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On a geometrical extremum problem. 
By S T E P H E N VINCZE in Budapest . 

1. In what follows we shall consider an extremum problem concerning 
polygons.1) Throughout this paper Un will mean a convex polygon with л 
sides each of which has the length 1. The diameter of the polygon, i. e. thè 
longest diagonal, will be discussed. 

Trying to find a Un with the smallest possible diameter, P. E R D Ő S found 
in the cases n = 4 and 5 that the external figures are only the corresponding 
regular ones. It was expected that this is true generally ; but E R D Ő S surprisingly 
found this not be true for n = 6- The diameter of the regular hexagon is 2, 
while the hexagon, the angles of which are alternately nj2 and Зп/5, has a 

diameter ] / 2 + f 3 < 2. 

It would be interesting to find for every л the polygons Un with the 
minimal diameter Jn. The .results of this paper show that the answer to 
this question depends upon the numbertheoretical structure of n. Our answers 
are not complete. 

As to the part of the question regarding the value of we obtain 
that if л has at least one odd prime factor, then z/„ equals to the radius of 
the circumscribed circle of a regular U2„, i:.e. we have 

T h e o r e m 1. If n = (2k+ 1)2S, where s^O, then 

Thus the problem of thé minimum remains open only if n = 2s > 4 . 
We have for all л the 

. T h e o r e m 2. / / л : > 3 , then ... • 

(2) А ф т ^ ) ' 1 . 

As an upper estimation of the value of Лп (л!> 3) we have 

(3) ^ . ( s i n ^ - j 

О Added in proof: After my paper was finished, I have read the paper of K. REIN-
HARDT, Extremale Polygone gegebenen Durchmessers, Jahresbericht der Deutschen Math.-
Vereinigung, 31 (1922), pp. 251—270, which deals with a nearly related subject and contains 
many of. my results. Nevertheless 1 think my paper has some proper interest because of 
4s different point of view and treatment. . 
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An being evidently at most as large as the diameter of the regular n-gon, 
which again is not larger than the diameter of its circumscribed circle. This 
remark as well as our theorem 2 is of significance only if n = 2s. In case 
of s ^ > 3 I did not succeed in deciding whether or not the sign of equality 
can be reached in estimation (2) or (3). If s = 3 something more can be 
said, namely 

T h e o r e m 3. ¿ / 8 < | s i n - ^ - j i. e. the diameter-of the regular octagon 

•does not give the minimum belonging to n = 8. 

It seems likely that this .holds also for n = 2s >8. 
As to the question of unicity-of the extremal figure the answer is 

generally - negative. In this respect the dependence upon the numbertheoretical 
s tructure of n is more conspicuous. This is clearly shown by the following 

T h e o r e m 4. If the decomposition of n into prime-factors contains at 
•least two odd prime-factors (equal or not), then there are at least two essen-
tially different extremal polygons U„. If n = 2k-\-\, then the regular n-gon 
is among the extremal polygons, i f n = (2k + 1)-2S, k^> 1, s ^ l , it is not. 

In the first mentioned case, when h~p-q-n' (p,q being primes, n' an 
integer). I shall show that forming the so-called Reuleaux-polygons2) with 
p resp. pq vertices, they can be completed by new points on the periphery 
into rt-gons in such a way that they form extremal U„'s. 'I could not find 
all extremal polygons so far, if n > 6. 

2. If the general question is raised, which convex closed curves with 
a given length / of periphery have the minimal diameter, the well known 
answer is given by the following .formula 

2 . - 5 

(4) . l ^ ^ B ( c p ) d 9 , 
0 

where B(<p) means, the" distance between two parallel lines of support, both 
belonging to the ^-direction of the convex curve. As 

2K • 

' . J f . I 
£> = max£(cp) > — \ B(q>)dcp= — 

~ 2n J ' n 
u 

holds for the diameter D of the curve, D takes its minimal value for, and 
only for a curve of constant width. 

2) See for ex. T. BONNESEN—W. FENCHEL, Theorie der konvexen Körper (Berlin, 1934), 
.p. 130. 
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3. The inequalities (2) and (3) lead to the inequality 

"2/T 
- < 71 < -71 — fi • 71 

Sin Sin 75— n 2 n 

from which it follows for the asymptotical value of the minimal diameter 
4 , that 

lim — = — . 
1.-».» n n 

4. Now we turn to the proof of our theorem 2, since theorems 1 and 4 
can be deduced without difficulty from it. That our extremal problem has at 
least one solution, it follows easily by using a classical argument. 

For the proof of our theorem 2 w e shall need the fol lowing: 

T h e o r e m 5. The necessary condition for a polygon Un being a minimal 
figure is that each vertex should have an opposite vertex, i. e. a vertex in the 
distance equal to the diameter. 

W e shall prove this theorem in the next paragraph, for the moment let 
us assume that it has been proved. 

R e m a r k : It follows from the example constructed by E R D Ő S in the 
case / i = = 6 that our condition is not sufficient. The regular hexagon possesses 
the above mentioned property, but it, is no minimal figure. . 

We shall use also the following theorem 3 ) : 
Any set with the diameter 4 may be completed to form a domain, the 

boundary of which is a curve of constant width, with the same diameter. 
Finally we shall use the following theorem 4 ) : 
Any closed domain the boundary of which is a curve of constant width A, 

contains together with two of its points and P2 all circular arcs passing 
across and P2, which are smaller than a half circle and the radius of 
which is I> 4 

To prove our theorem 2,' let us now consider a polygon which is a 
minimal figure with the diameter Let us complete it in some way to 
form a domain with the boundary G a curve of constant width. G has the 
diameter resp. width 4 . periphery 71 A„: W e prove that every vertex of 
the polygon is a point of curve G. Assuming that vertex A does not lie on 

. . . — • 

curve G, let us consider the opposite vertex A' of A and continue A'A in 
this direction. This line would intersect G at the point A".for which A'A" > 4 , 
would hold. 

W e denote by / the part of G between the /th and ( / - f l ) t h vertex 
A: resp. Ai+1 i. e. the vertices of the minimal figure. The length of Jt shall 

a) See loc. cit. 2), p. 130. 
->) See loc. cit. p. 129. 
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be S;. But the closed domain determined by G contains with its points AL 

and J4;+1 the circular arc Cf the radius of which is ¿fn (according to theorem 3 ) ) . 
W e observe that in the circle of radius A„ the opening of the central angle 
belonging to the arc is evidently independent of / ; it may be denoted 

by (o. Now the length of the circular .arc is (oJ n . Let us now consider the 
convex, closed curves Lx and L2.LX consisting of thé arc J{ and of A A + i » 
while L2 of Q and of AiAi+x. Evidently Lx contains L2; hence according 
to a well-known theorem the periphery of Lx is at least as large as the 
periphery of L 2 ; or in other words the length of the circular arc is not 
longer than that of the arc / ¡ : « 4 . ^ , - . If these inequalities are summed! 

• n 

with regard to the index i, we obtain n(aJn<,^.si=nJn, thus 
i 

(6) 0 ) < — . v 7 ~ n 

But in consequence of the definition of <u, we have 

• w 1 ; „ fo • w V 1 

S i n " - 2 4 / 5 = l 2 8 i n - T 
thus, by (5), 

/ / „ > Î 2 s i n ^ 
V 2 n 

which proves our theorem 2. 

•5. To prove our theorems 1 and 4 we proceed as follows. From theorem 2 

it obviously follows that the value of 4 . cannot be smaller than | ^ 2 s i n ^ j 

Hence theorem ,1 will be proved if we can show that .this lowér bound is 
actually attained if n = (2k-\- \)2s, In the case n — 2k-s

r\ this follows simply-
taking a regular n - g o n ; this shows at the same. t ime that in this case the 
regular n-gon is one of the the extremal n-gons. If n is even, the diameter 
d„ of the regular n-gon is 

M s i n " r ) > ( 2 s i n ^ ) , ; , 

hence if we show, in the case n = (2k-\- 1)2 s k^> 1, s ;> 1, that for an other-

polygon . £/„ the lower bound | z s i n ' can be attained, this will .show that-

^ 2 s i n ^ - j is the minimal value also in that case and that the corresponding; 

regular n-gon is not among the extremal polygons. 

Let p be an odd factor of n. Let us consider the /7-sided Reuleaux-
' I 

polygon with the constant width, i . e . with the diameter 4 = = \ ^ s ' n 2 n ) " 
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TV 
From any of its vertices the opposite circular arc can be seen at an angle '—. 

JT 7Z fî 
W e can inscribe in this arc a broken line consisting of - : — = — sides 

P » P 
of length 1. The union of these broken lines forms a polygon U„ with 
diameter Taking different odd factors of n and applying the same pro-
cedure we obtain different Reuleaux-polygons, i. e. different minimal U„ poly-
gons . This complètes the proof of our theorem 1. 

6. Now we turn to the proof of our theorem 5. For this purpose we 
need the following four l emmas: 

Lemma 1. If parallel lines of support can be drawn through the end 
points of a dxord of a convex plane curve, then this chord intersects a:I dia-
meters: 

Let the chord C have the above mentioned property and let the parallel 
lines of support passing through its endpoints be and s2 . If a diameter 
D would exist which did not intersect C, then D would lie in one of the 
areas determined by su s2 and C. D being a diameter the normals passing 
through its endpoints are lines of support , i . e . they contain the cu rve .and 
consequently C. It is easy to see that this is only, possible if C and D have 
at least one common endpoint . 

L e m m a 2. Consider two angles a and /? issued from a point E of a 
straight line e and lying in the same half plane determined by e, and having 
no common ' points except E. If we turn a round E towards /? (resp: in the 
opposite direction, but in the same halfplane) so that they should have no 
common point except E, then each point of a will get nearer (resp. farther) to 
each point of 'jS except E itself. 

Let the point A of the angle a be denoted in its new position by A: and 
let B be a point of /?. Let a be the normal of the distance A A' in its centre. 
Then all points which are nearer to A' than to A form the halfplane de-
termined by a and containing A'. But at the same time all points of /3 are 
contained there too, q. e. d. 

L e m m a 3. If V„ is a minimal figure having an angle n, then we can 
construct-an other minimal figure V^, all angles, of which are <n. 

If the angle of V„ in the vertex ,4 is n, then A can not have an opposite 
vertex, for the opposite vertex of A would be at a greater distance from o n e of 
the two neighbouring vertices of A. Let A^A and AA2 bè the two sides of 
V„, which form an angle n in the point A, and let A' be the vertex through 
which a line of support parallel to A1A2 passes. According to lemma 1 all 
diameters of the polygon intersect the chord A A!; therefore the endpoint of ' the 
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diameters lie on both sides of this chord. It must be remarked, that the part 
of V„ between At and A', which does not contain A, as well as its part 
between A' and A2, which does not contain A, lie. in such angles, which are-
on one side of the support ing line through A'.. One of these angles is de -
termined for example >by the line A'A1 and by that side of V„ starting from 
A' which lies on the same side of A!A as A1. Let us now insert hinges at 
the vertices Au A, A2, A'. Let us furthermore fix the vertex A' and the line of 
support going through it, and let us shift the vertex A in the direction of 
the normal of ArA2 and away from A'. According to our lemma 2, all diame-
ters except those starting from vertex A' will decrease. 

In the following we may assume that two sides of a minimal, figure do 
not lie on one line, i. e. by applying our hinge method the. convexity will 
not be violated. ' 

L e m m a .4. Iri the case of minimal figures not all diameters. start from 
the same vertex. , 

Let us suppose that all diameters would start from the vertex A. Let the 
order (in a certain direction) of the opposite vertices be A,, A 2 , . . . , A r . Let 
the vertex preceeding Ax in the mentioned sense be A', and the vertex 
succeeding Ar be A". (In consequence of the trivial fact that iri the case of 
n > 3, 4„> 1, A', and A" cannot coincide with A.) Let us insert hinges at the 
vertices A, A', A1} Ar, A". Let the maximum of all diagonals, the length of 
which- 'differs 'frorn 4n, be <5„ < An. Let u s - n o w fix vertex A and shift the dis- -
tance AxAr in the direction of its own normal towards A. Then each point 
A( gets into such a new position A\ for which A-A <1/f < Although there 
will be such diagonals which still increase, if the change of position is small 
enough, we see immediately that the maximum of the diagonals not s tar t ing 
from A will not surpass a value d ' n < J ' n . This would contradict to our 
assumption that the original polygon is a minimal figure. 

To prove our theorem 5 let us now assume that the minimal f igure 
has a vertex A which has no opposite vertex. Let us consider a line of suppor t 
in A and a line of support through A' parallel to the former one. Let us further 
consider the vertices Ax and A2 neighbouring A. According to our lemma I , 
AA' intersects all diameters. Consequently their endpoints lie on oppos i t e . 
sides of AA' and at least one of them may be* in -A'. W e remark' further 
that the parts of the polygon lying between the vertices A' and A1} resp. Ar 

and A2, neither of which contains A, are contained in two angels, both in 
conformity to the assumption of our lemma 2. Let us now shift A along the 
normal of AXi4a so as to increase its distance from AJA2. Since no diameter 
starts from A it can be attained that dA,.i. e. the maximal distance of A from 
a vertex, is only slightly modified — while all diameters not starting from A 
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•decrease according to our lemma 2. Thus we obtained a polygon each diameter 
of which may start only from A', which fact would contradict lemma 4. 

7. T o prove theorem 3 we construct a t/8
5) the diameter of which is 

n 
smal ler than that of the regular Ua , i. e. smaller than ^sin-g-

First we observe that the funct ion. 

" l -

1 - 1 ^ - 1 + 1 
4x-

1 
X ' - X — I Y 

2x ' 
-

•has only one real zero in the interval 2 < L x ^ 3 and this zero is smaller than 

sin-G-J . Indeed, a numerical calculation yields 

/ ( 2 ) > 0 > / ( ( s i n ~ ] ! ) > / ( 3 ) 

while A / ( X ) < o for 2 ^ x ^ - 3 . 

Denote this real zero of f ( x ) by d and the positive quantities 

, id ' "— 1 by pit pit p 3 . A , 4 d'1 
( d 2 - d - 1 
I 2d 

respectively; we have evidently p 1 + p 2 + p 3 — p 4 = = 0 . 

Let us now consider the octagon determined by the points P ^ x ^ - ^ - , y i = 0 ) , 

d yi=Pi+pX Ft ^ = y . ^ = = P i + P 2 + P S = A ) . > 2 d 
- P t i x ^ - X i , = y e = y s ) , P7(x7 = - x 2 , J > 7 = Y 2 ) , P 8 ( X 8 = - X 1 , 

on the (x ,^) plane, which is obviously symmetric with respect to the y-axis. 
Theorem 3 is proved if we show that this is a i/8 with diameter d. 
At first it is easy to see that P~Pi+l= 1 ( / = 1, 2 , . . . , 8 ; P 0 = P1) . 
The convexity follows from thé inequalities y1<yi<y3<yi, x1<x2>x3>xi 

and from the fact that the projection of the side P 2 P 3 on the x-axis, i. e. 

v2=Y 1 — Pi = 2 ^ , is smaller than that of P 3 P 4 , i .e. v3 = f 1 —p§ = 

Further we have 

^ P a = P ^ o = ^ = № = PJP, = 
and a simple calculation shows that the other diagonals are smaller than d, 
•q. e. d. • 

rd2—d—\ 

(Received. September 15, 1949.) 

5; I am indebted for this example to my wife. 


