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On a geometrical extremum problem.

By STEPHEN VINCZE in Budapest.

-1. In what follows we shall consider an extremum problem concerning
-polygons.?) Throughout this paper' U, will mean a convex polygon with n
sides each of which has the length 1. The diameter of the polygon, i. e. the
longest diagonal, will be discussed.

Trying to find a U, with the smallest possible diameter, P. ERDGs found
in the cases n==4 and 5 that the extemal figures are only the corresponding
regular ones. It was expected that this is true generally ; but ERDOS surprisingly
found this not be true for n=6. The diameter of the regular hexagon is 2,
while the hexagon, the angles of which are alternately #[2 and 371/5 has a

diameter 1/2 +V3<2.

It would be interesting to find for every n the polygons U, ‘with the
minimal d:ameter 4,. The.results of this paper show that the answer. to
this question depends upon the numbertheoretlcal structure of n. Our answers
are- not complete.

As to the part of the questxon regardmg the value of 4,, we obtain
that if n has at least one odd prime factor, then o, equals to the radxus of
the circumscribed c1rcle of a regular U,,, i..e. we have

Theorem I. If n—(2k+1)2 where k>1 s>0 then
-1
: —|2sin X
(1) . d, ——(25”12(1)“

Thus the problem of the minimum remains open only if n=2">4.
We ‘have for all n the '

.Theorem 2, If'n;B, t/ien

-1
. B T
2) | a,= (2sm 2—,1) -
As an upper_ estimation of the value of 4, (n;3) we have
. . -1
. N . ‘ 1
) - /Jné(sm?) -

1) Added in proof After my paper was fxmshed I have read the paper of K. ReIx-
HARDT, Extremale Polygone gegebenen Durchmessers, Jahresbericht der Deutschen Math.-
Vereinigung, 31 (1922), pp. 251—270, which deals with a nearly related subject and contains
many of my results. Nevertheless 1 think my paper has some proper mterest because of
its different point of view and treatment.
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4, being evidently at most as large as the diameter of the regular’ n-gon,
which again is not larger than the diameter of its circumscribed circle. This
remark as well as our theorem 2 is of significance only if n=2°". In case
of s>3 I did not succeed in deciding whether or not the sign of equality

can be reached in estimation (2) or (3) ‘If s=23 something- more can be °

'said, namely
SER : | ,
Theorem 3. 4s<”(5in'%), , e the diameter-of the regular octagon
~ does not give the m'inimum'belonging to n==8. ‘

It seems lrkely that this holds also for n—=2°>8.
_ As to.the question- of unicity- of the extremal figure the answer is
~ generally’ negative.. In- this respect the dependence, upon the numbertheoretical

' structure of n is more conspicuous. This is clearly shown by the following -

Theorem 4. If the'decompo&it_ion of .n inlo primé—factors._ contains at
least two odd prime-factors (equal or not), then there are at least two essen-

tially different extremal polygons U,. If n=2k+1, then the regular n-gon .

is among the extremal ‘polygons, if n= (2k-4-1).2°, k=1, s='1, it is not.

. In- the first mentroned case, when n=p-.q-n’ (p,q béing primes, n’ an
"“integer). I shall show that forming the so-called Reuleaux-polygons2) with
p resp. pq vertices, they can be completed by new points on the periphery
into n-gons in such a way that they form extremal U,’s."[ could not fmd
all extremal polygons so far, if n>6. . ‘ -

2. If the general question is raised, which convex closed curves with
a given length [ of periphery have ‘the mmlmal diameter, the well known
- answer 1s given by the following formula : : :

@ . ‘ z:ljs'(@d(p,

' where B(cp) mearns. the’ distance between two parallel lines of support both
b°longmg to the (p direction of the convex curve. As
: 27w

D= maxB(go)>— B(g;)d =_l_

(9) ‘n

holds for the drameter D of the curve D takes its mmrmal value for and
“only for a curve of constant wxdth

' 2) See for ex. T. BONNESEN—W FL\CHEL Theorie der konvexen Korper (Berlm 1934),
p- 120. '
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3. The inequalities (2) and (3) lead to the inequality

P : m
n_ A 20 ,
sin® " M7 sin—
n ] 2n

~ from ‘which it follows for the asymptotlcal value of the minimal diameter
4, that

Jll
lim —*t=—.
1=> Q0 n ﬂ: .
4. Now we turn to the proof of our theorem 2, since theorems 1 and 4 :
cari be deduced without difficulty from it. That our extremal problem has at
least one solution, it follows easily by using a classical argument.

For the proof of our theorem 2 we shall need the following:

Theorem- 5. The necessary condition for-a polygon U, being ‘a minimal
figure is that each vertex should have an opposite vertex, i. e. a vertex in the
distance equal to the diameter.

We shall prove this theorem in the next paragraph for the. moment let
us assume that it has been proved.

Remark: It follows from the example constructed by ERDOS in the
case n==~6 that our condition is not sufficient. The regular hexagon possesses'
the above mentioned property, but it, is no minimal frgure

We shall use also the followmg theorem?):

Any set with the diameter 4 may be completed ‘to form a domain, the
boundary of which is a curve of constant width, with the same diameter.

Finally we shall use the following theorem?):

~ Any closed domain the boundary of which is a curve of constant width 4,
contains together with two of its points P, and P, all circular arcs passing
across P, and P,, whzdz are smaller than a half circle and the radius of
which is > 4. .

To prove our theorem 2,° lét us now consider a polygon which is a
minimal figure with the diameter «,. Let us complete it in some way to
form a domain with the boundary G a curve of constant width. G has the
diameter resp. width 4, and periphery nd,. We prove that-every vertex of
the polygon is a point of curve G. Assuming that vertex A does not he on
curve G, let us consrder ‘the opposite vertex A” of A and continue A’ A in
this direction. This line would intersect G at the point. A” for which A’ A" >4,
would hold. _

‘We denote by] the part of G between the ith and (t—[—l)th vertex
A; resp. A, i.e. the vertices of the minimal figure. The length of J; shall

8) See loc. cit. 2), p. 130.
1) See loc. cit. 2), p. 129.
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be s;. But the-closed domain- determined by G contains with its pointé A,
and A, the circular arc C; the radius of which is #, (according to theorem?)).
We observe that in the circle of radius 4, the opening of the central angle

belonging to the arc A7,+1 is evidently independent of i; it may be denoted
by . Now the length of the circular arc is wd,. Let us now consider the
convex, closed curves L, and L,.-L, consisting of thé arc J: and of AAis
while L, of C, and of -4;A,,,. Evidently L, contains L,; hence according
to ‘a well-known theorem the periphery of L, is at least as large as the .
- periphery of L,; or in other words the length of the circular arc is not
longer than that of the arc Ji: 04,<s,. If these inequalities are summed

with regard to the index i, we obtain nwd,,é Z‘A3i=7t4., thus -
. o i

But in consequence of the definition of w, we have

) 1 : . -1
sm-z—‘—- _2.41" , 4?—(251n_—2—) ;

. -1

T

a4 > in—
,,__(2'51.1’12.,1) ’

5. To prove our theorems 1 and 4 we proceed as follows. From theorem 2 -

thus, by (5),
which proves our theorem 2.

. ) -1
it obvi:ously-fo‘llov_x%s" that the value of 4, cannot be srhaller than (Zsin%). .

Hence theorem 1 will be proved if we can show that this loweér bound is-
actually attamed if n=(2k-~1)2°, In the case n=2k--1 this follows simply
taking a regular n-gon; -this shows at the same time that in this case the
regular n-gon is one of the the extrema] n-gons. If n 1s even, the dxameter
'd, of the regular n-gon is

' 1 -1
d,= (sin —n—) (Z‘Sin i) ;
: 2n/ .
hence if we ‘show, in the case n—(2k+ 1)2° k=1, s=1, that for an other

-1 .
polygon .U, the lower bound (2_.sm 57:7) can be attained, this will show that

. -1 o S : .
(2sin %) is the minimal value also in that case and that the corresponding:
regular n-gon is not among the extremal polygons. ‘

Let p be an odd factor of n. Let us consider the p-sided Reuleaux—

. : -1
. polygon with the constant width, i. e. with the diameter d,= (2sm%) -
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From any of its vertices the opposite circular arc can be seen at an angle %

o, . . . . v . . 14 TT n .
We can inscribe in this arc a broken line consisting of ‘p :7=? sides

of length 1. The union of these broken lines forms a polygon U, with
diameter 4,. Taking different odd factors of n and applying the same pro-
cedure we obtain different Reuleaux-polygons, i. e. different minimal U, poly-
gons. This completes the proof of our theorem 1.

6. Now. we' turn to the ‘proof of our theon_m 5. For this purpose we
need the following four lemmas:

Lemma 1. If parallel lines of support can be drawn throuﬁlz the end
points of a chord of a convex plane cirve, then this dzord mtersects a:l dia-
mefers.

Let the chord C have the above mentioned property and let the parallel
lines of support passing through its endpoints be s, and s,. If a diameter
D would exist which did not intersect C, then D would lie in one of the
areas determined by s, s, and C. D being a diameter the norma's: passing
through its endpoints are lines of support, i. e. they contain the curve.and
consequently C. It is easy to see that this is only possible if C and D have
.at least one common endpoint. .

Lemma 2. Consider two angles « and g issued from a pomt E of a
straight line e and lying in the same halfplane determined by e, and- having
no common' points excepz‘ E. If we turn « round E towards 8 (resp..in the
opposite direction, but in the same halfplane) so that they should have no
common point except E; then each point of wzll get nearer (resp farther) fo
each point of '8 except E ilself. . . ,

Let the point A of the angle « be denoted in 1ts new posmon by A and
let B be a point of ﬂ Let a be the normal of the- dlstance AA inits centre.
Then all points which are nearer to. A’ than to A form the halfplane de-
termined by a and containing A’. But at the same tlme all pomts of § are
contamed there too, q.e. d.

" Lemma 3. 1f V, is a mmzmal fzgure having an anale T, then we can
construct-an-other minimal figure-V,, all angles. of which are <. .

If the angle of V, in the vertex A is 7, then A can not have an opposite
vertex, for the opposite vertex of A would be at a greater distance -from one-of
the two ne'iOhb'ouri'nfr vertices of A. Let A;A and AA, be the two sides of
V., wh1ch ‘form an angle z in the’ pomt A, and let A" be the vertex through

which a line of support parallel to A1A2 passes According to lemma-1 all
diameters of the polygon intersect the chord A A’;" therefore the endpomt of the .
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-diameters lie on both sides of this chord. It must be remarked, that the part -
of V, between A, and A’, which does not contain A, as well as its part
between A’and A,, which does not contain A, lie. in such angles, which are
on orie side of the supporting line through A’.. One of these angles is de-
termined for example . Jby. the line A’A, and by :that side of V, starting from
A’ which lies on the same side of A’A as A,. Let us now. insert hinges at
the vertices A;, A, A,, A". Let us furthermore fix the vertex A’ and the line of
support going through it, -and let us shift the vertex A in the direction of
the normal of A, A, and away from A’. According to our lemma 2, all diame-
ters except those starting from vertex A" will decrease.

In the following we may assume that two sides of a mmrmal froure do
not lie on one line, i.e. by applying- our hinge method the convexrty will
not be violated. ‘ ’

Lemma 4. In the ¢ case of mmrmal fraures not all diamelers, start from
the same vertex. : :

Let us suppose that all-diameters would start from the vertex' A. Let the
order (in a certain direction) of the opposite vertices be A,, A.,..., A,. Let
the vertex preceeding A, in the mentioned sense be A’, and the vertex
succeeding A, be A”. (In consequence of the trivial fact that in the case of
n>3, 4,>1,-A’ and A” cannot coincide with A.) Let us insert hinges at the
vertices A, A, A;, A,, A”. Let the maximum of all diagonals, the length of -
which-differs-from 4, be.d, < 4,. Let-us -now fix-vertex A and shift the dis--
tance A,A, in the direction of its own normal towards A. Then each ‘point §

A; gets into-such a new position A’, for which AJA < 4/ < d,. Although there

- will be such diagonals which still increase, if the change of position is small

‘ enough, we see immediately that the maximum of the diagonals not starting
» from A will not surpass a value d,<4,. This would contradict to our
assumption that the original polygon is-a minimal figure. .

To prove our theorem 5 let us now assume. that the. minimal figure
has a vertex A which has no opposite vertex. Let: us consider a line of support
"in A and a line of support through A’ parallel to the former one. Let us further
consider the vertices A, and A, neighbouring A. Accordmg to our lemma 1,
AA’ intersects all diameters. Consequently their endpoints lie on opposite .
sides of AA’ and at least one of them may be in-A’. We remark further
that the parts of the polygon lying between the vertices A’ and A,, resp. A
and A,, neither of which contains A, are contained in two. angels, both in
- conformity to the assumption of .our lemma 2. Let us now shift A along the
_normal of 4,4, so as to increase its distance from A A,A,. Since no diameter
starts from A it can be attained that d,, i. e. the maximal distance of A from
a vertex, is only slightly modified — while all diameters not starting from- A
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. ‘decreaseAaccordi'ng to our lemma 2. Thus we obtain'e_d a polygon each diameter
-of which may start only from A’, which fact would contradict lemma 4.

7. To prove theorem 3 we construct a U,®) the diameter of which is

. . -1
smaller than that of the regular Uy, i. e. smaller than (sin %) .

" First we observe that the functxon

- |iP e

has only one real zero in the mterval 2<x<3 and thls zero is smaller than

-1
{sm %) . Indeed, a numerical calculation yields

-1 )

f(2)>0> f((sin—g—.) )>- f@3)

while d—dff(:;) <0 for 2<x<3. | '
Denote this' real zero of f(x) by'd and" the positive quantities

.- d_’-—d——‘ X :
V : V——T’l/_( 2d ] de_l by pi, 02y D5, Dss

respectwely, we have evidently p, +p,+p;—p.==0.

Let us now con51der the octagon determined by the points P, (bcl-—:;—, y'l=0) )
(. _.d Y - , 1 .

P, X2 =5 2=P1)s Py x3=T’ Ys=D1tp; , Py x4=’2_:y4=p1+p2+[73=p4 >
»Pa(x"'=,_'xu)’5 =Ys), P(x(i:‘_xs: Ve=0s), Pr(x;=—%s, y:=)»), Ps(xs— x1.)’3=y1)
on the (x, y) plane, which is obviously symmetric with respect to the y-axis

Theorem 3 is proved if we show that this is a U, with diameter d.

At first it is easy to see that P.P,,,—1 (i=1,2,...,8; P,=P,).
The convexity follows from the inequalities y1<yq<J3<y4, X <Xy >X3> X,

and from the fact that the pro;ectlon of the side P,P; on the x-axis, i. e.

: S p—
vp=|1—pi= 2d’ is smaller than that of B, P, i.e. vy =)1—pi= d—g———

Further we have
P,P,= P,Py— P,P,— P,P, = P4P d,.

.and a simple -calculation shows that the other dxagona]s are smaller than d
Q. e. d,

 (Received September 15, 1949.)

5) I am indebted for this éxamp]e to my wife.



