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On the structure of groups Wthh can be represented
o as the- product of two. subgroups.

By] SZEP in Budapest.
The. . results "of the- present paper 'given here are connected with the '
researches of L. REDE[‘) on the generalization of the skew product (schiefes

Produkt) introduced by him." [ -shall return to this connection inthe. detailed .

discussion. For a long time I believed that my researches are connected only.
with those of L. REDEL Shortly beforé publication I learned - that G..ZAPPA®) -
“has arrived in 1940 at the relatrons (2) (3), ‘(4) of the present paper in a
srmrlar way" as i md
In a previous paper 8) I have. publishe'd the following results:

. Let the group. @ be representable as.the product of two proper sub-
- groups 9, & R : :
@ . -~“@5@p

- This means that each element of & multiplied by each element of produces
all elements of @ exactly once. It is well known that the" necessary and
sufficient condition for, the fulfilment of (a) is, that the only common element
of the subcroups 9 and & should be the umnit element. For the order of the
group & the equality (&)= (9)- (R) holds. Owing to ‘the symmetncal posmon _'
. of § and &, (a) 1mp11es : »

RO R S , . .
Let H H',H,...and K, K', K, ... denote elements of @ and SC
spectxvely Then by (b) "we get a relatron . :

" (c) : | KH=HK’,
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where H’ and K’ are uniquely defmed whenever-both H and K are given.
When H fixed, then K’ together with K runs - over all elements of & We
may thus assocnate w1th each. f{ the following permutatlon of elements of &

().
It is readlly seen that II,,II _ﬂ,,,, holds.. .
‘Theorem A:.The permutatzons 11, of the elements 0f ® form a group -
- II(R) and H~II(R). In this homomorphism . to. the unit element of IL(R)
corresponds a maximal normal subgroup 92 of ®*) which is a normal sub-

group of 9 and
, @/%NII (R)-
In an exactly similar way, leaving K fixed in H’ K'—KH, H rtuns
‘together. with H over all elements of §. Again, we associate with theé element
K the permutation IT,, —(Z)'of the. el'ements of §. As easily seen, 'H I, =1Il%.

Owing to the symmetry of By and .S"“t theorem’ A holds also if we change
their role. :

§ 1
We shall introduce a new notatxon for the permutatlons I] and for H”
and K’ in (c): :
(1) S KH= H"1 g,
that is, we denote by K[H] the element K’ into which K passes’ by the

permutation [H]=II,,. The notatlon H"! should be’ understood in a simi-
lar way.. e :

- By (1), the product of two- -elements of (Sj may be wr1tten -as
(2) . ' HKH'K'=HH"™K"K’,

. The elements of & have to satisfy the associative law

CHKH' K'Y K7 = HH KR e — | R 0 i i o,
HK(H' K H"K)=HKH " K K= (e i,
- Comparing’ these we get : : ' '
(H H" ]x'])[_]kj H,uqH,,[AU 1xny (K[H’]K )[H 1 K[H'H"[K’JJK,[H"J

As these relations must hold for every .H and K, they may be wrltten
1n a 51mllar form : :

(3) . (HH )[Kl='HlK1HA:K[HJJ, (KK’)[”] ='K[H“*. ]]'K;IIH].A

_ 4) This means that ® has no normal subﬂroup jild ((Sl?’)>(5l?)) wh:ch is a sub-
group of p .
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We may add to these the relatrons glven by the defmrtlon of H' AT
and K"

4) (H[E])(K] H[K][ll'] (K[H])[H’] K[H]IH ].. | -
' It meiy easily be proved, _that if we hqve for: example @g[@]"by.the '
~given permutations of [R], the permutations of [D] are uniquely defined. .
| .82 .
The elements [H] of the group [Q] are permutatlons of the group S“.

From now on let. these permutations be automorphisms of the group &. If

similar condition holds for the [9] too, i.e., the elements (K] of ‘the group
[©] are automorphismsof the group £, we call the group G =9K a group
-of automorphic composition. If only one of these two conditions holds,-1 shall .

. denote the group  a group of semiautomorphic composition. o )

" Theorem 1. Every group of automorpluc or semzautomorphzc compo—
: sztzon has a proper normal subgroup. :

) ‘Proof. By (c) we have KH=H’ K'. If H'=H for every H, when K’
) runs over all elements of & simultaneously with K, our theorem is evident,
since ®H = H& holds for every H, i.e. & is.a normal subgroup

Let now H’s=H, then we: have KH=H'K’,. KH= H K’ thus we get )

I?K”IH’ HKK™ Smce the permutatron [H]= (11{(,) is an automorphrsm
_ of the- group R, we have in [H] KK'— K'K" and we get )

1= ) - (;{{,')=[H].

thus [H'][H) = H'H '1=E. Consequent ly, according to theorem. A, Sg has
a ‘proper normal suboroup %,. which is-also a normal subgroup of ©.

‘The. proof runs similarly for K.

, Corollary 1.1. Let [5) ‘and & be given. If the order. of z'lze aulomorphzsm
group of R is relatively prime {o the order of and the same holds for the
automorphism group of 9, then .there is only one group &= ngSC of auto-

_ morphzc composition and & is z‘he direct product of $ and & .

‘Coroll ary 1.2. If the group §.is'a.group of automorphzc composu‘zorr
and zf [@]_9 then © is a normal subgroup Co ‘

‘According to (1), K—»K[H] K K" Ina grOup of autom’orphic
composition we have KK'—+(KK’)[H] K”” K'”” Srmrlarly, for the elements .
of § we have HH’—»(HH )“” H™ H’[K]
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For the croup (Sj—\:S“ of automorphrc composrtron the relatlons (2),
(3), (4) become .

@) ' HKH'K = HH’““K“’"K' C
{3y . ) (K (K1 lK] (H1__ pUH1 geddd)
(3) . (HH) = g% gy (KK) K
(4') (HIKl)lKl H[Kl[K] (KIH])[H] K[Hll‘ll
‘Comparing (3’) with (3), : , S

(5) s K =(K), [H® ] =[H];

(5) holds for every H¢ 9 and K'€R. Let now NcH be the maximal normal
ssubgroup of &*) (defined by theorem A), furthier let Dt c & similarly defined.
Then (5) means that the automorphism [H] transforms the element K into
‘the coset of the: factor-oroup &/Mt containing K. Similar statement holds for §/9.

Hence in groups of automerphic composition, the- elements of [&] trans-
“form every coset KM = Fx of the factor-group R/ .into itself, i.e., using
the notation of (c), FxH = H’'Fy. Similarly; [§] transforms every coset
HN = Fyof the factor-group /9% into itself, FuK'=KFy. As H'Fx=FyH,

it H \'/ari'es over all the elements of @; H’ does the same, (g,J=[K]=[ «]-

The permutatlon (1[;1/) transforms Fﬁmto itself; thus FHFK—FAFH for every

He $ and KES?

Since M -and N have no common element other than the umt element
M x N is again -a normal subgroup of & (the srgn X denotes direct product)
Hence we get the following theorem: : .

Theorem 2.. Let &= H& be a group of automorphu: composztzon Iet
Ncy be the maximal normal subgroup of ®& and M the same for K. Then
the Jactor-groip @M X N breaks down into the direct product of two of its’
subgroups -
- (S)/(ﬂ)lxsl)NSt/ﬂJlx&g/St 4
Corollary 2.12)y & contains, besw’es 93% and N, two normal sub-
groups R’ and §', such that :

&/EDZN@ St/SlNS»
Corollary 2.2.% We have
G/ Sl/(%)llx Sﬁ), R p/(‘l)txé)t) }
It is easily proved,- that if §=98& is a group of semlautomorphrc .

composition, i. e. for example if the permutations for [$] are automorphisms
of the group §, then the factor-group (85/93} breaks down into the product

5) This follows from theorem 2 when combined with theorem 20 of A, Spuvm,
Theorie der Grippen von endlicher Ordnung, 3rd edition (Berlin, 1937). -
. 8)-This follows from corollary 2. 1 when combined with theorem 23 of SPEISER, 1. c. %).
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. of two of its subgrouos v;. A
‘ : ' /EDEN(S“/EDE) 9,
where 9 is a- normai subgroup of the group (5?/5))}) @

§3

Theorem 3. If in-the fmzte group @)—-&)S“ the orders of. the groups @
and & are relatively prime, then every normal subgroup G of ® is either a

normal subgroup of  or of &, or it is of the form = QS} where § and [
are normal subgroups of $ and &, respectzvely : .
Proof. Let the .elements of G- be H,K,, H, K, . _.; then -

' H,K,’E@Q#K(HK)K‘ KHE@——»HKKH Hl(2H€®—»
——»H(HK"H)H1 H2K?C® — HPK2KH, = H2KH; €E—
‘ ' . —»H(H2K3H)H‘ ~—H3K3€(Sj——>..".
e H/K, e(Sj impixes H K/ E(Sj forr=1,2,.... If ris the order of the ele-
merit H,, then K7€, i.e. K,¢® (since r and the order of K, are relativély
prime). By a similar reasoning we find H, E@) Hence we conclude
@ﬁ——@ (D—{HI,HQ,. 5 5\—{/(],/(0,. 2

H9HcH. and H- TQHC® (HCH) imply that @ isa normal subgroup of .@
Similarly, & is .a normal subgroup of &~

Corollary 3. If in the finite g/oup G =98, where ((33) (R))-——-l the:

groups © and ‘§ are szmple and [sw}r\m, [R] 2 9, then the group & is neces~
'surzly szmple : . :

. (Received July 15, 1949)

"7 The sign — is the ‘sign of implication. o



