## On a geometrical extremum problem.

By Stephen Vincze in Budapest.

1. In what follows we shall consider an extremum problem concerning polygons. ${ }^{1}$ ) Throughout this paper $U_{n}$ will mean a convex polygon with $n$ sides each of which has the length 1 . The diameter of the polygon, i. e. the longest diagonal, will be discussed.

Trying to find a $U_{n}$ with the smallest possible diameter, P. ERDós found in the cases $n=4$ and 5 that the extemal figures are only the corresponding regular ones. It was expected that this is true generally; but Erdôs surprisingly found this not be true for $n=6$. The diameter of the regular hexagon is 2 , while the hexagon, the angles of which are alternately $\pi / 2$ and $3 \pi / 5$, has a diameter $\sqrt{2+\sqrt{3}}<2$.

It would be interesting to find for every $n$ the polygons $U_{n}$ with the minimal diameter $\Delta_{n}$. The results of this paper show that the answer to this question depends upon the numbertheoretical structure of $n$. Our answers are not complete.

As to the part of the question regarding the value of $\Delta_{n}$, we obtain that if $n$ has at least one odd prime factor, then $A_{n}$ equals to the radius of the circumscribed circle of a regular $U_{2 n}$, i..e. we have

Theorem 1. If $n=(2 k+1) 2^{s}$, where $k \geqq 1 ; s \geqq 0$, then

$$
\begin{equation*}
d_{n}=\left(2 \sin \frac{\pi}{2 n}\right)^{-1} \tag{1}
\end{equation*}
$$

Thus the problem of the minimum remains open only if $n=2^{s}>4$. We have for all $n$ the

Theorem 2. If $n \geqq 3$, then

$$
\begin{equation*}
\Delta_{n} \geqq\left(2 \sin \frac{\pi}{2 n}\right)^{-1} \tag{2}
\end{equation*}
$$

As an upper estimation of the value of $\Delta_{n}(n \geqq 3)$ we have

$$
\begin{equation*}
A_{n} \leqq\left(\sin \frac{\pi}{n}\right)^{-1}, \tag{3}
\end{equation*}
$$

[^0]$\Delta_{n}$ being evidently at most as large as the diameter of the regular $n$-gon, which again is not larger than the diameter of its circumscribed circle. This remark as well as our theorem 2 is of significance only if $n=2^{s}$. In case of $s \geqq 3$ I did not succeed in deciding whether or not the sign of equality can be reached in estimation (2) or (3). If $s=3$ something more can be said, namely

Theorem 3. $\Delta_{8}<\left(\sin \frac{\pi}{8}\right)^{-1}$, i. e. the diameter of the regular octagon does not give the minimum belonging to $n=8$.

It seems likely that this holds also for $n \doteq 2^{s}>8$.
As to the question of unicity of the extremal figure the answer is generaliy negative. In this respect the dependence upon the numbertheoretical structure of $n$ is more conspicuous. This is clearly shown by the following

Theorem 4. If the decomposition of $n$ into prime-factors contains at least two odd prime-factors (equal or not), then there are at least two essentially different extremal polygons $U_{n}$. If. $n=2 k+1$, then the regular $n$-gon is among the extremal polygons, if. $n=(2 k+1) \cdot 2^{s}, k \geqq 1 ; s \geqq 1$, it is not.

In the first mentioned case, when $n=p \cdot q \cdot n^{\prime}$ ( $p, q$ being primes, $n^{\prime}$ an integer). I shall show that forming the so-calied Reuleaux-polygons ${ }^{2}$ ) with $p$ resp. $p q$ vertices, they can be completed by new points on the periphery into $n$-gons in such a way that they form extremal $U_{n}$ 's. I could not find all extremal polygons so far, if $n>6$.
2. If the general question is raised, which convex closed curves with a given length $l$ of periphery have the minimal diameter, the well known answer is given by the following formula

$$
\begin{equation*}
l=\frac{1}{2} \int_{0}^{2 \pi} B(\varphi) d \varphi \tag{4}
\end{equation*}
$$

where $B(\varphi)$ means the distance between two parallel lines of support, both belonging to the $\varphi$-direction of the convex curve: As

$$
D=\max _{(\varphi)} B(\varphi) \geqq \frac{1}{2 \pi} \int_{U}^{2 \pi} B(\varphi) d \varphi \doteq \frac{l}{\pi}
$$

holds for the diameter $D$ of the curve, $D$ takes its minimal value for, and only for a curve of constant width.

[^1]3. The inequalities (2) and (3) lead to the inequality
$$
\frac{\frac{\pi}{n}}{\sin \frac{\pi}{n}} \leqq \pi \frac{d_{n}}{n} \leqq \frac{\frac{\pi}{2 n}}{\sin \frac{\pi}{2 n}}
$$
from which it follows for the asymptotical value of the minimal diameter $\Delta_{n}$ that
$$
\lim _{n \rightarrow \infty} \frac{d_{n}}{n}=\frac{1}{\pi} .
$$
4. Now we turn to the proof of our theorem 2 ; since theorems 1 and 4 can be deduced without difficulty from it. That our extremal problem has at least one solution, it follows easily by using a classical argument.

For the proof of our theorem 2 we shall need the following:
Theorem 5. The necessary condition for a polygon $U_{n}$ being a minimal figure is that each vertex should have an opposite vertex, i. e. a vertex in the distance equal to the diameter.

We shall prove this theorem in the next paragraph, for the moment let us assume that it has been proved.

Remark: It follows from the example constructed by ERDOOS in the case $n=6$ that our condition is not sufficient. The regular hexagon possesses the above mentioned property, but $\mathrm{it}_{1}$ is no minimal figure.

We shall use also the following theorem ${ }^{3}$ ):
Any set with the diameter 4 may be completed to form a domain, the boundary of which is a curve of constant width, with the same diameter.

Finally we shall use the following theorem ${ }^{4}$ ):
Any closed domain the boundary of which is a curve of constant width $\Delta$, contains together with two of its points $P_{1}$ and $P_{2}$ all circular arcs passing across $P_{1}$ and $P_{2}$, which are smaller than a half circle and the radius of which is $\geqq \Delta$.

To prove our theorem 2, let us now consider a polygon which is a minimal figure with the diameter $\Delta_{n}$. Let us complete it in some way to form a domain with the boundary $G$ a curve of constant width. $G$ has the diameter resp. width $\Delta_{n}$ and periphery $\pi \Delta_{n}$ : We prove that every vertex of the polygon is a point of curve $G$. Assuming that vertex $A$ does not lie on curve $G$, let us consider the opposite vertex $A^{\prime}$ of $A$ and continue $\overrightarrow{A^{\prime} A}$ in this direction. This line would intersect $G$ at the point $A^{\prime \prime}$ for which $\overline{A^{\prime} A^{\prime \prime}}>\Delta_{n}$ would hold.

We denote by $J_{i}$, the part of $G$ between the $i$ th and $(i+1)$ th vertex $A_{i}$ resp. $A_{i+1}$ i. e. the vertices of the minimal figure. The length of $J_{i}$ shall
${ }^{9}$ ) See loc. cit. 2), p. 130.
${ }^{4}$ ) See loc. cit. ${ }^{2}$ ), p. 129.
be $s_{i}$. But the closed domain determined by $G$ contains with its points $A_{i}$ and $A_{i+1}$ the circular arc $C_{i}$ the radius of which is $A_{n}$ (according to theorem ${ }^{3}$ )). We observe that in the circle of radius $A_{n}$ the opening of the central angle belonging to the arc $\widehat{A_{i} A_{i+1}}$ is evidently independent of $i$; it may be denoted by $\omega$. Now the length of the circular arc is $\omega \Delta_{n}$. Let us now consider the convex, closed curves $L_{1}$ and $L_{2} \cdot L_{1}$ consisting of the arc $J_{i}$ and of $A_{i} A_{i+1}$, while $L_{2}$ of $C_{i}$ and of $\bar{A}_{i} A_{i+1}$. Evidently $L_{1}$ contains $L_{2}$; hence according to a well-known theorem the periphery of $L_{1}$ is at least as large as the periphery of $L_{2}$; or in other words the length of the circular arc is not longer than that of the arc $J_{i}: \omega A_{n} \leqq s_{i}$. If these inequalities are summed with regard to the index $i$, we obtain $n \omega A_{n} \leqq \sum_{1}^{n} s_{i}=\pi \Delta_{n}$, thus

$$
\begin{equation*}
\omega \leqq \frac{\pi}{n} . \tag{6}
\end{equation*}
$$

But in consequence of the definition of $\omega$, we have

$$
\sin \frac{\omega}{2}=\frac{1}{2 A_{n}}, \quad A_{n}=\left(2 \sin \frac{\omega}{2}\right)^{-1}
$$

thus, by (5),

$$
\Delta_{n} \geqq\left(2 \sin \frac{\pi}{2 n}\right)^{-1},
$$

which proves our theorem 2.
5. To prove our theorems 1 and 4 we proceed as follows. From theorem 2 it obviously follows that the value of $\Delta_{n}$ cannot be smaller than $\left(2 \sin \frac{\pi}{2 n}\right)^{-1}$ : Hence theorem, 1 will be proved if we can show that this lower bound is actually attained if $n=(2 k+1) 2^{s}$. In the case $n=2 k+1$ this follows simply taking a regular $n$-gon; this shows at the same time that in this case the regular $n$-gon is one of the the extremal $n$-gons. If $n$ is even, the diameter $d_{n}$ of the regular $n$-gon is

$$
d_{n}=\left(\sin \frac{\pi}{n}\right)^{-1}>\left(2 \sin \frac{\pi}{2 n}\right)^{-1}
$$

hence if we show, in the case $n=(2 k+1) 2^{s}, k \geqq 1, s \geqq 1$, that for an other polygon $U_{n}$ the lower bound $\left(2 \sin \frac{\pi}{2 n}\right)^{-1}$ can be attained, this will show that $\left(2 \sin \frac{\pi}{2 n}\right)^{-1}$ is the minimal value also in that case and that the corresponding. regular $n$-gon is not among the extremal polygons.

Let $p$ be an odd factor of $n$. Let us consider the $p$-sided Reuleauxpolygon with the constant width, i. e. with the diameter $\Delta_{n}=\left(2 \sin \frac{\pi}{2 n}\right)^{-1}$ -

From any of its vertices the opposite circular arc can be seen at an angle $\frac{\pi}{p}$. We can inscribe in this arc a broken line consisting of $\frac{\pi}{p}: \frac{\pi}{n}=\frac{n}{p}$ sides of length 1. The union of these broken lines forms a polygon $U_{n}$ with diameter $\Delta_{n}$. Taking different odd factors of $n$ and applying the same procedure we obtain different Reuleaux-polygons, i. e. different minimal $U_{n}$ polygons. This completes the proof of our theorem 1.
6. Now we turn to the proof of our theorem 5. For this purpose we need the following four lemmas:

Lemma 1. If parallel lines of support can be drawn through the end points of a chord of a convex plane cuirve, then this chord intersects ail diameters:

Let the chord $C$ have the above mentioned property and let the parallel lines of support passing through its endpoints be $s_{1}$ and $s_{2}$. If a diameter $D^{-}$would exist which did not intersect $C$, then $D$ would lie in one of the areas determined by $s_{1}, s_{2}$ and $C$. $D$ being a diameter the normals passing through its endpoints are lines of support, i. e. they contain the curve. and consequently $C$. It is easy to see that this is only possible if $C$ and $D$ have at least one common endpoint.

Lemma 2. Consider two angles $\alpha$ and $\beta$ issued from a point $E$ of a straight line $e$ and lying in the same halfplane determined by $e$, and-having no common' points except $E$. If we turn a round $E$ towards $\beta$ (resp. in the opposite direction, but in the same halfplane) so that they should have no common point except $E$; then each point of $\alpha$ will get nearer (resp. farther) to each point of $\beta$ except $E$ itself.

Let the point $A$ of the angle $\alpha$ be denoted in its new position by $A^{\prime}$ and let $B$ be a point of $\beta$. Let $a$ be the normal of the distance $\overline{A A^{\prime}}$ in its centre. Then all points which are nearer to $A^{\prime}$ than to $A$ form the halfplane determined by $a$ and containing $A^{\prime}$. But at the same time all points of $\beta$ are contained there too, q. e. d.

Lemma 3. If $V_{n}$ is a minimal figure having an angle $\pi$, then we can construct an other minimal figure. $V_{n}^{\prime}$, all angles. of which are $<\pi$.

If the angle of $V_{n}$ in the vertex $A$ is $\pi$, then $A$ can not have an opposite vertex, for the opposite vertex of $A$ would be at a greater distance from one of the two neighbouring vertices of $A$. Let $A_{1} A$ and $A A_{2}$ be the two sides of $V_{n}$, which form an angle $\pi$ in the point $A$, and let $A^{\prime}$ be the vertex through which a line of support parallel to ${\overline{A_{1} A}}_{2}$ passes. According to lemma 1 all diameters of the polygon intersect the chord $A A^{\prime} ;$ therefore the endpoint of the
diameters lie on both sides of this chord. It must be remarked, that the part of $V_{n}$ between $A_{1}$ and $A^{\prime}$, which does not contain $A$, as well as its part between $A^{\prime}$ and $A_{2}$, which does not contain $A$, lie in such angles, which are on orie side of the supporting line through $A^{\prime}$. One of these angles is determined for example by. the line $A^{\prime} A_{1}$ and by that side of $V_{n}$ starting from $A^{\prime}$ which lies on the same side of $A^{\prime} A$ as $A_{1}$. Let us now insert hinges at the vertices $A_{1}, A, A_{2}, A^{\prime}$. Let us furthermore fix the vertex $A^{\prime}$ and the line of support going through it, and let us shift the vertex $A$ in the direction of the normal of $A_{1} A_{2}$ and away from $A^{\prime}$. According to our lemma 2, all diameters except those starting from vertex $A^{\prime}$ will decrease.

In the following we may assume that two sides of a minimal figure do not lie on one line, i. e. by applying our hinge method the convexity will not be violated.

Lemma 4. In the case of minimal figures not all diameters. start from the same vertex.

Let us suppose that all diameters would start from the vertex $A$. Let the order (in a certain direction) of the opposite vertices be $A_{1}, A_{2}, \ldots, A_{r}$. Let the vertex preceeding $A_{1}$ in the mentioned sense be $A^{\prime}$, and the vertex succeeding $A_{r}$ be $A^{\prime \prime}$. (In consequence of the trivial fact that in the case of $n>3, A_{n}>1, A^{\prime}$ and $A^{\prime \prime}$ cannot coincide with $A$.) Let us insert hinges at the vertices $A, A^{\prime}, A_{1}, A_{r}, A^{\prime \prime}$. Let the maximum of all diagonals, the length of which differs from $A_{n}$, be $\delta_{n}<\Delta_{n}$. Let us now fix vertex $A$ and shift the distance $A_{1} A_{r}$ in the direction of its own normal towards $A$. Then each point $A_{i}$ gets into such a new position $A_{i}^{\prime}$ for which $\overline{A_{i}^{\prime} A} \leqq \Delta_{n}^{\prime}<A_{n}$ : Although there will be such diagonals which still increase, if the change of position is small enough, we see immediately that the maximum of the diagonals not starting from $A$ will not surpass a value $\delta_{n}^{\prime}<\Delta_{n}^{\prime}$. This would contradict to our assumption that the original polygon is a minimal figure.

To prove our theorem 5 let us now assume that the minimal figure has a vertex $A$ which has no opposite vertex. Let us consider a line of support in $A$ and a line of support through $A^{\prime}$ parallel to the former one. Let us further consider the vertices $A_{1}$ and $A_{2}$ neighbouring $A$. According to our lemma i, $A A^{\prime}$ intersects all diameters. Consequently their endpoints lie on opposite. sides of $A A^{\prime}$ and at least one of them may be in $A^{\prime}$. We remark further that the parts of the polygon lying between the vertices $A^{\prime}$ and $A_{1}$, resp. $A^{\prime}$ and $A_{2}$, neither of which contains $A$, are contained in two angels, both in conformity to the assumption of our lemma 2. Let us now shift $A$ along the normal of $\overline{A_{1} A_{2}}$ so as to increase its distance from $\overline{A_{1} A_{2}}$. Since no diameter starts from $A$ it can be attained that $\delta_{A}$, i. e. the maximal distance of $A$ from a vertex, is only slightly modified - while all diameters not starting from $A$
decrease according to our lemma 2. Thus we obtained a polygon each diameter of which may start only from $A^{\prime}$, which fact would contradict lemma 4.
7. To prove theorem 3 we construct a $U_{8}{ }^{5}$ ) the diameter of which is smaller than that of the regular $U_{8}$, i. e. smaller than $\left(\sin \frac{\pi}{8}\right)^{-1}$.

First we observe that the function

$$
f(x)=\sqrt{1-\left(\frac{x-1}{2}\right)^{2}}+\sqrt{1-\frac{1}{4 x^{2}}}+\sqrt{1-\left(\frac{x^{2}-x-1}{2 x}\right)^{2}}-\sqrt{x^{2}-1}
$$

has only one real zero in the interval $2 \leqq x \leqq 3$ and this zero is smaller than $\left(\sin \frac{\pi}{8}\right)^{-1} \therefore$ Indeed, a numerical calculation yields

$$
f(2)>0>f\left(\left(\sin \frac{\pi}{8}\right)^{-1}\right)>f(3)
$$

while $\frac{d}{d x} f(x)<0$ for $2 \leqq x \leqq 3$.
Denote this real zero of $f(x)$ by $d$ and the positive quantities $\sqrt{1-\left(\frac{d-1}{2}\right)^{2}}, \sqrt{1-\frac{1}{4 d^{2}}}, \sqrt{1-\left(\frac{d^{2}-d-1}{2 d}\right)^{2}}, \sqrt{d^{2}-1}$ by $p_{1}, p_{2}, \dot{p}_{3}, p_{4}$, respectively; we have evidently $p_{1}+p_{2}+p_{3}-p_{4}=0$.

Let us now consider the octagon determined by the points $P_{1}\left(x_{1}=\frac{1}{2}, y_{1}=0\right)$, $. P_{2}\left(x_{2}=\frac{d}{2}, y_{2}=p_{1}\right), P_{3}\left(x_{3}=\frac{d^{\dot{2}}-1}{2 d}, y_{3}=p_{1}+p_{2}\right), P_{4}\left(x_{4}=\frac{1}{2}, y_{4}=p_{1}+p_{2}+p_{3}=p_{4}\right)$, $P_{5}\left(x_{5}=-x_{4}, y_{5}=y_{4}\right), P_{6}\left(x_{6}=-x_{3}, y_{6}=y_{3}\right), P_{7}\left(x_{7}=-x_{2}, y_{7}=y_{2}\right), P_{8}\left(x_{8}=-x_{1}, y_{8}=y_{1}\right)$
on the $(x, y)$ plane, which is obviously symmetric with respect to the $y$-axis.
Theorem 3 is proved if we show that this is a $U_{8}$ with diameter $d$.
At first it is easy to see that $\overline{P_{i} P_{i+1}}=1 \quad\left(i=1,2, \ldots, 8 ; P_{9}=\dot{P}_{1}\right)$.
The convexity follows from the inequalities $y_{1}<y_{2}<y_{3}<y_{4}, x_{1}<x_{2}>x_{3}>x_{4}$ and from the fact that the projection of the side ${\overline{P_{2}} P_{3}}^{0}$ on the $x$-axis, i. e. $v_{2}=\sqrt{1-p_{2}^{2}}=\frac{1}{2 d}$, is smaller than that of $\overline{P_{3} P_{4}}$, i. e. $v_{3}=\sqrt{1-\mu_{3}^{2}}=\sqrt{\frac{d^{2}-d-1}{2}}$.

Further we have

$$
\bar{P}_{1} P_{5}=\bar{P}_{2} P_{6}=\bar{P}_{2} P_{7}=\bar{P}_{3} P_{7}=\bar{P}_{4} P_{8}=d,
$$

-and a simple calculation shows that the other diagonals are smaller than $d$, q. e. d.
(Received September 15, 1949.)
${ }^{5}$ ) I am indebted for this example to my wife.


[^0]:    ${ }^{1}$ ) Added in proof: After my paper was finished, I have read the paper of K. Reinhardt, Extremale Polygone gegebenen Durchmessers, Jahresbericht der Deutschen Math.Vereinigung, 31 (1922), pp. 251-270, which deals with a nearly related subject and contains many of. my results. Nevertheless I think niy paper has some proper interest because of $\mathrm{i}_{\text {ts }}$ different point of view and treatment.

[^1]:    ${ }^{2}$ ) See for ex. T. Bonnesen-W. Fenchel, Theorie der konvexen Körper (Berlin, 1934), .p. 130 .

