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On a recent generalisation of G. D. Birkhoff's 
ergodic theorem. 

By FREDERICK RIESZ in Budapest. 

I. 

Quite recently, in a joint paper, N . DUNFORD and D . S. MILLER have 
given a most surprising generalisation of Birkhoff's famous theorem1). 
The purpose of the present paper is to work out a simple proof of the 
generalised theorem, running on the same lines as that one given by 
the author,-a few years ago, for the original theorem2). The latter was 
based upon the following elementary lemma on numerical sequences. 

L e m m a A. Given a real, finite sequence alt a2, . . a„ and an 
integer m'^n, let us consider, if there are any, the sums ak + ai+1 +... + o, 
of positive value, formed of at most m successive terms of the given 
sequence. Then the sum of all the ak figuring as beginning terms in ofie 
at least of the said sums, is itself positive. 

For the sake of completeness, let us recall the main lines of our 
argument. First, to prove the lemma, let aki be the first of the "beginning" 
terms and ak, +... + ah the shortest of the positive sums starting from akl. 
Then all terms of this sum are figuring amongst our beginning terms. 
If not so, if, say, ah, k1<h^!lï, would not figure amongst them, then 
Oi + . - . + fli^O and so + . . . + ak_x > 0 and this sum were shorter 
than that running from aki to ai,. The same procedure, applied on the 
remaining terms a ! l + i , . . . , leads to a sum akl+... + ÛÎ3 > 0 and so on, 
until all the beginning terms have come in, which concludes the proof. 

Next, consider a measurable set £2, of finite or infinite measure, 
measure and integral being defined as by LEBESGUE or, more generally, 
with respect to a distribution of positive masses. 

! ) N . DUNFORD and D . . S . MILLER, On the ergodic theorem, Transactions 
American Math. Society, 60 (1946), pp. 538-549. 

2) F. RIESZ, Sur quelques problèmes de la théorie ergodique, Matematikai és 
Fizikai Lapok, 49 (1942), pp. 34—62 (in Hungarian, with an abstract in French) ; Sur 
la théorie ergodique, Commentarii Math. Helvetici, 17 (1944), pp. 221—239. 
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Let 7 be a mapping of £2 into itself, not necessarily one-to-one 
and let us suppose T to be measure-preserving in the sense that, for 
any measurable set e and its map Te, the set T"x{Te) of points P 
whose images belong to Te, is of the same measure as Te. Then 
starting witha summable function f ( P ) and putting fk (P) =f (7*_ 1P), 
Birkhoff's theorem states that the arithmetical mean of f l t . . . , f n conver-
ges, almost everywhere (briefly a. e.) to a summable function (p(P), 
invariant with respect to the mapping T. 

Let us remind that Birkhoff's original statement deals only with 
the one-to-one case, but there is no real difficulty in passing to the 
more general one. As to £2, we restrict ourselves, in the first two 
sections, to the case of finite measure; in fact, our argument for the 
case of infinite measure seems, at first sight, not to apply immediately 
to the generalisation to follow, dealing with no measure-preserving 
mappings. 

Birkhoff's original proof was based, in substance, upon the following 
fact, applied in a slightly different form and which he has established 
by means of an ingenious dismemberment of the intervening point sets, 
but which is also an easy consequence of Lemma A. 

Lemma B8). Let be E an invariant set of points P for which the 

least upper bound of the arithmetical means ( / i (P) + . . . + / „ ( P ) ) is 

positive. Then 

(1) • - J / i ( P ) ^ 0 . 
K 

P r o o f . Let E (m) be the set of points P of E for which one at least 
of the sums 

2 f k ( P ) (l^m) . 
i 

is positive. The sets E{m\ increasing with m, are finally filling up the 
set E. So, instead of (1), it suffices to verify the similar inequality 

(2) 

To this effect, apply lemma A to the finite sequence MP), • • -,f„+m(P) 
(with n+m in place of n), forming for each P the sum of the "begin-
ning" terms. This sum being ^ 0 , the same is true for its integral and so 

n+m 

( 3 ) Z 1 J / * ( / > ) SSO, 

Ek 
S) As a matter of fact, this lemma, due to YOSIDA and KAKUTANI and called 

by its authors the "maximal ergodic theorem", differs from that of B I R K H O F F only 
that it deals with the least upper bound in place of the upper limit. 
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where Ek means the set of points P for which fk(P) is a begin-
ning term. 

Again, obviously, for k ^ n we have TEk = Ek_u Ek = T~1Ek_1 

and as T preserves the measure and so the integral, the first n integrals 
in (3) are equal and as £1==£ , (m), their common value is the same 
which figures in (2). On the other hand, the last m integrals in (3) are 
dominated by the integral of | f 1 ( P ) \ over S2. Therefore, from (3), 

" J / i (P) + w j I /1 (P) [W 0 
s 

whence, m being fixed, (2) follows as n-*oo. So Lemma B is proved. 
Frome here on, the proof of Birkhoff's theorem runs on the usual 

line. For any pair of values a, /? where a > /3, consider the set E a ? 

of all points for which 

and, at the same time, 

K m . - 2 M P X P . — n i 
The set Ea$ is. manifestly invariant with respect to T, so that it 

may play the part of E ; moreover, applying Lemma B to the functions 
f^P) — a and /?— / i (P) in place of MP), respectively, the corresponding 
set E is identical with Ea?. So, by Lemma B, 

j(P-MP)) 5;0 

and adding, we have 
'-'a? 

As a > /3, this means that Ea? has to be of measure 0. Finally let a, p 
run over all rational pairs; then £ Ea?, sum of a denumerable 
sequence of nullsets, is itself a nullset and so the limit <p(P) of the 
above mean exists a. e. Since, moreover, 

s G s 
the limit <f (P) is summable on account of Fatou's theorem and so 
finite a. e. 

The invariance of cp(P) is, as well known, an immediate con-
sequence of the equation 

\ (A + . . . + / „ ) 
n+ 1 1 

tl _n+ 1 
A 

n 
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Thus the proof is concluded. To say a few words about thé 
"integral" form of the theorem in which the iterated mappings Tk are 
replaced by a group T, depending upon a continuous parameter t, it is 
well known how by means of a simple artifice, due to E. HOPF and 
KHINTCHINE, the corresponding problem may be reduced to the discrete 
case. It is, however, not without interest to observe that the above 
argument may be adapted so as to lead directly to the "integral" for-
mulation. One has only td use, instead of Lemma A, the following 
lemma,l> equally easy to prove. Given, for a^t^b, a summable function 
g(t) and a length d, 0 <d^b—a, let be e the set of points t0, if there 
are any, for which there exists an h<d such that the integral 
of g(t) from t0 to t0 + h is positive. Then the integral of g(t) over the 
set e is^O. This lemma is but a corollary of the following when, 
applied to the integral G(t) of g(t). 

Let G (I) be continuous for a^t^b and for a given d,0 < d^b—a, 
consider the set e of all interior points t for which there exists a t', 
t<t' <t+d, so that G(t)< G ( f ) . Then e is an open set, composed of 
intervals (ak,bk) for each of which G(ak)^G(bk). 

This form of our lemma is but a slight modification of another, 
used by the author in 1932 to prove the differentiability a. e. of mono-
tone functions as well as a much important inequality of HARDY and 
LITTLEWOOD4). Its proof runs on the same lines. 

II. 
Now let us turn over to our proper subject, dealing with the 

generalisation of Birkhoff's theorem by DUNFORD and MILLER. Instead 
of supposing the mapping to be measure-preserving, they put the more 
general hypothesis that, for a fixed constant K and for any measu-
rable set e, 

(4) \ È \ T - k e \ ^ K \ e \ 

where \e\ denotes the measure of e. From there, at least when £3 is of 
finite measure, they draw the same conclusion as BIRKHOFF. In fact, they 
prove that the said conclusion i. e. the actual, pointwise convergence 
a. e. of the arithmetical mean of f , . . . , / „ is a consequence qf a sort 
of mean convergence and that the latter is equivalent to the hypo-
thesis (4). 

4) F. RIESZ, Sur l'existence de la dérivée des fonctions d'une variable réelle 
et des fonctions d'intervalle, Verhandlungen des internationalen Math. Kongresses 
Zürich 1932 , vol. 1, pp. 2 5 8 — 2 6 9 ; Sur un théorème de maximum de MM. Hardy et 
Littlewood, Journal London Math. Society, 7 ( 1932 ) , pp. 1 — 1 3 . See also G . H. HARDT, 
J . E . LITTLEWOOD and G . PÓLYA, Inequalities (Cambridge, 1934) , p. 2 9 3 . 
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In the present paper, I wish to show how the same result may 
be obtained by means of a slight modification of our above argument. 

To tell the whole truth, DUNFORD and MILLER are going farther; 
in fact, they establish the same conclusion for a group of mappings 
depending on several parameters, like it has been done by DUNFORD 
for von Neumann's mean ergodic theorem and by N. WIENER for 
Birkhoff's theorem5). The present argument seems not to apply to this 
more general case. So we have to restrict ourselves to the case of a 
single T and its iterates or to that of a group T, depending on a single 
parameter t. We content ourselves to expose our argument for the for-
mer case, letting the latter to the reader. 

In addition to Lemma A, we need another lemma, dealing with 
infinite numerical sequences. 

Lemma C. Let au a2,... be an infinite sequence of positive terms 
and assume that for a fixed constant К, . \ 

(5) ' + + 

for any n and a,ny h<n. Then an = o(n). 
(Observe that the evaluation a„—0(n) is obvious but what we 

need is the fact that a„ = o(n).) 
P r o o f . Adding K(ah+1 +... -f- a„) to both sides' of (5) and 

dividing by K, we get 

+ + ) (я й + 1 +,- ; . + a„). 

Putting Л = 2, 3 , . . . , n— 1 and multiplying, we have 

Confronting this with the case h = 1 of (5) we get 

n[\+ • 1 1 llognj 

hA I ^ (n-h)K ) г n 

and so Lemma С is proved. 
Let us apply it to 

Й 
For these o„, the validity of (5) follows at once from our hypothesis (4) 

5 ) N . DUNFORD, A . mean ergodic theorem, Duke Math. Journal, 5 ( ( 1 9 3 9 ) , pp. 
6 3 5 - 6 4 6 ; N . W I E N E R , The ergodic theorem, ibidem, pp. 1 — 1 8 . 
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and so when this hypothesis is fulfilled then 

F | / N ( P ) | = 0 ( N ) . 
a 

Now we are in a position to ask what Lemma B goes over into 
under the broader hypothesis. From the above proof of the lemma let 
us preserve the meaning of the sets E, E(m) and Ek, and nothing in our 
argument has to be changed until we come to the inequality (3). From 
here on, writing (3) in the form 

n r m r 

+ 2 f„+k(P) = I' + 2"^ o, 
1 J k— 1 J 

Ek En+k 
consider first the behaviour of 2 ' when m increases. Then the set 
E1 = E(m) is also increasing and it is going over into E for m->- oo. 
So, for m sufficiently large, the integral of | / , (P) | over E—E x is less, 
than an arbitrary fixed e > 0 . By hypothesis (4), as for k = 1 ,2 , . . . , n, 
E—Ek=Tl~k{E—E^), it follows immediately that 

Z j\fk(P)\^(n-l)K §\MP)\<nKe. 

Therefore . 2 ' differs from 

¿¡MP) 
E 

by less than e O + n A ' ) . Having now fixed s and so m too, let n go 
to infinity; then the terms of 2" the absolute values of which are 
dominated by the corresponding integrals of \fk\ over are, by LemmaC, 
of order o(n + k) = o(n + m) = o(n) and so 2" = mo(n) = o(n). Sum-
ming up, 

E 

where c > 0 is arbitrary and so finally 

(6) H m ^ Z j A i P ^ O . 
E 

This is the result that has to take over the part played by Lemma B. 
In fact, let as above, Eap be the set for which the upper limit of the 
arithmetical mean of MP),.. . , /„(P) is > a and its lower limit < /S ; 
then by replacing M P ) by M P ) — a by /?—/^P) resp. like above, 
and the set Eaf, evidently invariant with respect to T, taking over the 
part of £2, the same set will play, in both cases, also the part of E 
and so, by (6), 
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and hence, adding, 

( / ? - a ) . | £«„!>() . 
As a> /3 , this implies that | E a ? | = 0. The proof concludes like the above one of Birkhoff's theorem-

III. 

Finally, I should like to say a few words about the case when 
£2 is of infinite measure. As we know, Birkhoff's theorem holds true in 
this case; to prove it, we only have, before integrating MP) — a over 
Ea$, to ascertain that the constant is a summable function i. e. that E„p 
is of finite measure. Let us assume that a > 0 ; if not, then / ? < 0 and 
we had to reason on P~MP) = —MP) — (—p) instead of MP)—"-

Let E' be a subset of E„p, of finite measure, but otherwise 
arbitrary. Let ex{P) be its characteristic function. Apply Lemma B to the 
function g1{P)=MP) — ae,(P) in place of MP); then, for the set E 
corresponding to £ i (P) , we have 

(7) J & ^ S s O 
E 

and so, as manifestly E'c.E, 

(8) \f1(P)^?\e1(P) = a\E'\. 
E E 

Therefore 

l E ' l ^ J L / U P ) ! ; 
Q 

thus, for all subsets E' of finite measure of Eap, a common bound is 
established; therefore Eaft itself is of finite measure. 

Now, after having recalled the argument for Birkhoff's problem, 
we try to extend it to the more general one, dealt with in Section II. 
There the integral in (7) has to be replaced by 

— n l 
and so, by (8), 

(9) l i m l j 2 7 t ( P ) ^ a lim = 
JB E 

1 " - 1 J 
= a l i m — + I 7 J . 

— n i \ 
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By our hypothesis (4), the mean value on the left, and therefore its 
lower '-limit, too, are'dominated by ' . 

g . G 
where C is independent of n. On. the other hand, however, if we ¡want 
to get. an upper estimate of \E'\, we cannot do, as it seems, without 
an additional hypothesis. The simplest one that suggests itself, is the 
counterpart of hypothesis (4), namely that for a certain constant K' > 0 
and for any measurable set e 

' —¿\T~ke\^K'\e\. 
• . , n i ' 1 1 

In fact, assuming the latter hypothesis, the right hand side of (9) is 
greater than C i | £ ' | where ( ^ > 0 is independent of n. So finally 

; ' J ^ 
A 

and from there the finiteness of follows like above in Birkhoff's case. 

(Received Jane 20, 1947.) 


