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Functions of Self-Adjoint Transformations 
in Hilbert Space. 

By E . R. LORCH in Szeged*). 

Introduction. 

The theory of functions of general linear and more specially 
of self-adjoint operators in HILBERT space is by no means new. 
More than twenty years ago V . VOLTERRA developed the notion 
of an analytic function of an operator1). Subsequently, in order 
to establish the spectral resolution of a bounded self-adjoint ope-
rator, F . RIESZ introduced the theory of continuous and semi-
continuous functions of such operators1). More recently J. NEUMANN 
and M. STONE treated the theory of a general function of a self-
adjoint operator2). The latter authors operate with bilinear forms 
rather than the operators themselves; this means that numerical 
LEBESGUE—STIELTJES integration may be introduced but necessi-
tates a subsequent reinterpretation of the results obtained in terms 
of transformations8). 

It1 is known4) that the introduction of bilinear forms is not 
necessary but that the notions involved can be developed in the 
direction suggested by one's intuition, that is by dealing with the 

*) Cutting Travelling Fellow, Columbia University, New York City. 
!) See F. RIESZ, Les systèmes d'équations linéaires à une infinité 

d'inconnues (Paris, 1913), p. 130, text and foot-note. 
2) J. v. NEUMANN, Uber Funktionen von Funktionaloperatoren, Annals 

of Math., 3 2 ( 1 9 3 1 ) , p p . 1 9 1 — 2 2 6 ; M . H . STONE, Linear Transformations in 
Hilbert Space (New York, 1932) , Chapt. VI. 

3) We use the words transformation and operator interchangeably. 
4) See these Acta, 6 (1934), p. 204. I take this occasion to state that 

the many suggestions of Prof. RIESZ have been extremely valuable during 
the preparation of this paper. 
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operators directly. The purpose of this paper is not so much to 
give the details of this development as to suggest that the intuitive 
approach is also the shortest. We establish a theory of measure 
and integration for operators which reflects faithfully the theory 
of LEBESOUE integration. Some interesting differences necessarily 
arise; .we note for instance that in our theory the measure of a 
set virtually determines the set and that the measure of the sum 
of any two measurable sets is equal to the sum of their measures. 

§ 1. Let A be a linear transformation defined over a linear 
manifold DA dense in HILBERT space Consider the set of all 
pairs of elements £*] such that ( A f , g) = ( f , g*) for all / in 
DA- Here the symbol (cp, ip) represents as usual the inner product 
of the elements <p and »/>. We construct a transformation A* de-
fined over the set DA* of all elements g above by means of the 
equation A*g = g*. A* is known as the operator adjoint to A. 
If DA = Da* and if Af=A*f throughout DA we say that A is a 
self-adjoint operator. It is well known that for any self-adjoint 
operator A there exists a family of projections5) E{X), — oo<A<oo, 
called the resolution of the identity of A, having properties 
a) E(t)E(fi)=:E({i)E(Z) = E(X) for Z^fi; b) E(X)f- 0 or / as 
A + — 00 or oo; and c) for n>X, E(ii)f+ E(k)f as /¿-+A. The 
transformation A is defined for the element / if and only if the 

OS 

Stieltjes integral j tfd\\E(jL)ff converges and then 
- oo 

<x> 

(1) B^^IP j 
- 00 

Furthermore 
00 

(2) A f = j j l d E ( X ) f . 
- 00 

The integral (2) is analoguous to a Stieltjes integral; its 
meaning may be clarified as follows: We subdivide the real axis 
into denumerably many intervals closed on the right by means 
of the p o i n t s . . . a-n< ... <a0... < an ... (a-„— oo, a„oo); 
here Ai is the set c x ^ a » . Let E(Ai) = E(ai) — £(£Zi-i); let 
Ci be any point in A{ and / any element in § for which (1) con-

5) A projection is a self-adjoint transformation E defined throughout $ 
such that £ 2 = E. , 
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verges. Form the sum Z c «£( -4) / ; a s the maximum length of 
i—-CD 

the A approaches zero the sum converges strongly to an element 
in & which we denote by Af6). 

We add a few remarks on self-adjoint transformations. We 
have stated that any operator of this type possesses a resolution 
of the identity. Conversely, any resolution (of the identity) gives 
rise to a self-adjoint operator. Furthermore, it may be verified in 
(1) that a self-adjoint operator is defined for all / in £ if and 
only if there exists a constant C > 0 such that £ ( C ) = , 1 (the iden-
tity operator) and E(— C ) = 0 (the zero operator). We then have 
| | i4/ | |^ C||/fl. Such transformations are called bounded. If no such 
constant exists, we shall often speak of the transformation as un-
bounded. Finally a self-adjoint transformation possesses the pro-
perty of closure, that is, if /„ is a sequence of elements in § for 
which Af„ exists and if /„-»-/, Af„->-g then Af is defined and 
Af—g. From this point forward, the unmodified term transfor-
mation will indicate self-adjoint transformation unless the contrary 
is indicated. 

§ 2. In order to discuss the notion of a function of an 
operator A, we shall first study the relation with respect to the 
resolution E(A) of A of certain linear sets of points to closed 
linear manifolds in We introduce notation suitable to our pur-
pose: If M a denotes any closed linear manifold of a set of such 
manifolds, the expression 2Ma will indicate the smallest closed 

a 

linear manifold containing all Af„. The expression U M a will as 

usual denote the intersection of all the Ma, that is, the largest 
closed linear manifold contained in all Mtt. To every Ma we may 
associate a projection Pa. whose range is Ma; that is, Pa trans-
forms an arbitrary / in § into its projection on Ma. If the Pa 

are commutative in pairs we shall say that the Ma are commutative. 
If a manifold Mx contains a manifold Afa, Mi — M^ will denote 
the manifold of those elements in Mi orthogonal to Mt. We now 
introduce 

L e m m a 1: Let Mn be a monotone decreasing sequence of 

We are repeating the argument presented by F. RIESZ in a pape r : 
Über die linearen Transformationen des komplexen Hilberschen Raumes, these 
Acta, 5 (1932), pp. 23—54, especially pp. 4 8 - 5 1 . 

f 
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manifolds, Mn 3 Mn+i (n = 1,2,...) a/id P„ be the corresponding 
00 

projections. Let M — JJ Ma and let P correspond to M. Then 
a = l 

|| (Pn—P)/|-»0 for all f in !Q. Furthermore, P is commutative with 
P„ and with any bounded operator S commutative with Pn. 

It is elementary that the operators Pn converge to a limit 
which is a projection; let us denote it by P'. Then M"d M since 
Af„3 M for all n. Let / belong to M' — M, the manifold whose 
definition has been given above. If ||/|| = c > 0 , there exists an m 
such that / is not in Mn, n^m. Let |P„/ | | = c where a<c. Then 
\\P'f\\^a<c. This means that c = 0 and M — M'. 

The statement as to permutability is immediate. M is con-
tained in all Mn hence permutable with them. Furthermore from 
SPn — PnS follows SP=PS since 5 is bounded and hence 
continuous. We now state 

Lemma 2: Let {Ma} denote any set of commutative' mani-
folds which contains the product of any two of its members. If 
M = IlMa there exists a denumerable subset {M„} of {Ai«} such 

CD 

that M= JJM„. We may choose the M„ so that M„~>Mn+i. 
n = l 

We may assume without restriction of generality that M — 01). 
Let / be in £ and let us suppose that the lower bound of 
\Paf\ = c>Q. We choose a sequence Mn such that PJ-+g, | |á1|=c; 
we may and shall assume that M„OMn+\. Now some Ma does 
not contain g. We use an argument very similar to that used in 
lemma 1 and see that the lower bound of \Paf \ must be zero. 

Let now /[, / 2 , . . . denote a sequence of elements ewerywhere 
dense in We choose manifolds Mu such that lim P¡jfj = 0 

i — tx. 
(J— 1 , 2 , . . . ) . Arranging the Mu in some linear order, we let M„ 
correspond to the product of the first n of the M{j and have the 
result stated in the lemma. We note that the result is not valid 
in non-separable spaces. 

For the remainder of § 2, we fix our attention on a given resolu-
tion E(X). Let G be an open set on the real axis. Let y be a half-closed 
interval a<x^b contained in G. We define E(y) = E(b) — E(a): 
we let M(y) denote the range of E(y). Finally we define 

7) If AÍ + 0, we replace MA by MA—M; then H(MA—M) — 0. 
a 



140 E. R. Lorch 

M(G) = 2 M(y«) where the sum is to be carried out over all 
a 

ya£G. We note that if G2, M ( G a ) 3 M(G2). If G denotes 
an open interval, the projection E(G) associated with M{G) is 
commutative with any bounded operator commutative with E(l). 
For E(G) is the limit of a monotone increasing sequence of pro-
jections of the type E(y). Similarly, if G is any open set, E(G) is 
commutative with any bounded operator commutative with E{k). 

Let G = 2 Ga where all the sets are open ; then a 
M{G) = 2M{Gtt). For since G ^ G„, M(G)^ 2 M(G„). On 

a a 

the other hand every half-closed interval y in G can be covered 
by a finite or denumerable number of such intervals belonging 
to the Ga, hence Af (G) c 2 M{Ga). If G = G , . G 2 , then 

a 

M(G) = M(G,) . M(G2). Clearly we have M(G) C M ^ ) . M(G2). 
In case Gi and G2 can each be expressed as the sum of a finite 
number of open intervals, the inequality may be erased. As every 
element in M{GX) • M(G2) may be approximated by elements in 
manifolds corresponding to open sets consisting of only a finite 
number of open intervals, each in G, we have Ai(G)J3 M(Gi) • M(G1). 

Let G be an open set, G its complement on the real axis. 
Let {G«} denote the set of open sets which contains G. We note 
that {Ga} contains sets of the following type: We take the set G 
and suppress all but a finite number of open intervals; in the 
remaining set we replace each open interval by a closed one 
entirely interior to it. The complement of such a closed set then 
contains G. This argument indicates that the manifolds IIM(Ga) 

a 

and M(G) are orthogonal8). We introduce 
D e f i n i t i o n 1 : Let H be an arbitrary set, and let {Ga} be 

the set of all open sets containing H. Then the manifold II'M(Ga) 
a 

is called the exterior manifold-measure of H. If the exterior mani-
fold-measure of H is orthogonal to the exterior manifold-measure 
of the complement of H we shall say that H is measurable and 
that its manifold-measure is M(H) = IIM(Ga). a 

8) Since for every / in § and any open set G we may construct a 
sequence of closed sets Fn c G, each closed set consisting of a finite number 
of closed intervals, such that the projection of / on M(F„) converges to the 
projection of / o n § — M(G). Here the set F„ denotes the complement of F„. 
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We note that all open sets are measurable (with respect to 
E(A) of course). This fact gives significance to 

T h e o r e m 1 : Let H„ be any sequence of measurable sets, 
00 

M(Hn) their manifold-measures. Then // = JJHa is measurable 
a = 1 

09 00 

and M(H) = ]jM{Ha). Similarly, //' = 2 H« is measurable and 
a = l a— 1 

M m = 2 M ( H a y 
a —I 

Applying lemma 2, we pick open sets G M „ such that G m „ 2 

(M= 1, 2 , . . . ) and M(//„) = F[M(GA,N). We note that the pro-
A= 1 

duct of any finite number of the Gm,„ yields an open set which 
contains H. Using the earlier established fact that the measure of 
a product of a finite number of open sets is equal to the product 
of their measures, we see that the exterior measure Mex ( H ) of H 
satisfies the relation 

AC ( / / ) £nM(Ga,i>) = nM{Ha). 
a, 1 a= 1 

QC 

For the complement H of H, we know that H= 2 (H«)-
a—l 

Since H„ as well as H„ is measurable, we may choose open sets 

G;,„ such that G ; „ 3 / 7 „ (m = 1, 2 , . . . ) and M(Hn) — 7 7 Ai (G'a n). a= 1 
QC 

We not£ that the set 2 G'ma,a where ma is an arbitrary integer 
a = 1 

is open and contains H. Furthermore, the manifold-measure of 
PC 

this open set contains the manifold ^ A f (//«). But the intersec-
a— 1 

tion of all manifolds arising from open sets of this type is equal 
00 

to 2 ^ Ai (Ha) 9 ) ; this states that 
a = l 

a—l 

'•>) If we choose the integers m„ appropriately the projection of an 
arbitrary element / in § on jW(Gm,„n) will differ as little as we wish from 

GC 

its projection on M(H„). Hence in turn, the projection of / on 2 M(GM„,A) 
« = i 
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Since f j M(Ha) is orthogonal to Z the set H is measurable 
«=1 «= ' 00 

with manifold-measure JJM(H„)10). The last statement of the 

theorem is established by considering complementary sets. 
§ 3. We are ready to introduce the notion of the function 

of an operator A whose resolution is E(X). If g(X) is a real 
function the symbol [ ^ ( / l ) ^ ^ ] represents the set of points I for 
which g(X) ^ fi; for shortness, we denote it by Hft. Let n o w ^ - i ) 
be a real function defined and finite except on a set of zero 
measure with respect to let Hp be measurable with respect 
to E(X), — co<(i< co. Then the projections E(Hconstitute a 
resolution of the identity; for properties a), b) and c) in § 1 are satisfied. 
We say that g(A) is measurable with respect to E(X) and denote the 
transformation associated by means of (2) with the resolution E(HU) 
by the symbol $ d E ( X ) or for short g'(/4) u ) . Thus for us the 
equation g(A) = jg(tydE(A) has but superficial significance. We 
note that E(Hft) is commutative with any bounded transformation 
commutative with E(X). For as stated above, this is true of the 
operator E(G) where G is any open set, hence by lemmas 2 
and 1, for any measurable set H. 

If g(X) is measurable, then it may be approximated uniformly 
except on a set of zero measure by measurable functions assuming 
only a finite or denumerable number of values having no finite 

will differ little from its projection on £ M(Ha). This last statement may be 
a=l 

established by first considering the equation 

I I / - / W I I = II f - P J + P , / - / W I I 
^Wf-PJW+WPiif-PdY^Wf-PifW + Wf-PoJW 

where Px and P2 are commutative projections; we next consider the case of 
a finite number of such projections; then by lemma 1, we treat the infinite case. 

M) Since Al,z (H) -f- Af„ (H) = 6 , the equations Mtx (H) c Mlt 

M.x (H) c ¡vfs, . AI2 = 0 imply M (H) = Mt. 
n ) The notion or functions of an operator is also discussed by F. 

M A E D A in a paper which has just reached us as we go to press, viz., Theory 
of Vector Valued Set Functions, Journal of Science of the Hiroshima Univer-
sity, Series A, 4 (1934), pp. 5 7 - 9 1 . This author assumes the existence for 
BOREL sets of a theory of measure such as we have carried out in § 2 . Then 
he defines integration of BAIRE functions with respect to a resolution of the 
identity and derives some of the properties of these integrals. 
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limiting values. The resolution corresponding to a function assu-
ming only a denumerable number of values is constant except 
for at most a denumerable set of points. It is well known that 
the corresponding transformation has a pure point spectrum and 
hence is of a rather simple character. If g(A) is an arbitrary 
measurable function and g„(X) are measurable functions of the 
special type just mentioned and approximating uniformly to g(X), 
then g„(A) converges to g(A). For the argument presented in § 1 
states that g„(A) is defined for an element / in § if and only if 
g{A) is defined for / . (We assume here that \g(X) — g„(X)\<M 
almost everywhere.) Furthermore the element g„{A)f is precisely 
one of the elements appearing in the converging sequence of ele-
ments which may be used to define g(A)f. 

If A and B are bounded and commutative, polynomials in 
A and B possess the same property. The same is true of the 
operators corresponding to the limits in a well determined sense 
of these polynomials. We need not here discuss the manner in 
which these limits are determined; it suffices to say that among 
these "limit" operators we find the resolutions EQ-) and F(/i) of 
A and B respectively12). Conversely, if the resolutions of two 
bounded operators are commutative, the operators themselves are 
commutative. This arises from the fact that the uniformly bounded 
operators which approximate to A and B are commutative (see (2)). 
In case the operators A and B are not both bounded, an unmo-
dified equation of the type AB = BA has little meaning13) This 
prompts us to introduce 

D e f i n i t i o n 2 : Two self-adjoint operators A and B are 
said to be commutative if their respective resolutions E(X) and F(fi) 
are commutative, — oo<X, n<oa14). 

We are now in a position to state the principal properties 
of the operator g(A). We have 

T h e o r e m 2: Let A be self-adjoint and possess the reso-
lution E(l). Let g{X), gx(X) and gt(X) be measurable with respect 
to E(X). Then 

12) See «). 
13) Problems arising in the definition of permutability of unbounded 

operators will be discussed by the author in a forthcoming publication. 
14) The definition was introduced by J. NEUMANN, Mathematische Grund-

lagen der Quantenmechanik (Berlin, 1932), p. 90, and M. H. STONE, loc. cit., 
p. 301. 
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a) g(A) has the right-hand bound15) M if and only ifg(X)^M 
except for a set of zero measure with respect to E(l). An 
analoguous statement may be made for left-hand bounds. 

b) g(A) is commutative with any operator commutative with A. 
c) g(A) is a projection if and only if g(X) = 0 or 1 ev-

erywhere except on a set of zero measure with respect to E(X). 

d) \gx(X)dE(X) + = J + &(*)} dE(X) 

which is to be interpreted that the operator on the right is 
significant for an element f if each of the operators on 
the left is defined for f and then the equality is valid. 

which is to be interpreted that the operator on the right 
is significant for an element f if the product of the ope-
rators on the left is defined for f and then the equality is 
valid. 

f) If h(X) is measurable with respect to the resolution F(X) 
of g(A) then h {¿•(i)} is measurable with respect to E(X) 
and 

. \h(X)dF(X) = $h{g(X)}dE(X). 

Properties a) and c) are immediate consequences of our 
definition of g(A). To establish b) we note that if an operator B 
is commutative with A, the resolution of B is commutative with 
the resolution of A and hence also with the resolution of g(A). 

In consideration of d) we see that our statement is true for 
all functions gt(X) and g2(X) which assume only a finite number 
of values. Hence the statement is true for any bounded measurable 
functions. Let the functions be unrestricted and let H„ be the 
measurable set for which both \gx(X)\-^n and \g2(X)\^n. Let the 
operator Bt correspond to gt{X), B2 correspond to g2(X) and C 
correspond to g i W + g a W - Then BXE(H„) corresponds to a 
function equal to gx{X) when and \g2(X)\^.n "and to 
zero otherwise; an analoguous statement may be made for 
B2E(Hn). By what we have established for bounded operators, 

,5) M is said to be a right-hand bound of the transformation A with 
resolution £(>l) if £(/W) = l. Similarly, m is a left-hand bound if E(m)'= 0. 
These statements may also be expressed with the use of bilinear forms, viz., 
(Af,I)^M\\ff or ( A f , f ) ^ m \ \ f f . 

I 
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Bt E(H„) + BtE(H.) = CE(Hm) 
since CE(H„) corresponds to the sum of the functions just 
described. Now let / be an element in the domain of definition 
of B\ and Bi; then E(H„) f-*f and in addition the sequences 

B,E(Hn)f=E{Hn)BJ, B,E{Hn)f=E{Hn)BJ 

converge. Hence by the property of closure of a self-adjoint trans-
formation mentioned in § 1 Cf is defined and BJ+ B.,f=Cf. 

We note that e) is valid for two projection operators. Next, 
by d) it is valid for operators corresponding to measurable func-
tions assuming only a finite number of values. Since any bounded 
measurable function may be approximated uniformly by functions 
of this simple type, e) is valid for bounded functions. Let the 
functions be unrestricted; let the operator C correspond to 
g i W g » W a n d l e t and E(Hn) have the meanings assigned 
to them above. We see that 

Let / be in the domain of Bt and B2f in that of BThen 

{BlE(Hn)} {£,£(//„)}/= B ^ m B j ^ E m B M 

This sequence of elements converges with Vn hence property e) is 
established. We point out that the demonstration of the last two 
properties involves a method tantamount to an integration with 
respect to what might be called a resolution of the identity in two 
dimensions. 

In order to establish f) we see first of all that the measure 
of an open interval with respect to F{k) is precisely the measure 
with respect to E(X) of the set of points for which g(X) takes 
values in this open interval; the statement allows of an immediate 
extension to arbitrary open sets. Now let Y be any set measurable 
with respect to F(X); let X be the set of all points I such that 
g(A) is a point in Y. We note in passing that certain points in 
Y may have no correspondents in X. We shall prove that X is 
measurable with respect to E(X) and indeed that its measure with 
respect to E(X) rs identical with the measure of Y with respect 
to F(X). The measure of Y with respect to F(l) may be expressed 
as the intersection of the measures of a denumerable number of 
sets each containing Y (by lemma 2). We denote the intersection 
of these open sets by Yt and note that 3 Y. By the first state-

10 
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ment of this paragraph we see that the measure of Y with respect 
to F(X) is equal to the intersection of the measures of a denu-
merable number of sets measurable with respect to E(k) each of 
them containing X. The intersection of these sets measurable with 
respect to is denoted by Xx; we have X^ X. Either by 
considering the intersection of open sets containing the complement 
of Y or the sum of closed sets contained in Y. we obtain a set 
Y2 c Y whose measure with respect to F(l) is identical with that 
of Y. The corresponding set X2 is contained in X, X2CX, and 
has a measure with respect to E(ty equal to that of Y with respect 
to F(ty hence equal to that of X,. This means that X is measu-
rable and that its measure with respect to £(A) is identical with 
the measure of Y with respect to F(A). 

Now let h(l) be any function measurable with respect to 
F(A). We have just proved that the measure with respect to F(A) 
of the set [h(X)^c] is identical with the measure with respect to 
F ( / ) of the set [/i {£(*)} ^ c ] . H e n c e 

We have for the sake of simplicity restricted ourselves to 
real functions of an operator. If we let + where 
g-j(A) and are real and measurable with respect to E(l),g(A) 
represents a normal rather than a self-adjoint operator. The theory of 
such operators can be carried out along the lines developed above. 

(Received February 21, 1935.) 


