On the structure of groups which can be represented as the product of two subgroups.

By J. SZÉP in Budapest.

The results of the present paper given here are connected with the researches of L. REDEI¹) on the generalization of the skew product (schiefes *Produkt*) introduced by him. I shall return to this connection in the detailed discussion. For a long time I believed that my researches are connected only with those of L. REDEI. Shortly before publication I learned that G. ZAPPA²) has arrived in 1940 at the relations (2), (3), (4) of the present paper in a similar way as 1 did.

In a previous paper³) I have published the following results: Let the group & be representable as the product of two proper subgroups \mathfrak{H} .

This means that each element of
$$\Re$$
 multiplied by each element of \mathfrak{H} produces
all elements of \mathfrak{G} exactly once. It is well known that the necessary and
sufficient condition for the fulfilment of (a) is, that the only common element
of the subgroups \mathfrak{H} and \mathfrak{R} should be the unit element. For the order of the
group \mathfrak{G} the equality (\mathfrak{G}) = (\mathfrak{H})·(\mathfrak{K}) holds. Owing to the symmetrical position
of \mathfrak{H} and \mathfrak{R} , (a) implies

Let $H, H', \overline{H}, \ldots$ and $K, K', \overline{K}, \ldots$ denote elements of \mathfrak{H} and \mathfrak{K} , respectively. Then by (b) we get a relation (c) KH = H'K'

 $\mathfrak{R}\mathfrak{H} = \mathfrak{H}\mathfrak{R}.$

(b)

¹) L. RÉDEI, Die Anwendungen des schiefen Produktes in der Gruppentheorie, Journal für die reine und angewandte Math. (Under press.) In this paper, REDEI defines a group \mathfrak{G} arising from two given groups \mathfrak{G} and \mathfrak{R} by relations which are essentially identical with the relations (2), (3), (4). He showed that this group \mathfrak{G} has subgroups isomorphic to \mathfrak{G} and \mathfrak{R} , and that their orders satisfy the relation (\mathfrak{G}) = (\mathfrak{H})(\mathfrak{R}). He gives a new proof, and partly an improvement, of our results contained in §§ 1–2.

²) G. ZAPPA, Costituzione dei gruppi prodotte di due dati sottogruppi permutabili tra loro, *Atti Secondo Congresso Unione Mat. Italiana Bologna* 1940, p. 115–125.

³) J. Szep, Über die als Produkt zweier Untergruppen darstellbaren endlichen Gruppen, *Commentarii Math. Helvetici*, 22 (1948), p. 31-33.

J. Szép

where H' and K' are uniquely defined whenever both H and K are given. When H fixed, then K' together with K runs over all elements of \Re . We may thus associate with each H the following permutation of elements of \Re

$$H \longrightarrow \Pi_H = \begin{pmatrix} K \\ K' \end{pmatrix}.$$

It is readily seen that $\Pi_{II}\Pi_{\overline{II}} = \Pi_{H\overline{II}}$ holds.

Theorem A: The permutations Π_{H} of the elements of \Re form a group $\Pi(\Re)$ and $\mathfrak{H} \sim \Pi(\Re)$. In this homomorphism to the unit element of $\Pi(\Re)$ corresponds a maximal normal subgroup \Re of \mathfrak{S}^{4}) which is a normal subgroup of \mathfrak{H} and

$$\mathfrak{H}/\mathfrak{N} \simeq \Pi(\mathfrak{K}).$$

In an exactly similar way, leaving K fixed in H'K' = KH, H' runs together with H over all elements of \mathfrak{F} . Again, we associate with the element K the permutation $\Pi_K = \begin{pmatrix} H \\ H' \end{pmatrix}$ of the elements of \mathfrak{F} . As easily seen, $\Pi_{\overline{K}} \Pi_K = \Pi_{K\overline{K}}$.

Owing to the symmetry of \mathfrak{H} and $\mathfrak{K},$ theorem A holds also if we change their rôle.

§ 1.

We shall introduce a new notation for the permutations II and for H' and K' in (c):

$$KH = H^{[K]} K^{[H]}$$

that is, we denote by $K^{[H]}$ the element K' into which K passes by the permutation $[H] = \Pi_H$. The notation $H^{[K]}$ should be understood in a similar way.

By (1), the product of two elements of S may be written as

(2) $HKH'K' = HH'^{[K]}K^{[H']}K'.$

The elements of \mathfrak{G} have to satisfy the associative law

 $(HKH'K')H''K'' = HH'^{[K]}K^{[H']}K'H''K'' = HH'^{[K]}H''^{[K']}K'' (K^{[H']}K')^{[H'']}K'',$ $HK(H'K'H''K'') = HKH'H''^{[K']}K'^{[H'']}K'' = H(H'H''^{[K']})^{[K]}K^{[H'H''^{[K']}]}K'^{[H'']}K''.$ Comparing these we get

$$(H'H''^{[K']})^{[K]} = H'^{[K]}H''^{[K[H']K']}, \ (K^{[H']}K')^{[H'']} = K^{[H'H''^{[K']}]}K'^{[H'']}$$

As these relations must hold for every H and K, they may be written in a similar form:

(3)
$$(HH')^{[K]} = H^{[K]} H'^{[K[H]]}, (KK')^{[H]} = K^{[H^{[K']}]} K'^{[H]}.$$

4) This means that \mathfrak{G} has no normal subgroup $\mathfrak{N}'((\mathfrak{N}')>(\mathfrak{N}))$ which is a subgroup of \mathfrak{H} .

58

Groups represented as product of subgroups.

We may add to these the relations given by the definition of $H^{[K]}$ and $K^{[H]}$:

$$(H^{[K]})^{[K']} = H^{[K][K']}, (K^{[H]})^{[H']} = K^{[H][H']}.$$

(4)

It may easily be proved, that if we have for example $\mathfrak{H} \simeq [\mathfrak{K}]$ by the given permutations of $[\mathfrak{K}]$, the permutations of $[\mathfrak{H}]$ are uniquely defined.

The elements [H] of the group $[\Re]$ are permutations of the group \Re . From now on let these permutations be automorphisms of the group \Re . If similar condition holds for the $[\mathfrak{H}]$ too, i. e., the elements [K] of the group $[\mathfrak{H}]$ are automorphisms of the group \mathfrak{H} , we call the group $\mathfrak{G} = \mathfrak{H} \mathfrak{K}$ a group of automorphic composition. If only one of these two conditions holds, I shall denote the group \mathfrak{G} a group of semiautomorphic composition.

Theorem 1. Every group of automorphic or semiautomorphic composition has a proper normal subgroup.

Proof. By (c) we have KH = H'K'. If H' = H for every H, when K' runs over all elements of \Re simultaneously with K, our theorem is evident, since $\Re H = H \Re$ holds for every H, i.e. \Re is a normal subgroup.

Let now $H' \neq H$, then we have KH = H'K', $\overline{K}H = \overline{H'}\overline{K'}$, thus we get $\overline{K}K^{-1}H' = \overline{H'}\overline{K'}K'^{-1}$. Since the permutation $[H] = \binom{K}{K'}$ is an automorphism of the group \Re , we have in $[H]: \overline{K}K^{-1} \to \overline{K'}K'^{-1}$ and we get

$$[H'] = \begin{pmatrix} \overline{K}K^{-1} \\ \overline{K'}K'^{-1} \end{pmatrix} = \begin{pmatrix} K \\ K' \end{pmatrix} = [H],$$

thus $[H'][H_1^{-1} = [H'H^{-1}] = E$. Consequently, according to theorem A, \mathfrak{H} has a proper normal subgroup \mathfrak{N} , which is also a normal subgroup of \mathfrak{G} .

The proof runs similarly for \Re .

Corollary 1.1. Let \mathfrak{H} and \mathfrak{R} be given. If the order of the automorphism group of \mathfrak{R} is relatively prime to the order of \mathfrak{H} and the same holds for the automorphism group of \mathfrak{H} , then there is only one group $\mathfrak{G} = \mathfrak{H}\mathfrak{R}$ of automorphic composition and \mathfrak{G} is the direct product of \mathfrak{H} and \mathfrak{R} .

Corollary 1.2. If the group \mathfrak{G} is a group of automorphic composition and if $[\mathfrak{G}] \cong \mathfrak{K}$, then \mathfrak{H} is a normal subgroup.

According to (1), $K \rightarrow K^{[H]}$, $K' \rightarrow K'^{[H]}$, In a group of automorphic composition we have $KK' \rightarrow (KK')^{[H]} = K^{[H]}K'^{[H]}$. Similarly, for the elements of \mathfrak{H} we have $HH' \rightarrow (HH')^{[K]} = H^{[K]}H'^{[K]}$.

For the group $\mathfrak{G} = \mathfrak{LR}$ of automorphic composition the relations (2), (3), (4) become

(2') $HKH'K' = HH'^{[K]}K^{[H']}K',$

(3') $(HH')^{[K]} = H^{[K]} H'^{[K]}, (KK')^{[H]} = K^{[H]} K'^{[H]},$

(4') $(H^{[K]})^{[K']} = \dot{H}^{[K][K']}, (K^{[H]})^{[H']} = K^{[H][H']}$

Comparing (3') with (3),

$$[K^{[H]}] = [K], [H^{[K']}] = [H];$$

(5) holds for every $H \in \mathfrak{H}$ and $K' \in \mathfrak{R}$. Let now $\mathfrak{N} \subset \mathfrak{H}$ be the maximal normal subgroup of \mathfrak{G}^4) (defined by theorem A), further let $\mathfrak{M} \subset \mathfrak{R}$ similarly defined. Then (5) means that the automorphism [H] transforms the element K into the coset of the factor-group $\mathfrak{R}/\mathfrak{M}$ containing K. Similar statement holds for $\mathfrak{H}/\mathfrak{N}$.

Hence in groups of automorphic composition, the elements of $[\mathfrak{R}]$ transform every coset $K\mathfrak{M} = F_K$ of the factor-group $\mathfrak{R}/\mathfrak{M}$ into itself, i. e., using the notation of (c), $F_K H = H' F_K$. Similarly, $[\mathfrak{H}]$ transforms every coset $H\mathfrak{M} = F_H$ of the factor-group $\mathfrak{H}/\mathfrak{N}$ into itself, $F_H K' = KF_H$. As $H' F_K = F_K H$, if H varies over all the elements of \mathfrak{H} , H' does the same; $\binom{H}{H'} = [K] = [F_K]$. The permutation $\binom{H}{H'}$ transforms F_H into itself, thus $F_H F_K = F_K F_H$ for every $H \in \mathfrak{H}$ and $K \in \mathfrak{R}$.

Since \mathfrak{M} and \mathfrak{N} have no common element other than the unit element, $\mathfrak{M} \times \mathfrak{N}$ is again a normal subgroup of \mathfrak{G} (the sign \times denotes direct product). Hence we get the following theorem:

Theorem 2. Let $\mathfrak{G} = \mathfrak{G}\mathfrak{R}$ be a group of automorphic composition, let $\mathfrak{N} \subset \mathfrak{H}$ be the maximal normal subgroup of \mathfrak{G} and \mathfrak{M} the same for \mathfrak{R} . Then the factor-group $\mathfrak{G}/\mathfrak{M} \times \mathfrak{N}$ breaks down into the direct product of two of its subgroups

 $(\mathfrak{M} \times \mathfrak{N}) \cong \mathfrak{K}/\mathfrak{M} \times \mathfrak{H}/\mathfrak{N}.$

Corollary 2.1.5) \otimes contains, besides \mathfrak{M} and \mathfrak{N} , two normal subgroups \mathfrak{K}' and \mathfrak{H}' , such that

$$\mathfrak{g}'/\mathfrak{M} \cong \mathfrak{g}, \ \mathfrak{K}'/\mathfrak{M} \cong \mathfrak{K}.$$

Corollary 2.2.6) We have

 $\mathfrak{G}/\mathfrak{H}' \simeq \mathfrak{K}'/(\mathfrak{M} \times \mathfrak{N}), \ \mathfrak{G}/\mathfrak{K}' \simeq \mathfrak{H}'/(\mathfrak{M} \times \mathfrak{N}).$

It is easily proved, that if $\mathfrak{G} = \mathfrak{GR}$ is a group of semiautomorphic composition, i. e. for example if the permutations for $[\mathfrak{G}]$ are automorphisms of the group \mathfrak{G} , then the factor-group $\mathfrak{G}/\mathfrak{M}$ breaks down into the product

⁵) This follows from theorem 2 when combined with theorem 20 of A. SPEISER, *Theorie der Gruppen von endlicher Ordnung*, 3rd edition (Berlin, 1937).

·(5)

⁶) This follows from corollary 2.1 when combined with theorem 23 of SPEISER, I. c. ⁵).

On groups represented as product of subgroups.

of two of its subgroups

$$\mathbb{G}/\mathfrak{M} \simeq (\mathfrak{K}/\mathfrak{M}) \cdot \mathfrak{H},$$

where \mathfrak{H} is a normal subgroup of the group $(\mathfrak{K}/\mathfrak{M}) \cdot \mathfrak{H}$.

\$ 3.

Theorem 3. If in the finite group $\mathfrak{G} = \mathfrak{H}\mathfrak{R}$ the orders of the groups \mathfrak{H} and \mathfrak{R} are relatively prime, then every normal subgroup $\overline{\mathfrak{G}}$ of \mathfrak{G} is either a normal subgroup of \mathfrak{H} or of \mathfrak{R} , or it is of the form $\overline{\mathfrak{G}} = \overline{\mathfrak{H}}\overline{\mathfrak{R}}$ where $\overline{\mathfrak{H}}$ and $\overline{\mathfrak{R}}$: are normal subgroups of \mathfrak{H} and \mathfrak{R} , respectively.

Proof. Let the elements of $\overline{\mathbb{G}}$ be H_1K_1, H_2K_2, \ldots ; then $H_iK_i \in \overline{\mathbb{G}} \xrightarrow{\tau_i} K_i(H_iK_i)K_i^{-1} = K_iH_i \in \overline{\mathbb{G}} \longrightarrow H_iK_iK_iH_i = H_iK_i^2H_i \in \overline{\mathbb{G}} \longrightarrow$ $\longrightarrow H_i(H_iK_i^2H_i)H_i^{-1} = H_i^2K_i^2 \in \overline{\mathbb{G}} \longrightarrow H_i^2K_i^2K_iH_i = H_i^2K_i^3H_i \in \overline{\mathbb{G}} \longrightarrow$ $\longrightarrow H_i(H_i^2K_i^3H_i)H_i^{-1} = H_i^3K_i^3 \in \overline{\mathbb{G}} \longrightarrow \ldots$

i. e. $H_i K_i \in \overline{\mathbb{G}}$ implies $H_i^r K_i^r \in \overline{\mathbb{G}}$ for r = 1, 2, ... If r is the order of the element H_i , then $K_i^r \in \overline{\mathbb{G}}$, i. e. $K_i \in \overline{\mathbb{G}}$ (since r and the order of K_i are relatively prime). By a similar reasoning we find $H_i \in \overline{\mathbb{G}}$. Hence we conclude:

$$\overline{\mathfrak{H}} = \overline{\mathfrak{G}} \quad (\overline{\mathfrak{H}} = \{H_1, H_2, \ldots\}, \ \overline{\mathfrak{K}} = \{K_1, K_2, \ldots\}).$$

 $H^{-1}\overline{\mathfrak{H}}H \subset \mathfrak{H}$ and $H^{-1}\overline{\mathfrak{H}}H \subset \overline{\mathfrak{H}}$ ($H \in \mathfrak{H}$) imply that $\overline{\mathfrak{H}}$ is a normal subgroup of \mathfrak{H} . Similarly, $\overline{\mathfrak{K}}$ is a normal subgroup of \mathfrak{K} .

Corollary 3. If in the finite group $\mathfrak{G} = \mathfrak{H}\mathfrak{K}$, where $((\mathfrak{H}), (\mathfrak{K})) = 1$, the groups \mathfrak{H} and \mathfrak{K} are simple and $[\mathfrak{H}] \cong \mathfrak{K}$, $[\mathfrak{K}] \cong \mathfrak{H}$, then the group \mathfrak{G} is necessarily simple.

(Received July 15, 1949.)

<u>1</u>6

7) The sign \rightarrow is the sign of implication.