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On Upper Semi-Continuous Collections. 

By TlBORf RADÖ and J. W . T. YOUNGS in Columbus, Ohio: 

Introduction. 

During the course of the years 1924 to 1927, R. L. MOORE, 

P. ALEXANDROFF and B. DE KER£KJARTÖ appear to have inde-

pendently introduced the notion of an upper semi-continuous 

collection1). Apart from the fundamental ideas, however, their work 

does not overlap: the space, the terminology and the application 

is 'different in each case. Nevertheless, on account of the obvious 

importance of the concepts introduced by them, it is of interest 

to observe that their definitions, though worded in entirely diffe-

rent fashions, become equivalent if applied in a certain conveniently 

chosen abstract space. 

This equivalence is rather obvious, but the purpose of this 

note is to establish it in a way which is not suggested imme-

diately by their work. Indeed, we shall show that the definitions 

proposed represent in a sense the unique answer to a certain 

simple and fundamental question, and hence are necessarily equi-

valent. In other words our purpose is more than to show the 

identical character of the definitions, we shall show that for a 
priori reasons there is a sort of compulsion about the matter. 

For convenience and clarity we shall start with the defini-

tions to be used. 

!) R. L. MOORE, Concerning Upper Semi-Continuous Collections of Con-

tinua which do not Separate a Given Continuum, Proceedings National Academy 
of Sciences, 10 (1924), pp. 3 5 6 — 3 6 0 ; PAUL ALEXAKPROFF, Über stetige Ab-

bildungen kompakter Räume, Math. Annalen, 96 (1926), pp. 5 5 5 — 5 7 1 ; B . DE 

KEREKJÄRTÖ, Involutions et surfaces continues, these Acta, 3 (1927), pp. 4 9 — 6 7 . 

Cf. also B. DE KEREKJÄRTÖ, On Parametric Representations of Continuous 

Surfaces, Proceedings National Academy of Sciences, 10 (1924), pp. 2 6 7 - 271. 
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I. Preliminary notions. 

1.1. Parutions. Let S be any set and suppose the elements 

are denoted generically by a, b, c, . . . etc. 

By a partition ^ of S we mean a collection of mutually 

exclusive subsets a, of S, filling up 5. In other words, no element 

is in two sets of the collection but every element is in some 

set of A subset of S which is in the collection $ is known 

as a compartment of 

1.2. Equivalence. Every partition gives rise to the following 

binary relationship: meaning that a and b are elements 

of the same compartment of This binary relationship will be 

called an equivalence E(\P) since it satisfies the familiar postulates 

for an equivalence : (£г)а~Ь0)3) or anon-~ô($) . (£ ' 2 )a~a($) . 

(£3)а~г>0Р) implies Ь~а(Щ. and imply 

Conversely, if we are given an equivalence there is a unique 

partition of S which generates it. 

1 .3. The set 2. Every partition $ also gives rise to a set 2 
whose elements are the compartments of Each compartment 

plays a dual rôle. It is a subset of 5 and is also an element of 2. 
We shall use the notation a when we consider a compartment 

as a subset of 5 and reserve the notation [a] to denote that the 

same compartment is considered as an element of 2. 

1.4. The transformation T. Finally every partition gives rise 

to a transformation from S to 2, a transformation which associates 

with an element a of S that element [a] of 2 which as a set а 

contains a. Symbolically, 

[a] = T(a) means аба. 

In terms of the transformation T we see that 

means T(a) — T(b). 
1. 5. L* spaces2). An L* space is a limit space (i. е., a space 

in which convergent sequences and their limits are defined) sa-

tisfying the following conditions 

a) Conditions Lx and L2 are those of FRBCHET, Sur quelques points du 

Calcul fonctionnel, Rendiconti Circolo Mat. di Palermo, 22 (1906), pp. 1—74. 

Condition L3 is from P. ALEXANDROFF and P. URYSOHN, Une condition né-

céssaire et suffisante pour qu'une classe (L) soit une classe (D), Comptes 
rendus Paris, 177 (1923), pp. 1274—1276. See also С . KURATOWSKI, Topologte I, 
(Warszawa, 1933), chapter II. 
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Lx. a, a, a , . . . ~+a. 
¿2 . If a„—*a then any subsequence anj—>-a. 
L3. If an-\-+a, then there is a subsequence {c„.} such that 

no subsequence of this subsequence converges to a. (The symbol 

— m e a n s that an does not converge to a.) 
We shall Ultimately be interested only in compact L* spaces, 

that is in L* spaces having the property that any sequence has 
a convergent subsequence. In other words a compact L* space is 

a limit space satisfying Llt L2, and 

L3. If a„-\-+a, then there is a subsequence an, —<-b4= a. 
Given a set 5 by the topologization of 5 we shall mean 

the assigning of convergent sequences and limits in 5 so that 

the resulting limit space is a compact L* space. 

1.6. Compatibility. Let us return for. a moment to the equi-

valence mentioned in 1:2. If ^ is a partition of a compact L* 
space S, we shall say that the v equivalence is compatible 
with the topology of S if and only if an—*a, b„ —«- b, an^b„(%) 
for n— I, 2, . . imply 

' II. The theorems. 

Referring to the work of MOORE, ALEXANDROFF and KER£KJART6 

mentioned in the introduction, the ideas which seem to be common 

to all three are the space S, the partition and the set 2 which 

each topologizes in his own way, and later verifies that the trans-

formation T is continuous if and only if $ is properly restricted. 

Looking at the common features of their work from an 

abstract point of view, the real issue at the center of things 

appears to suggest itself in the form of the following question: 

Given Su a compact L* space, and S2, an untopologized set of 
elements, and a single valued transformation a2= T(ax) from Sx to S2, 
in how many ways can S2 be topologized so that T is continuous ? 

Upon answering this question things become excessively 

simple, and, pleasingly enough, the answer is both direct and 

complete: the topologization is unique8). 

3) Instead of the direct proof we shall give, we might have used a 
result of F. HAUSDORF, Mengenlehre, (3rd edition, Berlin, 1935), p. 194. 
If Si and S2 are metric spaces then T is continuous if and only if the complete 
model in S t of a closed set in S2 is closed. The remarks also apply to 
compact L* spaces and in addition the image of a closed set is closed, so 
that closed sets and therefore limits are determined a prior: in S3 by T and 
the topology of Si. 
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First of all, an immediate example shows that if Sx is merely 

required to be an L* space, then the topologization of S2 compa-

tible with continuity on the part of .7 need not be unique. On 

the x-axis, let Si be the unit interval O c c ^ l and let the topo-

logization of Sj be taken from the x-axis itself. That is, the usual 

meaning of convergence and limit holds. Let S2 be the same set 

of elements and let a2 = T(amean a2 = ax. We assert that S2 

can be topologized in a non-denumerable number of ways, and 

in each instance 7 is continuous. Let k be a fixed number 0<A :<1 . 

Take the usual meaning of convergence and limit for all sequences 

of elements of S2 except for those which would, when considered 

as sequences of points on the x-axis, converge to the jimit 0. 

To each such sequence assign the limit k. It is clear that S2 is 

now a compact L* space and 7 is continuous. 

2. 1. Uniqueness of topologization. The above example indi-

cates the importance of compactness on the part of Sx if one is 

to hope for uniqueness. Stated in terms of S and 2 the general 

statement is as follows. 

Theorem. If S is a compact L* space, and 2 can be topo-
logized at all so that 7 is continuous, then the topologization of 
2 is univocally determined, namely, [«„]—* [a] implies lim a„ c a; 
and conversely, lim a„ c a implies [a„] —• [a].*) 

P r o o f. If a„ € a„ for n = 1,2,... and a„. —• c, then 7(a„.) — 7(a) 

since 7 is continuous. But 7(a„.) = [aB;] —* [a] by L2 on 2. 
Therefore [a] = 7(a) since the limit is unique, and so a € a. 

Conversely, if lim a„ c c but [a„] -|-[a] then it is no restriction 

to suppose, using ¿3 on 2, that no subsequence of {[«„]} con-

verges to [a]. But l i m a „ c a implies, since S is compact, that 

there exists an€an for n= 1 , 2 , . . . such that a subsequence 

an—*aea. Since 7 is continuous, T(a„t) 7(a), which means 

[«„.] — [a]. 
The reader will have observed that the sets of the. partition 

are entirely unrestricted, and that the statement of the theorem 

might have been made much stronger since we have used only 

4) Cf. C. KUKATOWSKI, Sur les décompositions semi-continues d'es-

•paces métriques compacts, Fundamenta Math., 11 (1928), pp. 169—185, espe-

cially. p. 171, where the .topologization is stated in exactly this form. However, 

KUHATOWSKT does not state the fact that this is the only way to topologize. 

Remark: a 6 lim a„ if and only if there exists an € a„ for n = 1,2,.-.., and an.-a. 
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compactness on the part of S, and L2 and L3 on 2, but have 

nowhere assumed that L3 holds (which means we do not need 

compactness on 2). 

2. 2. Existence of topologization. The theorem of the preceding 

section is a uniqueness theorem. It points out that if the topo-

logization is possible then the method must be precisely as given 

above. The question which naturally follows is under what con-
ditions is the topologization possible ? 

MOORE, ALEXANDROFF and KER£KJARTO each has his o w n 

condition which guarantees the possibility of topologization compa-

tible with the continuity of T. Since the conditions are necessary 

and sufficient they are necessarily equivalent, and 1.2 shows that 

the same is true of the different methods of topologization. 

In the terminology of this note we have at our disposal an 

itfimediate necessary and sufficient condition which may be stated 

as follows. 

Theo r em . 2 can be topologized so that T is continuous if 
and only if the equivalence is compatible (see, 1 .6) with the 
topology of S. 

Proo f . Take a„—*a and b„—<~b, such that 6„0P); 

i. e., T(an) — T(b„) for n— 1, 2, ... . Since the transformation is 

continuous T(a„)-+T(a), and T(b„)~+T(b). Hence T{a) = T(b) 
which means that In other words £ ( $ ) is compatible 

with the topology of 5. . 

This proves the necessity of the condition. The sufficiency 

follows directly and is left to the reader. 

1.3 Upper semi-continuity. In concluding this note we wish 

to state the definition of upper semi-continuous collection essen-

tially as introduced by MOORE. A partition $ is said to be upper 

semi-continuous if an--a£a, a„>, b„€a„ for n= 1 , 2 , . . . and 

bn.—>b imply that 66 a. As a result of the above remarks this is 

equivalent, of course, to the statement that £ ( $ ) is compatible 

with the topology of 5. The direct proof of this statement is left 

to the reader^ 

(Received July 10, m39.) 


