
105 

The meet-decomposition of elements in lattice-ordered 
semi-groups. 

By LADISLAS FUCHS in Budapest. 

1. In this paper w e / p r o p o s e to deal with-the «structure of-elements in 
a lattice-ordered semi-group, with special emphasis on properties similar to 
the decomposition theorems of ideal theory. Some concepts of abstract ideal 
•theory are here generalized by using the cardinal notion of "closure operator". 
The interest of this new " method of discussing such problems lies not 
only in the novelty of the method, but also in the far-reaching generality of 
the theorems. The two fundamental ideal-theoretic concepts introduced on 
the basis of closure operator are "(D-prime" and primary" whose defini-
t ions are given in sections 3 and 4, respectively. We shall show how to extend 
the theory of primary and quasi-primary ideals to cover the new concepts. 
The theorems remain essentially the same.; the proofs are logically complete 
here, only in some of the applications make we use of well-known results 
o r familiar methods without giving any details. 

2. Let G be a commutative l-semi-group, i. e. a closed1) lattice in which 
•a binary commutative and associative multiplication is defined satisfying the 
distributive law 

(2 .1 ) a(b\)c) = abuac. 

Let G have a zero 0 and a unity e such, that 

(2 .2) 0 < f o r all x 6 G , 
<2. 3) . 0x = 0, ex = x for all x 6 G. 

It is easy to show that (2. 1) implies the monotony of multiplication: 

<2.4) a<L& implies ax^Lbx for all x e G , 

and this together with (2.2) and (2. 3) implies 

( 2 . 5 ) OjOj . . . ak <L Oj n at n . . . n ak f o r a n y k. 

>) A lattice is called closed if it contains the join and meet of any subset of its 
elements. 
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We further assume that G enjoys the ascending chain condition: no 
infinite ascending chain a1<a2< . . . with different terms exists. 

Let ci> be a "closure operator" defined on G; that is, <D is a mapping 
x - 0 ( x ) of all elements of G onto a subset of G such that2) 
(i) x S ® ( x ) (extensivity); 
(ii) 0(d>(x)) = <U(x) ... (idempotency); 
(iii) x<y implies <l>(x) <i®(y) (monotony). 
®(x) will said to be .the closure of x. If ®(x) = x, x is called closed. For 
the subset of all closed elements we may write ®{G). 

It is an elementary fact, used several times, that x£L®(y) is equivalent 
to ®(x)^Q(y). (Apply (i), (ii) and (iii).) 

We shall consider closure operatois which are linears) in the sense that 
(iv) ( i (xd3)) = © ( i ) n ® ( y ) . i 

We observe that (iii) is a simple consequence of (iv), while (iii) implies only 
®(xny)^(l>(x)n®(y). 

In what follows O will always mean any fixed linear closure operator. 
As is shown in BIRKHOFF [1, p. 2 0 1 ] , one may define in G the residual 

a : b of a by b as the join of all x with bx<±a; this residual always exists 
under our assumptions on G. For the residuals one has the following im-
portant rules: 
( 2 . 6 ) ' . (Aa„):b = A(a„:b), 
( 2 . 7 ) - a : ( v 4 ) = A ( a :&.•), . 

(2.8) a:(bc) = (a:b):c. 
After these preliminaries we are now ready to introduce the funda-

mental concepts mentioned at the beginning. 
3. An element/» of G will be called O-prime, if a ^ . . .ak<Lp (k ar-

bitrary) implies ai^O(p) for. some subscript i. Trivial ©-primes are e itself 
and all elements whose «P-closure is e. 

Defining the radical r of an element a as the join of all x such that 
xn<±a for some n = n(x), we prove that if p is 3>-prime, then so is its 
radical r. In fact, supposing a1.. .ak<,r, we have4) a ? . . . a"<Lp for some n, 
and hence by the ©-prime character of p, a^^ip) for some/ . Considering 
that p<Lr, by (iii) we are led to a ^ O i f ) , as stated. 

E x a m p l e s . «) Let identically Q(x) = i(x) = x, that is to say, t is the 
identity operator leaving every element of G unchanged. The t-prime elements 
are those which are commonly called primes. 

2) "Closure operator" is here used in the sense of WARD [1]. — Numbers in brackets 
refer to the bibliography given at the. end of the paper. 

8) This definition is due to WARD [1]. He has defined four types of linearity, of 
which our is the third. 

4) Here we apply the ascending chain condition. 
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We note the trivial fact that x is necessarily CP-prime if cP(x) is ¿-prime. 
It is further immediate that a CP-closed element is CP-prime if and only if it 
is «-prime, 

/?) Let ®(x) = $(x) be the radical of x. Then the ^-primes are the 
•quasi-primary elements in the sense that ab<ip implies that some power 
of a or of b is <^p (cf, F U C H S [1]). In this case one can prove that p is 
^-prime if and only if its radical is ^-prime. For, if r is ^-prime and 
fli... ah<,p^Lr, then a,<LQ(r) = r — Q(p); (the converse has already been 
proved in the second paragraph of this section). Since every radical is 
^-closed, it follows the important fact that p is ^-prime if and only if its 
radical is «-prime (cf. F U C H S [1], Definition 2). 

y) Let ip(x) be any fixed linear closure operator and define p(x) as 
the meet of all i//-primes which are minimal5) in G and contain x. It is clear 
that those elements which are contained in only one minimal ^ -pr ime of G 
are necessarily .«-primes. The most important and interesting subcase is when 
1/> = «; then taking for G the /-semi-group of the ideals of a commutative 
integrity domain with identity, integrally closed in its quotient-field, the 
¿t-primes are those elements which are quasi-equal to some power of an 
t-prime (quasi-equality is here to be taken in the sense of VAN D E R W A E R D E N -

A R T I N ° ) ) . 

We turn now our attention to the consideration of the meet of 3>-primes. 

Theorem l.') The meet of a finite number of O-primes p =p1n...c\pr 

is O-prime again, if and only if one closure <i>(ps) is contained in all other 

For, if this condition holds, then by linearity <I>(p) = (t>(p1n ... npr)= 
= ®(Pi) n . . . n ®(pr) = ®(p s) , and a i . . . ak^p implies c x . . . ak^Lps, whence 

= ®(p) f ° r s o m e i, proving the assertion. 
However, if in the set ® ( p x ) , . . . , ®(pr) there exist at least two diffe-

rent minimal ones, then p=p1n . • • npr is never CP-prime. To prove this, 
suppose that p is (P-prime. By formula (2. 5) we get pl... pr^p and hence 
conclude that ps^L®(p) for at least one subscript s, i.e., @(ps) ¿®(p), and 
since ®{p)<±®(pt) for t= \ , 2 , . . r , this result proves what is stated in 
theorem l. 

Consider the set P of the meets of all subsets of ©-primes in G. P is 
clearly closed under meet and consists, by the ascending chain condition, 
of all elements in G representable as the finite meet of CP-primes. For 

6) Minimal means that it contains no other ^-prime. 
See VAN DER WAERDEN [l], p. 93 . — A new closure operation would be x-+x(x) 

where x{x) is the kernel of x defined in KRULL [l], or x -y c(x), the greatest element 
quasi-equal to x. 

Cf. FUOIIS [ l] , T h e o r e m l . 
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cxailiple, talcing for Q the set of all ideals of a commutative ring (with 
maximal condition), in case a) P is equal to the set of half-prime ideals 
(the set of radicals, cf. KRULL [1]) and in case fi) P exhausts all elements 
of G (cf . FUCHS [1], T h e o r e m 5 ) . 

T h e o r e m 2.8) Assume that a£P and a — p1n...np,.--=qlr\...r\qs, 
where the components ph q, are <t>-primes. If both decompositions are shortest 
in the sense that no component may be omitted and no subset of the pt or 
of the q, has a (P-prime meet, then r = s and by proper arrangement we 
have (/>(/>;) = </%.) 

Considering that p , . . .p,.<: a<_qs implies pi<(h(qj) for some / = / ( / ' ) , 
we have © ( a ) O'q,). With this j the same reasoning yields ©(<7,):iL©(Pi) 
for some lc = k(j). Thus ©(p,) :£©(<?,) ®(A)> implying by theorem 1 that 
p, npk is again (/¿-prime. This is contradictory to hypothesis if i=\-k; hence 
i = !c and ©(/?,) = f/>(<7;), as stated. 

Corollary. Every element of P may be represented as a finite meet 
of <l'-p/imes, where the closures of the components are uniquely determined. 

4. An element y of G will said to be ©-primary if ax...ak<y (k ar-
bitrary) implies a^<y or a.,< ®(y),..., or ak< ®(y). It is immediate that 
each ©-primary element is at the same time ©-prime and all y satisfying 
®(j ; )==e are necessarily ©-primary. 

The reader will readily convince himself that the two concepts: "i-prime" 
and "/-primary" coincide, and that the (»-primary elements are those which 
are primary in the ordinary sense. 

T h e o r e m 3.'J) An irredundant meet of a finite number of ©-primary-
elements, y = j'1n ... nyr is again '¡'-primary, if and only if all y{ have the 
same closure. 

Assume y =yx n . . . nj>, with ©-primary components possessing the 
same © 0 0 ; ©0>,) == ©0>). Further let ax...a„-^y. If none of a, (i = 2,...,n) 
is contained in ©(j>), then a1...a„<Lyl implies by the ©-primary character 
of yk that axSyk- Since this relation holds for all k, we have at<y, indeed. 

Let conversely y=yt n . . . n y, be an irredundant meet of ©-primary ele-
ments. The case where all © 0 0 are different is capable of uniting all y\ with 
the same © ( j O into one ©-primary element, in accordance with what has 
already been proved. Supposing this case with r > 2, we may clearly choose 
a © 0 0 , say © 0 0 , containing no other © 0 0 . If y were ©-primary, then 

<y would imply ykC © 0 0 for at least one k>_2, considering that 

3) See FUCHS [1], Theorem 6. 
'•') Cf. e. g. VAN DEB WAF.HDEN [1], pp. 32—24. The term "irredundant" will mean 

that no component may be omitted. Note that irredundancy is needed only in the "necessary" 
part of the proof. 
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by irredundancy yt <y is impossible. We thus get (l>{yk) i (r>(y) " # ( y , ) for 
•some contrary to the choice of y1. Q. e. d. 

Now we define the set Y in the same manner as the set P was defined 
in the foregoing section, with the sole modification that instead of "<£-prime" 
we use the term "3>-primary". As is readily seen, Y is a subset of P and 
if G is the set of ideals of a commutative ring, then Y coincides with G. 

The following theorem will correspond to theorem 2. 

T h e o r e m 4.10) Let a =^yt n . . . n y„ — zx n . . . n z,„ be any two shortest 
decompositions of at Y into O-primary components. Then n = m and the closu-
res of the components are the same in both decompositions. 

If ®(y,) is maximal among the closures <t>{yx),..., rJHy„), ®(z,„)> 
then one may find a &(Zj) containing <X>(y,). For, if this were not so, if e. g. 
although &{y,) is maximal none of ®(z,) contained we should have 
from 

<4. 1) a : y„ = (y,: yn) n . . . n {y„: yt) = (zt: y„) n . . . n (zm : yn) 

(cf. (2. 6)) the relation 

(4 .2) y, n . . . n j/H_, = n . . . n z,„ = a, 

since <T>(y„), and hence y„ is contained in none of 2 > ( j \ ) , . . . , ®(j>„_i), 
<t>(Zj),. . ., <X>{zm), by hypothesis.11) Consequently, y would be . redundant. 
This is absurd 1 

From this fact 'we conclude at once that the same maximal closures are 
associated with both representations. When e. g. &(yn) = &(zm) ¡ s maximal, 
then with y=ynzm by (2 .6) and (2.8) we get 

(4. 3) a1=*a:y = (y1:y) n . . . n (y„:y) = y1 n . . . ny„_ l 

and on the other hand 

(4. 4) fli = (Zi: y) n . . . n (zm : y) = z t n . . . nzm_,. 

Our theorem is now by induction completely proved. 
in addition, whenever <X>(j/x) = <X>fo) is a minimal one in the set of 

the ®0>,), then y1 = z1. In other words, this means that the isolated <D pri-
mary components of a, i. e., those associated with a minimal <t>(y,), are unique. 

For the proof we first observe that if y is <P-primary and none of the 
closures associated with the ^-pr imary representations of b£Y is ¿<P(y), 
then y:b=y. In fact, if b is 3>-primary, the statement is evident; if not, 
suppose 6 = x 1 n . . . n x J . is a (^-primary decomposition of b. Then using 
{2. 8) repeatedly we have by hypothesis 

1 0 ) S e e NOETIIBR [ I ] , p . 4 4 , or VAN DER W A E R D E N [ I ] , p p . 3 5 — 3 6 . 
u) We have made use of the simple fact that if y is ¿'-primary and a is not < $(y\ 

then y.a=y, this being an immediate consequence of the definition of ¿»-primary elements. 
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(4. 5) y <,y : b =y : (x, n . . . n xh) <y : f x , . . . x t) = 
= (y : x , ) : ( x 2 . . . xt)= J>: ( x 2 . . . x„) = ... =y 

proving the assertion. 
Now the minimality of d>(yt) — implies that none of the closures-

associated with the ©-primary representations of c = y2 n . . . ny„ n z2 n . . . n z„, 
is ¿<fi(yt), consequently, 
(4. 6) a: c = (j>,: c) n (j>2: c) n . . . n (yn: c)=yt nen... n e=yt 

and similarly a:c = zlt whence y1 = z1 as we wished to prove. 
The following corollary is immediate. 

C o r o l l a r y . Any element of Y has a decomposition into the meet of 
©~primary elements: lit two such decompositions the closures of the compo-
nents as well as the isolated components themselves are necessarily the same_ 

5. It is a matter of some interest to have information about an interesting 
connection between ©-prime and ©-primary elements. 

Define q ©-maximal, if while ©(<?)=j=e, ©(#) < ©(x) implies ©(x) = e. 
Then we have 

T h e o r e m 5. If the only element x with ©(x) = e is x = e, then every 
©-maximal <I>-prime element is primary. 

Assume/? ©-maximal and ©-prime, and a1...a„<Lp, where a,-is not <£ ©(p) 
for / ¿ ¡ 2 . We have to show that a x < p . Now © ( p u > ©(p) u ©(a,) > ©(p) , 
(because ©(a ;) is not < :©(p) ) , and hence ® ( p u a{) = e for /¿>2, by the 
©-maxi mality of p. By hypothesis, pua—e for / ^ 2 . From a1...an<,p 
now it follows by (2. 1) that 
(5 .1) fli(P u a 2 ) . . . (p u a„) < i p 
and as p u a , = e for / ^ 2 , we are directly led to a ^ p , q. e d. 

In particular, when G is the set of ideals of an integrity domain, then 
theorem 5 expresses the fact that if e is the sole element with radical e (this 
means that the ring has a unit element), then the quasi-primary ideals with 
minimal prime radicals are simply primary (FUCHS [1], Theorem 8). 

6. We conclude by giving the following notion12). 
We shall call a ©-primary to b if 6 : a ^ © ( 6 ) . In case b is ©-primary, 

just the elements x satisfying x < l 6 are ©-primary to b. Although it is quite 
clear it seems to be worth while noticing that "a is i-primary to b" means 
nothing else, than a is prime to b in the common sense defined by NOETHER 
[1], p . 4 5 ; cf. a l s o VAN DER WAERDEN [1], p . 2 5 . 

Assume b=yx n . . . n y „ is a shortest ©-primary decomposition of b£Y, 
where ylt ...,yk ( i g n ) are isolated, yk+1,...,y„, if any, are not isolated 

12) The concept "a is primary to b" is defined in FUCHS [2], cf. also FUCHS [4]. 
A generalization of it, essentially equivalent to tf'-primarity, may be found in FUCHS [3]. 
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<5-p.rimary components of b. If a is not <Lyt for j= 1 or, what is the same, 
if y-: a < ± f o r then a is ^ -p r imary to b. In fact, hypotheses imply 
(6. 1) b : a = a) n . . . n (y„: a) <L n . . . h nen... n e=®(b). 

If we impose a further restriction on the CD-operation, namely, 
{*) if y,yuy2 are primary elements, then n ^OO < ®00 implies 

<•<?(» of ®(y2)<<i>(yw3) 
we can prove even the converse of our last s ta tement : For b :a<^®(b) it is 
necessary that a be not <Lyj for j<k. To verify this, suppose b:a^^>(b) 
and , say, a ^ y 1 . Then 

a (y2 n . . . n y„) ^ a n y2 n . . . n y„ ^ b 
and hence by hypothesis we get 

. yon...ny„^0(b)^.(D.(y1). 
In view of our new restriction (*) on we conclude, using a simple in-
duction, that < J > ( y i ) S ® ( y i ) for some /¿> 2, contrary to the isolated character 
of y1. To sum up, we have proved. -:. 

T h e o r e m 6. Supposing (*), a is Q-primary to bEY, if and only if a 
is O-primary to all isolated O-primary components of b. 
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1S) This restriction is satisfied in all important special cases. 


