, 2/3W ].

• Type 5: x ∈ [1, 1/2X], y ∈ [1, 1/2Y ], z ∈ [1, 1/2Z], w ∈ [1, 2/3W ].
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We note that the loading in the case of type 4 is obvious, each vehicle can
only transport one item at a time. In the next 3 tests the sizes are X = Y =
Z = 10, X = Y = Z = 40 and X = Y = Z = 100 respectively, the weight
limit is W = 10000. The intervals which are used for the uniform distribution
are the following:

• Type 6: x ∈ [1, X], y ∈ [1, Y ], z ∈ [1, Z], w ∈ [1, 2/3W ].

• Type 7: x ∈ [1, 35], y ∈ [1, 35], z ∈ [1, 35], w ∈ [1, 2/3W ].

• Type 8: x ∈ [1, X], y ∈ [1, Y ], z ∈ [1, Z], w ∈ [1, 2/3W ].

The following two testcases were added to simulate the behaviour on many
small items. Size of the maximal loading area for both: X = Y = Z = 100,
W = 10000.

• Type 9: x ∈ [1, 1/4X], y ∈ [1, 1/4Y ], z ∈ [1, 1/4Z], w ∈ [1, 1/4W ].

• Type 10: x ∈ [1, 1/8X], y ∈ [1, 1/8Y ], z ∈ [1, 1/8Z], w ∈ [1, 1/8W ].

In the first class of tests the maximal number of vehicles: 30 for 100 items, 275
for 1000 and 1250 for 5000 items. We note that in most cases only a portion of
these vehicles were actually used. We expect more calculation time needed for the
last two test cases, as in these test cases, the items are much smaller, therefore the
packing is more difficult.

We generated inputs of size 100, 1000 and of size 5000. All testcases on all
sizes and distributions were executed 100 times, except for the largest testcases
(N=5000), which were executed 20 times each. We executed the algorithm on the
test cases and also considered the algorithm without the last most time consuming
local search phase. As far as the running time is concerned, the presented algo-
rithms are fast, we summarize the running times in Table 1. The running times
are very similar for the two investigated distributions. If we consider the algorithm
without the last local search phase, it is faster, the running time is decreased with
approximately 25 percent. The experienced results were very similar in case of both
investigated distributions, therefore we only present here one of them.

Table 1: The average running time of the full algorithm (msec)

N T1 T2 T3 T4 T5
100 698.40 633.19 661.95 698.58 632.85
1000 13349.9 11901.8 12598.6 18715.5 12136.2
5000 199479 182741 190315 318304 180405
N T6 T7 T8 T9 T10
100 666.02 652.07 651.58 863.79 872.12
1000 13753.8 12602.7 12477.3 16311.1 19223.5
5000 206946 186038 182971 194910 218564
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We also considered the value of the cost function for the algorithm. Table 2
and 3 contain the cost for the case where the expansion of the items is generated
by uniform and gaussian distribution. The first three lines contain the results of
the full algorithm, the next three lines show the results when the last local search
phase is omitted.

Table 2: The average result value on gaussian distribution (km)

N T1 T2 T3 T4 T5
100 14237.96 14238.44 14098.83 22360.46 14213.81
1000 124915 124825 124775 186269 125460
5000 583884 588904 586226 813913 583893

100 17615.72 17632.82 17479.83; 34355.57 17655.96
1000 149285 149624 149656 287612 149873
5000 690341 693146 693911 1214585 689334
N T6 T7 T8 T9 T10
100 17490.91 14378.77 15381.34 9670.62 9522.66
1000 146063 126528 133402 87861 86065
5000 670274 594189 602684 435602 429330

100 23293.37 17775.66 19323.8 12492.3 12290.18
1000 189296 151233 161949 97865 96426
5000 828233 703710 719073 470851 462743

Table 3: The average result value on uniform distribution (km)

N T1 T2 T3 T4 T5
100 14475.28 14356.12 14604.09 22307.21 14066.24
1000 125852 126217 126756 185120 123222
5000 574761 580987 582221 816104 571117

100 18242.5 18247.02 18346.11; 34219.99 17889.46
1000 152161 152508 153411 287123 150197
5000 676405 681878 687960 1222230 675340
N T6 T7 T8 T9 T10
100 15807.48 14633.3 15146.15 9615.78 9398.92
1000 135009 127794 130426 88013 86410
5000 620470 581959 594788 434717 424375

100 20460.28 18418.25 19245.48 12527.19 12345.06
1000 167217 154564 159579 97967 96756
5000 742652 688937 704292 467698 457200

We saved the actual result value of each run of the local search procedure. In
Figure 5 we can see the average result value in the ratio of the result value prior
to the execution of the last local search phase (which is marked as 1.0). Each
bar represents one run of the local search procedure for the actual testcase. We
can observe, that the most improvements were made (to 67% of the starting result
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Figure 5: Percentages of result value, by each optimization cycle for the 10 testcases

value) in those testcases, when the initial result value had been worse, and the
least improvement was made in testcase 10, in which the initial result value was
previously the best. We also note that we can observe different number of bars for
some testcases, it refers to the different number of local search runs needed for the
testcase.

If we observe Table 4, we can see that the last local search has not only improved
the solution value, but slightly decreased the number of required vehicles in all cases.
Which can also be another reason for the decreased solution value. The first three
lines contain the results of the full algorithm, the next three lines show the results
when the last local search phase is omitted.

Table 4: The average number of vehicles in the solution (pcs)

N T1 T2 T3 T4 T5
100 14.48 14.49 14.48 29.39 14.29
1000 136.8 137.29 137.04 272.85 137.70
5000 698.17 705.38 702.25 1247.5 700.77

100 14.9 14.89 14.84; 30.00 14.75
1000 137.155 137.69 137.35 274.57 138.12
5000 698.75 705.83 702.62 1250.0 701.22
N T6 T7 T8 T9 T10
100 19.93 14.71 15.93 9.07 9.04
1000 172.61 138.91 148.71 83.96 82.28
5000 820.1 712.87 724.83 453.14 441.62

100 20.38 15.05 16.37 9.98 9.86
1000 173.24 139.18 149.04 85.2 84.13
5000 820.72 713.27 725.0 456.0 444.9
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We also investigated the algorithm in the case where there are many items and
fewer vehicles are available and it is not possible to serve all of the demands. In
this case we investigated the number of the unsatisfied demands with the number
of vehicles decreased to 60% of the previous tests. The results are summarized in
table 5.

Table 5: The average number of unfulfilled demands (pcs)

N T1 T2 T3 T4 T5
100 0.6 1.0 0.6 2.7 0.45
1000 0.75 2.5 3.25 28.5 1.0
5000 10.6 11.3 28.0 104.4 16.5
N T6 T7 T8 T9 T10
100 0.45 0.45 0.95 0.0 0.0
1000 2.5 1.0 0.5 0.0 0.0
5000 27.5 4.1 8.0 0.0 0.0

5 Conclusions

In this paper we have presented a new vehicle routing model which gives an ade-
quate description of practical problems. We presented a multi level heuristic algo-
rithm for the solution of the problem which has a reasonable running time even for
inputs of large time. Concerning the last more time consuming local search phase
we could observe that it makes in average a 15− 20% improvement in the solution
given by the first part.
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