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On the Possibility of Definition by Recursion. 

By LÁSZLÓ KALMÁR in Szeged. 

To Professor Leopold Fejér on his sixtieth 

birthday February 9, 1940 . 

In the axiomatic treatment of arithmetic, based on the PEANO 

axioms1), the special arithmetical functions are usually introduced 

by recursive definitions, the only function occurring in the axioms 

as a primitive idea being the successor function a'.2) For instance, 

the functions a + b, a. b, ah are successively defined by the re-

cursion equations 

ű + 0 = Ű, 
a + b' = (a + b)'; 

(2) ' ű " 0 = a 
K> 1 a . b' = a . b + ct) 

(3) a;=0; v ' ab =ab .a. 
The existence of a function satisfying given recursion equations, 

which is far from being an immediate consequence of the PEANO 

axioms3), is usually supported by the following heuristic argument. 

') G. PEANO, Sul concetto di numero, Revista di mat., I (1891), pp. 87—102 

and 255—267. The primitive ideas of the PEANO axiomatic system are: "0," 

"natural number" and " ' ." The axioms are: (/) 0 is a natural number; («) if 

a is a natural number, a' is a natural number too; (Hi) a' — b' implies 

a = b; ( iv) Ű'=)=0 ; (V) any hereditary property possessed by 0 is possessed 

by each natural number. (According to RUSSELL, a property is called heredi-

tary, if, whenever it belongs to a natural number a, it also belongs to. a'.) 
A proof based on (v) is called a "proof by induction" (with respect to a). 

-) After addition has been defined, it can be proved that a' = a + 1 

(1 denoting the natural number 0'). 
3) This is shown by the fact that the existence of such a function does 

not hold in general if axiom (i/i) or (/v) is omitted. Indeed, the finite models 
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It follows by induction that, for each n, there is a function 

defined up to n and satisfying up to n the given recursion equations. 

Indeed, the first of them defines such a function for n = 0 (thus 

"up to 0") ; and if a function of this kind is defined up to n, 
the second of the recursion equations allows its definition to be 

extended, together with' its required property, up to n'. 

Obviously, this argument is based implicitely on the order 

relation for the phrase "up to n" has plainly to be inter- ' 

preted as "for all m ^ n . " Now, " m ^ n " is usually defined as 

"there is a natural number k such that m + k = n" and "m + k" 
is defined by the recursion equations (1). Hence a vitious circle 

arises. To avoid it, we have to choose between the following 

methods. 

(a) We adjoin the equations (1), together with the primitive 

idea "+," to the PEANO axioms. This way is, of course, the easiest 

one, and, if the logic taken as basis of the axiomatic system4) is 

not wide enough to express the idea "there is a function with a 

given property," it is also the only practicable one5). But if we 

suppose, as we shall do here, that our logic is expressive enough, 

this method is not satisfactory, for it introduces new axioms which 

could be avoided. 

(a) 0' = 1, l ' = 2 , 2' = 3, 3 ' = 1, 0+1, 0 + 2, 0 + 3, 1+2, 1+3, 2 + 3 and 

(b) 0 ' = 1, l ' = 2, 2 = 0 , 0 + 1, 1 + 2 satisfythe axioms (/), (/7), (/v), (v) and 

(i), (ii), (Hi), (v) respectively; nevertheless, equations (3) cannot be satis-

fied in these models, for they would'successively imply 

2»=1, 2l = 1.2 = 2, 22 = 2 .2=1 , 2s=1.2 = 2, 21 = 2 ! 2=1 
in (3), and 

2» = 1, 2» = 1.2 = 2, 2 ^=2 . 2= 1, 2°= 1.2 = 2 
in (b), both in contradiction to 1+2. — On the other hand, the unicity of 

the function satisfying given recursion equations is an'immediate consequence 

of axiom (i>). 
4) It is unnecessary to explain that an axiomatic system is not fully 

determined unless besides the primitive ideas and axioms the logic taken as 

basis is given. In case of the PEANO axioms, this logic is generally supposed 

to include the usual properties of the equality. The extent of the logic taken 

as basis has a great influence on that of the axiomatic theory; e. g. the 

PEANO axioms are sufficient for the theory of real numbers or for that of 

natural numbers only, according to the logic taken as basis. 
5) If we adjoin also the .equations (2) to the axioms, further recursive 

definitions become superfluous, supposing our logic allows us to express the 

idea "the only natural number of a given property," or, at least, the idea 
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(ib) We define " m ^ n " without using functions defined by 

recursion. This method is due to DEDEKIND6) ; he succeeded, by 

defining " m ^ t i " as "n possesses all hereditary properties pos-

sessed by m," in completing the above heuristic argument to an 

exact proof. However, Dedekind's definition is logically more 

complicated7) and technically less convenient for the proof Of the 

properties of the order relation8) than the "usual" definition stated 

above. 

(c) We prove the existence theorem, in question by another 

method, without using the order relation. For the particular re-

cursion equations (1) this can be done, as I have shown9), by 

induction with respect to the "parameter" a. This method can be 

applied to the equations (2) too, but not to arbitrary recursion 

equations. However, after addition has been introduced, we can 

define the order relation by the above "usual" definition and then 

proceed in proving the general existence theorem by Dedekind's 

method. 

This way has the disadvantage of using two entirely different 

devices to prove the same fact, one in a particular case and then 

another to settle the general theorem. A method which is free 

from this disadvantage has been recently given by LORENZEN10). 

He proves the existence theorem at once for arbitrary recursive 

"there is a natural number of a given property." Indeed, any recursive defi-

nition can be replaced by an explicit one in the first case and* in the second 

case, by a "contextual" definition giving a meaning to any assertion which 

contains the function to be defined; see K. GÖDEL, Über formal unentscheid-

bare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte 
für Math, and Phys., 38 (1931), pp. 173—198, esp. Satz VII; D. H ILBERT und 

P. BERNAYS, Grundlagen der Mathematik, I (Berlin, 1934), pp. 412—421 and 

457-460. 
8 ) R . DEDEKIND, Was sind und was sollen die Zahlen, 5TH edition 

(Braunschweig, 1923), pp. 23—35; Gesammelte mathematische Werke, vol. 3 

(Braunschweig, 1932), pp. 361—372. 

') Indeed, it contains a quantifier ("all") referring to the domain of the 

properties of natural numbers, whereas the "usual" definition contains a 

quantifier ("there is") referring to the domain of the natural numbers only. 
8) The properties of needed in Dedekind's proof are: (I) n ^ . 0 

implies n = 0 ; (2) n¿m' implies n<im or n = m'; (3) n ¿n; ( 4 ) n ' ^ L n 
does not hold; (5) 0 <; n; (6) n' ¿Lm implies n <; m; (7) n¿.m implies n'^m'. 

9) See E. LANDAU, Grundlagen der Analysis (Leipzig, 1930), pp. 4—5. 
10) í>. LORENZEN, Die Definition durch vollständige Induktion, Monats-

hefte für Math, und Phys., 47 (1939), pp. 356—358. 
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definitions11) without using the order relation, but operating with 

multivalent functions. 

In this note, I shall give one more proof; avoiding the order 

relation like LORENZEN, but also the idea of a multivalent function 

which is plainly more complicated than that of a univalent func-

tion18). Instead of it, I use the idea of a function defined only for 

some natural numbers13), occurring also in' the heuristic argument 

referred to. Thus we obtain a proof which approaches that argument 

closer than the former ones and so it seems more natural than 

any of them. 

For simplicity, I shall confine myself to "primitive" recursion 

equations of the form 

K ) <p(n') = p(n, q>(n)); 
here a and /S may depend (as already defined functions) also on 

parameters, in which case the function <p(n) to define depends on 

these parameters too; obviously, (1), (2) and (3) are particular 

eases of (4). However, the same method can be applied to more 

general types of arithmetic recursion14) as well as to the set-theoretic 

generalisation of the problem treated by LORENZEN. 

n ) Moreover, LORENZEN does not restrict the problem to functions of 

natural numbers'with natural numbers as values but treats the problem in a 

general, set-theoretic form. 
12) Indeed, a multivalent (arithmetical) function is, as pointed out by 

LORENZEN, a function of natural numbers whose values are classes of natural 

numbers. 
13) Instead of saying, a function is not defined for a given argument, 

we could say, its value is oo or any other symbol different from the natural 

numbers. If we confine ourselves to functions whose values are different 

from 0, we can use 0 as such a symbol. The general case can be reduced 

to this case (and so the introduction of a new symbol can be avoided) by 

replacing the recursion (4) by 

V(0 ) = «', 
( 4 ) H"') = (/*(". H*(n)))y 
where S(n) is defined as 0 for n = 0 and, for n=)=0, as the natural number 

whose successor is n (the existence and unicity of this number <5(") can be 

readily proved by axioms (v) and (iv)). After having proved the existence of 

a function v satisfying (4'), we set <p(n) = d(y(n)) and obtain a function <p 
satisfying (4). 

14) See for instance R. PETER, Ober den Zusammenhang der verschie-

denen Begriffe der rekursiveii Funktion, Math. Annalen, 110 (1934), pp. 612—632; 



Possibility of. Recursion. 231 

We call a function defined for some natural numbers a 

partial solution of (4), if 

(a) so far as t/>(0) defined, 0) = a ; 

(ß) so far as ip(n') defined, tp(n) is defined too and 

rp(n')^=ß(n,tp(n)). 
There are partial solutions of (4), e. g. the function ip defined 

nowhere. 

We assert 

(A) To each h, there is a partial solution rf> of (4) for which 
ip(n) is defined. 

(B) If tpi and ipz are partial solutions of (4), and if rp^n) 
and ty2(n) are both defined, then y1(n) = ip2(n). 

We prove both assertions by induction. As to (A), the 

function with 

rf>(0 ) = a, 

tp(n) undefined for n + 0 

is a partial solution'6) with i//(0) defined. Suppose x is a partial 

solution for which x{m) is defined; we have to construct a partial 

solution to with u>(m') defined. If x(m') is defined, we simply 

take x as <u; if not, let16) 

(o(n) — xip) for n=f= m', 
<o(m') = ß(m, X(m)). 

Obviously (o fulfils (a) because x did so and17) O^m'. To prove 

( ß ) for a), suppose w(n') is defined, i. e. either n ' ^ m ' and x("') 
defined, or n' = m'. In the first case, x(n) is defined too, thus 

n^m' for x(ui') is undefined; hence <o(n) = x(n) is defined and 

co(n') = x(n') = ß(n, x(n)) = ß(n, cü(n)) by (ß). In the second 

case, i. e. if18) n = m, the same is true, for19) m^m', thus 

o>(pi) — x(m) is defined and <u(m') = ß(m, x(jn)) = ß{m, (o(m)). 
As to (B), so far as ^ ( 0 ) and ip2(0) are both defined, we 

have if>i(0) = a = y2(0) by (a). Suppose (B) holds for n, and 

Konstruktion nichtrekursiver Funktionen, Math. Annalen, 111 (1935), pp. 42-60; 

Über die mehrfache Rekursion, Math. Annalen, 113 (1936), pp. 489—527. 
15) To prove this we have to use n'+O, i. e. axiom (r'v). 
is) a(n)=z(n) means: u(n) is undefined if %(n) is undefined; and 

defined to have the value %(n) if %(n) is defined. 
17) Here1 we use axiom (iv) again. 
18) Here we use axiom (Hi). 
w) m#ra' can be easily proved using axioms (Hi), (iv) and (v). 
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Vi(fl') and rp2(n') are both defined; then also and 

are defined, thus = by hypothesis, and 

(n') = p(n, xp,{n)) = P(n, xp2(n)) = <//2(n') 

by (0)^) 

Now let <p(n) the common 'value of the ip(n) where ip is 

any partial solution of (4) defined for n. By (A) and (B), g> is 

defined everywhere; we prove it satisfies (4). 

Indeed, let a partial solution for which is defined; 

then we have by (a) 

*>(0) = V(0 ) = «• 

Further, let % a partial solution with x(n') defined; then x(n) is 

defined too; we have <p(n) — %(n) and 

<?(«') = x(n') = P(n, x(n)) = P(n, <p(n)) 

by (/?), which concludes the proof. 

(Received October 30, 1939.) 

20) Note axioms (Hi) and (iv) are not needed to prove (B). 


