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Contribution to Recursive Number Theory. 

By RÓZSA PÉTER in Budapest. 

To Professor Leopold Fejér, on his 

sixtieth birthday, with *much gratitude. 

1. According to a program due te SKOLEM1), number theory 

has to be developed without the use of bound variables (i. e. 

without the use of expressions such as "for all x . . ." and "there 

is an- x for which . . .") , in basing it on definitions by recursion 

as well as on proofs by induction. A further restriction .would be 

to confinai ourselves to the simplest form of recursion, to the 

so-called primitive recursion scheme 

(1) U ( 0 ) = a 

here a(n, m) is a function defined already, rí denotes the successor 

of n in the sequence of integers; <p and a may depend on para-

meters too. The functions obtained from 0 and rí by substitutions 

and recursions of the form (1) are called primitively recursive 
functions. As I have shown in two previous papers2), several 

methods of definition, more general than (1) and playing a part 

in number theory3), can be reduced to Í1). 

!) Skolem's investigations date from 1919; see TH. SKOLEM, Begründung 

der elementaren Arithmetik durch die rekurrierende Denkweise, Videnskapssels-
kapets Skrifter (Kristiania), I. Mat.-Naturv. Kl., 1923, No 6, pp. 1-38. 

2 ) RÓZSA PÉTER (POLITZER), a) Übe r den Z u s a m m e n h a n g der ver-

schiedenen Begriffe der rekursiven Funktion, Math. Annalen, 110 (1934), 

pp. 612—632; b) Über die mehrfache Rekursion, Math. Annalen, 113 (1936), 

pp. 489-527. 

3) Such methods of definition are (a) the "course-of-values recursion," 

defining the value of the function for the argument rí by means of several 

of itä preceding values (possibly by means of the whole course of its values 
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The analogous problem for the induction, i.e. that of the 

reduction of more general proof methods to the simplest scheme 

of induction: 

A( 0) 

(I) A{d)^A(ar) 
A (a) 

(where A(a) stands for a proposition, variable with, a, and "-*•" 

for "implies"), has been treated in a recent paper of SKOLEM4). 

Here SKOLEM has shown that the schemes occurring jn the work 

of HILBERT and BERNAYS5) as formalizations of some methods of 

proof used in number theory can be reduced to the scheme (I)6), 

using certain functions defined by recursions. These recursions are 

all of the form (1), except a single recursion of the form 

i f ) (0, b, a) —b 
ifj{d, b, a) = «¡P(V(c, b, a'), a). (2) 

for the arguments less than n'), e. g. the famous formula of Euler's tor the 

¿urn o-(n) of the divisors of n : 

"(0) = 0 , 
I 3 |S A * 

*("') = £ ( - l ) ' - X r \ n ' - — f - + 
3 i 2 + t < 2 n ' V ¿ J 

+ 2 ( - » y - ^ i n ' - ^ ^ l + P i n ' ) , 
3 t 2 - i < 2 n ' V J 

3 P + t 3/3 — / 
where p(n') = (— 1)'—1 n if n' = — - — or n'= —-—fo r some/and p(n')=0 

otherwise; (b) the "nested recursion," in which the parameters, instead of 

being kept constant, are substituted by expressions containing functions already 

defined (e.g. (2) and (3)) or even, in addition, the function to be defined, e.g.. 

q> (0, a) —a (a) 
q>(n', a) =/3(n, a, <p(n, y(n, a, <p(n, a)))); 

(c) the "manifold recursion," i.e. the recursion with respect to more variables 

simultanously (not to be reduced to primitive recursions in general) in the 

particular case in which no nesting of expressions, containing the function to 

be defined, occurs. 
4) TH. SKOLEM, Eine Bemerkung iiber die Induktionsschemata in der 

rekursiven Zahlentheorie, Monatshefte fur Math, und Phys., 48 (1939), pp. 

268—276. 
5 ) D . HILBERT und P . BERNAYS, Grundlagen der Mathemaiik, vol. 1. 

(Berlin, 1934), pp. 343 and 345. 
8) This reduction had been carried out in the work of HILBERT and 

BERNAYS (see the preceding footnote) too, but by means of bound variables. 
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In the same paper, SKOLEM expressed his doubt of the possibility 

of such a reduction when confining the recursions to primitive ones. 

However, (2) is a particular case of the "nested recursion" 

which I have proved [loc. cit. 2), a)J not to exceed the class of 

primitively recursive functions. Yet my proof can not be used 

directly to dispel Skolem's doubt, for I started by assuming that 

there is a well determined function satisfying the non-primitive 

recursion equations in question7), e.g. (2) or, to take a more gen-

eral example, 

(3) } <P(n', a) = m a, y(n, y(n, a))) 
(«, P, 7 primitively recursive functions). 

Then I proved that the same function can be obtained from 0 and 

n' also by substitutions and primitive recursions. 

Nevertheless, my proof can be modified, in each case men-

tioned in the footnote 3), by first defining a function by combination 

of primitive recursions and substitutions and then proving that 

this function satisfies the given more complicated recursion equa-

tions (e.g. (2) or (3)). The proofs modified thus do not use any 

hypothesis going beyond the range of the "primitively recursive 

number theory," carrying out Skolem's program in the restricted 

sense; thus, they form a sort of proof-theoretical strengthening of 

the original proofs. 

2. I shall develop such a strengthened proof in the case of 

scheme (3). For this scheme, I only remarked8) that it can be 

reduced to (1) in a much easier method than the general nested 

recursion scheme; but since {3) is a particular case of the latter, 

I did not give this easier method in details. Now, I shall develop 

it in its strengthened form in the above sense. 

I shall need the function a — n, denoting a—n for a^n and 

7) The usual existence proofs of functions satisfying given (primitive or 

non-primitive) recursion equations require bound (function) variables, see e.g. 

L. KALMAR, On the Possibility of Definition by Recursion, these Acta, 9 (1939), 

pp. 227—232. According to Skolem's program, we may take primitive recursion 

equations as axioms; but to prove the existence of a function satisfying given 

non-primitive recursion equations, the only way is to construct an expression 

by means of substitutions, starting from functions defined by primitive recur-

sion equations, and to prove that it satisfies them. 

«) See loc. cit. 8) a), p. 626, footnote. 
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0 for a < n, [see loc. cit. 2), a)) shown to be primitively recursive 

by the definitions 

j <S(0) = 0 

( 6 (n') = n 
and 

a — 0 = a 
a — n' = S(a — n). 

1 shall refer, in footnotes, to the properties of this function and 

those of the relation a ^ b (defined as a — 6 = 0) which are needed 

in the proof; they can be readily proved by means of scheme (I). 

Using the function y occuring in (3), I define a function 

fi(m, n, a) by means of the recursion 

i/i(0,n,a) = a 
( ' i P(m', n, a) — y(n—jri, fi(m, n, a)) 
of the form (1). I prove by means of scheme (I) that 

(5) i5j n + /*(/', n', a) = fi(i, n, y(n, a)). 
First, this holds if / = 0, for we have9) by (4) 

fi(0', n', a) =r(n'—0', m(0, n', a))=y(n, a) = ^(0, n, y(n, a)). 
Further, 1 prove that 

n', a) = fi(i, n, y(n, a))) -+ 
- (I" ̂  n - fi(i", n', a) = /*(/', n, y(n, a))) 

which can be readily transformed into 

w ^fi(i">n',a) = fi(i',n,y(n,a)) 
(of purse, "&" means "and"). 

By (4) we have9) 

n', a) = y{n'-i", fi{i', n', a)) = y(n+-i', fi(i', n', a)), 
whence10) 

(7) (¿'¿n&(i^n fi(i', n', a) = t*(i, n, y(n, a)))) -
* n', a) — y(n—i', fi(i, n, y(n, a))); 
as, by (4), 

y(n—i',fi(i,n,y(n,a))) = fi(i',n,y(n,a)), 
(7) proves (6) and, by scheme (I), also (5). 

8) n'-L. k' = n — k. 
10) k' ^n + k^n. 
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Now, using the functions a and /? occurring in (3), 1 define 

a function t//(m, n, a) by the recursion 

ip(0,n,a) = a(fi(n,n,a)) 
if>(m', n, a) =/3(m, fi(n—m', n, a), ip{m, n, a)), 

which is also an instance of (1). I prove that 

(9) m^n-* i/»(m, n', a) = ip(m, n, y(n, a)). 
First, this holds for m = 0; indeed, by (8), 

0, n', a) — a(p(n', n', a)), 
whereas (5) gives11) for z' = n 

H(n', n', a) = fi(n, n, y(n, a)) 
which leads, using (8), to 

y ( 0 , n', a) = a(fi(n, n, y(n, a))) = V(0, n, y(n, a)). 
Further, I prove that 

+ n', a) = ifj(m, n, y(n, a)))-
+ n',a) = tf>(m', n, y(n, a))). 

The latter relation can be readily transformed into 

K ' ^xp(m',n',a) = xjj{m',n,y(n,a)). 
Now, (8) gives9) 

ifj(m\ n',a) =/?(m, m\ n', a), y (m, n', a)) = 
= P(m, fi(n—m, n', a), ip(m, n', a)); 

on the other hand, (5) gives12)13) for m ' ^ n by the substitution 

i = n—m' 
fi(n—m, n', a)=ii{(n—m')', n', a) = ft(n—m',n, y(n, a)) 

which proves 

y(m', n', a) =P(m, n(n—m', n, y(n, a)), tf>(m, n', a)) 
for m'<n. Thus we have10) 

+ n\ a) = p(m, p(n—m', n,y(n,a)), ip(m, n, y(n,a))); 
on the other hand, by (8), 

¿S(/7i, fi(n—m', n, y(n, a)), n, y(n, a))) = y(m', n, y(n, a)), 
therefore, (11) proves (10) and, by scheme (I), also (9). 

») n-g.n. 
i 

") — m = (n — m')'. 
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(9) gives for11) m — n 
(12) •xp{n,n',a)=ip{n,n,y{n,a)). 

Finally, I assert that the function 

(13) (p{n, a) = if>(n, n, a) 
satisfies the equations (3). 

Indeed, we have by (13), (8) and (4) 

' <p(0, <i) = V(A,' a) = a(fi(0, 0, a)) = a(a); 
further by (13) and (8), 

(p(n\ a) = tp(n', ri, a) = fi(n, fi(n'—n', ri, a), if>(n, n', a)) 
and here we have14) by (4) 

H (ri—n',n',a) = ft(0, ri, a) = a, 
thus, using (12) and (13), 

<p(n', a) = a, ip(n, n, y(n, a))) = /?(n, a, cp(n, y(n, a))), 
which proves our assertion. Obviously fi(m,n,a) and y(m,n,a) 
are primitively recursive functions and hence cp{n, a), obtained 

from ip(m, n, a) by substitution, is also a primitively recursive 

function, as stated above. 

3. The function defined by (2) was used by SKOLEM in the 

proof of the reducibility of the scheme 

A(b,0) 
(II) A(<p(b,a),a) + Mb, a') 

A(b,a) 
to scheme (I). Definition (2) being an instance of scheme (3), 

Skolem's proof can be carried out also in the case of confining 

the recursions to primitive ones. 

This fact can also be shown directly, without the roundabout 

way through functions defined by non-primitive recursions, by a 

slight modification of Skolem's proof; see .riy review oh Skolem's 

paper (loc. cit. 4)), forthcoming in The Journal^ Symbolic Logic. 

(Received November 23, 1939.) 

") k-^k = 0. 


