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О с х о д и м о с т и т р и г о н о м е т р и ч е с к и х рядов. 

Д . М Е Н Ь Ш О В (Москва). 

Введение. Настоящая статья содержит краткий обзор работ по теории 
тригонометрических рядов, выполненных автором за последнее время. В пер-
вых двух параграфах (§ § 1 и 2) рассматриваются ряды Фурье от непрерывных' 
функций; в последних двух параграфах (§§ 3 и 4) — произвольные т р и -
гонометрические ряды. 

§. |. К а к известно, при изучеЕши тригонометрических рядов мы встре-
чаемся с бол ьшими трудностями. Повидимому, наибольшие трудности связаны 
с вопросом о сходимости рядов Фурье от суммируемых функций. Доказано, 
что существуют ряды Фурье от суммируемых функций, расходящиеся в 
каждой точке [2]. Однако остается открытым вопрос о сходимости почти 
всюду рядов Фурье от измеримых функций с суммируемым квадратом. Мы 
не можем даже ответить на вопрос о сходимости почти всюду ряда Фурье 
от любой непрерывной функции. 

Известно, что существуют непрерывные функции, ряды Фурье которых 
расходятся в отдельных точках [12]. Однако во. всех примерах таких непре-
рывных функций, которые известны до настоящего времени, мера множества 
точек, расходимости соответствующих рядов Фурье всегда равняется нулю, 
хотя это множество, вообще говоря, может иметь мощнось континуума и 
даже может быть второй категории. . 

Интересно отметить, что все расходящиеся ряды Фурье от непрерыв-
ных функций, которые были сперва найдены, обладали тем свойством, что 
последовательности их частных сумм содержали равномерно сходящиеся под-
последовательности. Именно, метод построения таких рядов Фурье состоял 
в следующем: определяли тригонометрический ряд, расходящийся в отдель-
ных точках, у которого последовательность' частных сумм содержала иод-, 
последовательность, равномерно сходящуюся к некоторой функции /(.г). 
Отсюда, далее, заключали, что f (x ) непрерывна и что первоначально 
построенный тригонометрический ряд является рядом Фурье от этой 
Функции j (х). 

') Приведенный здесь метод рассуждения принадлежит L . .I'KJEii'y [12]. 
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В связи с изложенным методом построения расходящихся рядов Фурье от 
непрерывных функций возник следующий вопрос: не будет ли последователь-
ность частных сумм любого ряда Фурье от непрерывной функции всегда содер-
жать равномерно сходящуюся подпоследовательность ? Как выяснилось, эта гипо-
теза. не оправдывается. Именно, оказалось, что существует ряд Фурье от 
непрерывной функции, у которого любая подпоследовательность частных 
сумм расходится по крайней мере в одной точке [8]. Однако можно доказать 
следующую теорему: 

Т е о р е м а I. Любую функцию /(х), непрерывную для всех х и 
имеющую период 2я, можно представить, как сумму двух функций ¡х(х) 
и /2(х), обладающих теми же свойствами, как и функция /(ж), и таких 
что последовательность частных сумм ряда. Фурье каждой из этих двух 
функций содержит подпоследовательность, равномерно сходящуюся для 
всех х [8]. 

Изложим вкратце идею доказательства этой теоремы. Для данной функ-
ций /(.т) мы определяем последовательность тригонометрических полиномов 
Т^х), / = 1 , 2 . . . . , и последовательность натуральных чисел пг / = 1, 2 , . . .., 
следующим образом. Положим 

Т\ (х) == 1, / 7 1 = 1. 

Предполагая затем, что тригонометрические полиномы 7\ (х) и числа п8 уже 
•определены для всех 5 = 1 , 2 , . . . , I—где / > 1 , обозначим через п1 наимен-
щее из натуральных чисел, превосходящих все числа пн и г8, 5 = 1 , 2, . . . , I—¡Л. 
где V? есть порядок полинома 7\ (х), т. е. 

»>« . • • 

Т,(х) = - у + ^ (а со8 / X Ч- с/, /Х-). 
7 = 1 ' 

Определим затем тригонометрический полином 7'г (.г) так, чтобы для всех х 
выполнялось неравенство 

п1-

Таким образом мы определим шаг за шагом тригонометрические полиномы 
Т,( х) и натуральные числа пг для всех 1=1,2, . . . . 

Ясно, что ряд 

• •£\Т1(х)-Т1_1(х)\ 
1=2 

сходится равномерно для всех х и, кроме того, 

Т1(х)+^[Г1(х)-Г,_1(х)]=1{х) 
1=2 

для любого а'. Если положить 
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U(x) = ВД+2 [T,i+1(x)-T.2j(x)], f,(x)=j?[T2j(x) - T,^(x)\, 
i=1 . i= 1 

то можно доказать, что функции /', (:i,j. и /2(.т) удовлетворяют всем условиям 
теоремы I . 

Теорема I является частным случаем более общей теоремы, которая 
формулируется следующим образом : 

Т е о р е м а II. Предположим, что / (х) есть функция с периодом 
2.т, суммируемая на сегменте [—я,я-] и непрерывная в каждой точке 
некоторого сегмента [<?,&]. Тогда эту функцию можно представить в 
виде, суммы двух функций /Х(х) и /2 (х), обладающих теми же свойствами, 
как и функция f(x), и таких, что последовательность частных сумм ряда 
Фурье каждой из этих двух функций содержит подпословательность, 
равномерно сходящуюся на сегменте [а, Ь] [8]. 

§ 2. Как было уже упомянуто, существуют ряды Фурье от непрерыв-
ных функций, расходящиеся на множестве мощности континуума. Тогда воз-
никает вопрос, нельзя ли „улучшить" сходимость любого ряда Фурье от 
непрерывной функции, изменяя эту функцию на множестве сколь угодно 
малой меры. Оказывается, что такое улучшение действительно возможно ; а. 
именно, оказывается, что любую непрерывную функцию можно измонигь на. 
множестве сколь угодно малой меры таким образом, что для полученной 
новой функции ряд Фурье будет равномерно сходиться на всем бесконечном 
интервале — о о < х < - ) ~ о о [7]. 

Как доказал Н. ЛУЗИН [3], любая измеримая функция, конечная почти 
всюду на некотором сегменте [fl, ft], непрерывна на совершенном множестве 
Р с [я, /У|, мера которого больше b — а — е, где к—любое, наперед заданное 
положительное число. В таком случае из сказанного выше следует, что 
должна быть справедлива 

Т е о р е м а III. Любую измеримую функцию f(x), конечную почти всюду 
на сегменте [—яг,я], можно изменить на множестве сколь угодно малой 
меры таким, образом, чтобы полученная новая функция была непрерывна 
и чтобы ее ряд Фурье равномерно сходился на всем бесконечном интервале 
— оо < х < -+- оо [7]. 

Доказательство теоремы ИТ опирается на две леммы, пз которых пер-
вая нужна для доказательства второй. 

Л е м м а 1. Пусть заданы два натуральных числа q и v, v>8, и ка-
кой-нибудь сегмент [c,d]. Положим 

(1-С 
~Vq~> Cs = с + s " <\ а, = с,— <* (s—0, 1 , 2 , . . . , Г/).. 
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Тогда 

1 <7s - * 
где L абсолютная постояния. 

Л е м м а 2. Пусть заданы сегмент [а, Ъ\, лежащий на [-я, я], и неко-
торое действительное число у. Тогда можно определить для каждого поло-
жительного числа s и для каждого натурального числа v > 8 функцию у (х) 
и измеримое множество Е, которые обладают следующими свойствами : . 

1 ). Ф(х) непрерывна на | — .т. .т| и изображается геометрически ло-
маной линией с конечным числом звеньев; 

2) tp(x) — 0 для — я <х<а и. для Ъ<х<я; 

3) m e s £ > ( & — а ) ( l Е е ( а , Ь); 2) 

4 ) V ( x ) = y ( x i E ) ; 

о) \y(x)\<2\y\v ( — я < х < я) ; . 
о 1> 

6) j f VJ (О dt j < £ для любых а и ß, удовлетворяющих условию 
а 

— я. < а < ß < я ; 

(— « х ж + оо, п = 1 , 2 , . . . \ 
а 

где В есть абсолютная постоянная. 

Приведем эскиз доказательства теоремы III. Прежде всего, в силу заме-
чания, сделанного в начале § 2, эту теорему достаточно доказать для не-
прерывных функций f (х). Тогда мы можем написать 

<2, 1) f{x) = 2 ф« (®) ( - я ^ * ^ 

где- Фт(х), /77. = 1 , 2 , . . . , ступенчатые функции, т. е. каждая из них посто-
янна на любом из интервалов в конечном, числе полученных подразделением 
•сегмента [— я:,я]. Мы можем предположить., кроме того, что 

( 2 , 2 ) | Фт(х) | < ja ( - я <х< я, 7?) =2,3,... ), 

где ст есть любое, наперед заданное положительное число. 

Обозначим, через - J ) m , j = . 1, 2 , . . „ , N „ ¡ , интервалы постоянства 
•функции Фт{х). Мы можем всегда предположить, Ч'Ю длина каждого из них 
меньше IL. 

2) Мы обозначаом через (а, />) открытый интервал, причем предполагаем, что и<1>. 
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Положим 
т ' 

(2. 3) ( т = 1 , 2 , . . . ) 
.<«=1 

и обозначим через (Ьк,Ь'к), Ьк<Ь'к, к—.1,2, . . . , все интервалы 

1 < / т = 1 , 2, . . . , перенумерованные таким образом, чтобы выполня-

лось неравенство / < к, если (Ь п Ь ' ^ ^ Л и , (Ьк, Ь'к) и, в то же время, 

и < т или ц=т, / < / . Тогда ясно, что каждая и з функций Фт(х), т—1.2,..., 

равна постоянной величине ук на интервале (/?,., Ь'к), где к есть любое 

натуральное число, удовлетворяющее неравенству 1>т_1<к<г'т. 

Возьмым теперь последовательность натуральных чисел пь, к— 1, 2, . . . , 
точные значения которых будут определены ниже, и будем рассматривать 
натуральное число т, как функцию от к, определяемую из неравенства 

(2, 4) , ? т - 1 < к < г т . 

Положим: 

( 2 , 5 ) « * = - 4 г (к=1, 2,...).г 
к к 

дг' = 
9 Я 

а 
+ 1 2 т + 3 , 3 ) (2, 0) 

откуда следует, что 

(2 , -7) 8 < Д г ; < ^ 2 » + 5 . 

Так как [Ь 1 с >Ь' к ]с : [—я, я ] , /> = 1, 2. . . . , то для любого натуральною 
I; мы можем определить на сегменте [ — я , я ] функцию 1рк(х) и измеримое 
множество Ек, удовлетворяющие всем условиям,. 1)—7), перечисленным в 
лемме 2, в которых нужно взять Ек вместо у(х), Е и [¿>4, Ь'к], Ук, е

к , 

А7'т вместо [а, Ь], у, V. Затем мы определяем функции 1рк(х) вне сег-
мента [ — я , я] , как периодические функции с периодом 2я . 

П р и н и м а я ' в о внимание свойства функций (.г) и Фт(х), мы можем 
доказать, что 

( 2 , 8 ) 1М.г)=Ф т ( .т ) ( х $ Е к , к = 1 , 2 , . . . ) , 

где натуральное число т есть функции от к, определяемая и з неравенства (2, 4). 

И з определения функций <рк(х) следует, что эти функции имеют период. 
2 я и абсолютно непрерывны на любом конечном интервале. В таком случае 
ряд Фурье от каждой из функций Шк(х) сходится равномерно к этой функ-
ции на бесконечном интервале ( — о о , - ) - с о ) . Следовательно, 

3) Мы обозначаем через 
что о < 2тг. 

2л 271 гт целую часть от При этом мы предполагаем. 



О сходимости тригонометрических рядов. 175 

(2, 9) M*)=Jnk(x)+enh(x). ( к = 1 2 , . . . , /г = 1, 2 , . . . ) , 

где • 

г / ч 1 *ГП , , \ s i " " 0- •') и 
J»Áx)=- J М х ) — j ^ r - d l 

и «Bi(JC) стремиться равномерно к нулю на интервале ( — о о , + о о ) , когда 
п ->- оо и к сохраняет постоянноё значение. 

Определение функций ipiXx) и множеств Еъ зависит от выбора натураль-
ных чисел Пк, к— 1. 2 , . . . . Определим теперь эти числа следуонцим обра-
зом. Положим / í г = 1. Предполояшм затем, что числа п1 у ж е Определены для 
всех натуральных /, удовлетворяющих условию 1 < / < к, где к > 1. И з п р е -
дыдущего следует, что функция ipt(x) определена на интервале ( — 0 0 , 0 0 ) , 
если задано число п г Следовательно, в нашем случае функции уД.г) о п р е -
делены для всех /, удовлетворяющих условию 1 < /</•'. Тогда, в силу равенства 
(2, 9), для тех же / и для всех натуральных чисел п будут определены 
функции e„i(x), причем, как мы знаем, для каждого фиксированного I эти 
функции стремятся равномерно к нулю на интервале (— оо, - | - о о ) , когда 
п —>• оо. Отсюда следует, что мы можем определить натуральное число пк 

для которого удовлетворяются условия : 
к— 1 

(2, 10) 

í=I 
(2, 11) . ' п*>/1*_1. 

Д. ( — о о < х < - ( - о с , п > Пк) 
к 

Таким образом, мы определяем число щ', если уже орределеиы числа 
n t для /, удовлетворяющих неравенству 1 < / < А'. Следовательно, отправляясь 
от числа пЛ, мы можем определить шаг за шагом все числа /и-, к = 1, 2, . . . • 
Тогда будут определены все функции i f i ( x ) и все множества Еъ, причем 
эти функции и множества будут обладать всеми упомянутыми выше 
свойствами. 

Пользуясь свойствами функций '<рк{х), мьт можем .доказать, что ряд 
с общим членом ipk(x) равномерно сходится на бесконечном интервале 
( — о о ' , - ( - о о ) . Тогда функция G(x), определяемая из равенства 

( 2 , 1 2 ) , G(x) - \>,(:»:) 

будет непрерывна для всех х. Кроме того, так как каждая из функций 
лрк(х) имеет период 2я, то функция G (х), обладает тем же свойством. 

Полагая >•„, • ш 

(2, 18) Р - т = ^ ' Е к , l J - ° - m , 
k=v„,—\+\ т=1 

мы получаем на основании свойств множеств Et [см: условие. 3) леммы 2; 
и неравенства (2, 7) : 
(2, 14) m e s Î2 > 2л —a,. Q с [ — я , я] . 
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Далее, пользуясь свойствами функций ipk{x) и Фт{х), мы можем доказать, что 

( 2 , 1 5 ) G(x ) = /(ж) 

Наконец, принимая во внимание равенство (2, 9), наравенство (2, 10) и 
свойства функций 1рк(х), мы можем доказать что ряд Фурье от функции 
ti (х) равномерно сходится на бесконечном интервале (— оо, -)- оо). 

Итак, для любого положительного числа о мы можем определить мно-
жество -- и функцию G(ж), непрерывную для всех х , . д л я которых удовлет-
воряются . условия (2, 14) и (2, 15), причем ряд Фурье от функции G ( х ) 
равномерно сходится на бесконечном интервале (— оо, -}- оо) . Иначе говоря, 
мы можем изменить функцию / (ж), определенную, на сегменте [-я, я], на 
множестве сколь угодно малой меры таким образом, чтобы для полученной 
новой функции . G(.г) ряд Фурье сходился равномерно на ( — 0 0 , 4 - 0 0 ) . 
Тим самым теорема III доказана. 

§ 3 . 13 этом параграфе мы будем рассматривать- тригонометрические 
ряды общего вида, т. е. такие, которые не обязательно являются рядами 
Фурье от суммируемых функций. В том случае, когда мы имеем ряд Фурье 
от суммируемой функции, последовательность его частных сумм всегда 
содержит сходящуюся почти всюду подпоследовательность. В самом деле, 
если Sh(X), п — 1 , 2, . . . являются частными суммами ряда Ф у р ь е от сум-
мируемой функции, /(.ж), чо, как известно [1], 

п 
l im . / ' I S„ (x ) — / (ж) г/ж = 0, . 

11->-Ю —п 
где г есть любое постоянное положителное число, меньшее единицы. 4) 
Отсюда следует, что последовательность' функций SN{Х), /7 = 1 , 2 . . . , схо-
дится по мере и, следовательно, содержит сходящуюся почти всюду под-
п следнва'1 ельиость. 

Предположим теперь,, что 
оэ 

(3, 1) iL« 4 ( А , , c o s /7ж 4 - BN sin л.ж). 
н=1 

есть произвольный тригонометрический ряд, коэффициенты которого стрем-
ятся к нулю при /7 —>- оо. Возникает вопрос, содержит ли последовательность 
частных сумм такого ряда, сходящуюся почти всюду подпоследовательность. 
Как выяснилось, это предположение не оправдывается; а именно, можно 
определить тригонометрический ряд (3, .1), удовлетворяющий условию 
(3, 2) lim АП = 0, l im BN = О, 

íí=CO JÍ=CO 
у которого любая .подпоследовательность частных сумм не сходится почти 
всюду к конечному пределу [9]. 

') Иначе говоря, последовательность . функций 5„(л:), '7 — 
дптся на сегменте [ — п , я]. относительно показателя 1 — г [11]. 

1, 2, . . сильно схо-
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Интересно изучить те тригонометрические ряды, последовательное'!!! 
частных сумм которых содерл:ат сходящиеся почти всюду подпоследователь-
ности. В частности, можно спросить себя, каковы тригонометрические ряды, 
которые можно получить путем, сложения таких рядом. Можно, доказать, 
что любой тригонометрический ряд (3, 1) может быть представлен в виде 
•суммы двух тригонометрических рядов 

( з , з ) - f - + ^ ( a ' u C o s n x + b'asinnx) . . 
л=1 • 

II 

а" 
<3, 4) 4 - ^ ( a " c o s n х + b',[ sin /гж), 

• п=1 ' 

для каждого из которых последовательность частных сумм содержит под-
последовательнотсь, сходящуюся почти всюду к конечному пределу 5 ) . П р и 
этом, если коэффициенты первоначалного ряда (3, 1) стремятся к нулю 
при п •-•>- оо, то ряды (3, 3) и (3, 4) можно определить таким образом, чтобы 
их коэффициенты также стремились к нулю при п — o o . . 

Это утверждение является частным случаем более общей теоремы, для 

формулировки которой мы введем следующее определение. Будем называть 

тригонометрический ряд (3, универсальным, если для любой измеримой 

функции /(ж), имеющей в каждой точке сегмента [—гг, я ] определенное 

значение 6 ) можно определить последовательность частных сумм SN.(ж), 

i = l , 2 , . . . , этого ряда, с возрастающими номерами т , которая сходится 

к /(.ж) почти всюду на [—я:, я-]. 

Можно доказать следующую теорему. 

Т е о р е м а I V . Всякий тригонометрический ряд (3, 1) есть сумма 

•двух универсальных тригонометрических рядов (3, 3) и (3, 4), коэффициентны 

которых удовлетворяют условиям 

l im s u p J а'„ í < l im s u p ¡ an |, l im s u p ¡ q',' \ < lim s u p | a„ ¡, 
/i CC II—eso n — o o n—>~ OO 

lim s u p i Ъ'п j < l im s u p j bn |, l im s u p ¡ b'ñ | < Hm s u p \bn\, [9].' 
it — o o it oo n — o o a — >- oo 

Ясно, что упомянутое выше утверждение является непосредственным 
•следствием теоремы I V . 

Доказательство теоремы I V опирается на три леммы, из которых 
первая нужна для доказательства второй. 

и) Номера членов получаемых подпоследовательностей для рядов (3, 3) и (3, 4), 
вообще говоря, различны. 

с) f(x) может быть равна + 0 0 или — оо на множестве положительной меры. 

12 
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Л е м м а 1. Каковы бы ни были натуральные числа т и р, т < р. 
можно определить тригонометрические ряды 

со 
1 (а'п c o s пх + Ъ'п s in пх), 

ii=p 
со 

c o s тх + ^ (a" c o s пх + Ь" s in пх), 
п—р 

00 
s in тх + У (а'п" c o s пх + b,'."sin пх), 

п=р 

которые сходятся почти всюду к нулю и коэффициенты которых удовлет-
воряют условиям 

• \а'п\<с,\Ъ'п\<с,\а;:\<с,\Ь:!\<с,\а::'\<с,\Ь'п"\<с • 

при п = р + 1, р + 2 . . . г д е с не зависит от т и р. 

Л е м м а 2. Пусть f(x) — любая измеримая функция, конечная 
почти всюду на сегменте [--я, я]. Для всякого положительного числа е и 
для каждого натурального г можно определить тригонометрический 
полином г 
(3 Т ( х ) = ^ (cncos nx + diisin пх) 

П—Г 

и измеримое множество Е, которые обладают следующими свойствами ; 

a) If(x)-T(x)\<£ (х£Е); 

ß) те&Е>2я— е, Ес[— я , я ] ; 

;') I Cn I < « , I dn I < « (n—r, r - f - 1 , . . v ) . 1 ) 

Л е м м а 3. Какова бы ни была измеримая функция f(x), имеющая 
в каждой точке сегмента [—я, я] определенное значение, конечное или 
бесконечное, можно определить последовательность различных тригоно-
метрических полиномов т„(х) v = í , %..., с рациональными коэффициен-
тами, удовлетворяющих условию 

lim т,,(х) = ](х) 
• V—>-Ю 

почти всюду на [ — я , я] . 

Приведем эскиз доказательства теоремы I V . Перенумеруем все три-
гонометрические полиномы с рациональными коэффициентами в каком-нибудь 
порядке и обозначим их через 
(3, 6) . Тг(х), Га(ж), . . Тт(х),... 

7) Доказательство этой леммы, отличное от доказательства автора, было также 
дано А. Н. Колмогоговым (доказательство не было опубликовано). 
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Определим рекуррентным образом две возрастающие последовательности 
неотрицательных целых чисел: 

(3, 7) w0, . . . , f.im, . . . 

(3, 8) vu v2,..., vm,... 

и последовательность действительцых чисел 

(3, 9) а ; а'0', а'„, < К, V' . (" = 1, 2 / . . . ) 
следующим образом. Положим 

<"о = «Ó = о0, а" = О 

и допустим, что целое неотрицательное число «»¡—ь а также действительные 
числа а'«, а " , л = 0, 1, 2 , . . . , и Ь'„, К ' , п = 1, 2 , . . . м „ _ 1

8 ) у ж е опреде-
лены, где m какое-нибудь натуральное число. 

Мы будем пользоваться обозначениями 

S'H(x) = Ц- + c o s lx + Ы s in lx); 

S'Xx) = ^ e o s 7 x 4 - 6," s in lx) 

всякий раз, когда числа a¡, а", /;,', Ъ[\ I— 1 , 2 , . . . , л , у ж е определены, и мы 

a' aŰ 
положим, кроме того, S'0{x) S'0'{x) — 

В силу леммы 2, в которой мы положим ¡(x) = Тт{х) — 

е = г = ,"„,_! + 1, мы можем определить тригонометрический полином 
vm 

(3 .10 ) ТТ (Х) = (АП c o s ПХ •+- /Зя s in ПХ) 
»=."„—1+1 

и измеримое множество Е„„ которые удовлетворяют условиям : 

( 3 . 1 1 ) I T J x ) - S ' (x)-Tm(x)\<¿ (х£Ет); 
Г m—1 

( 3 . 1 2 ) m e s En>2ú — £ m c [ — я, я]; 

(3, 13) I «„ I < ( П = Hm-l 1, • • • , J'm). 

Положим, далее, 
(3, 14) а'п = «„, b» a" = an—a,i, b" = bn— fin (n = / ' m - i + ">»)• 

s) Если i/„,_i = 0, то числа ¿>'( и b" не существуют. 

12* 
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Мы определим таким способом натуральное число >'т > ит—1, измери-

мое множество £ „ , и действительные числа а'„, К, а", Ъп, п =,«»»—1 -+- 1, •••. "щ. 

Снова применяя лемму 2, в которой теперь полагаем /(.г) = Тт(х)— 5'" (.г), 
1 , 1 • „ • « = — г = « ' ( | |+ 4, -мы можем определить тригонометрическим полином 

Г>т 
<3 ,15 ) от(х) (ап соя пх +рп и'п\ пх) 

.»=<'„, +1 

и измеримое .множество Ст, удовлетворяющие условиям 

( 3 . 1 6 ) б б!»); 

( 3 . 1 7 ) . . т е в С т > 2 я — С т с [ — я , яг]; 

(3, 18) (п = " т - 1 + 1, . . . , г т ) . 

Положим, кроме того, 

( 3 , 1 9 ) а'„ = а„ — «„, Ъ'„ = Ьп — /?„, а',! = «„, К' = «„ (п=?',„ + 1 , . . . , ,«,„). 

Таким образом мы определяем натуральное число и,,, > г,„, измеримое множе-

ство 6',,, и действительные числа а,', , , а " , /г = !'„. + 1, . . . , ,«,„). 
Отправляясь от чисел ,н0, а'0, а", мы определим шаг за шагом все числа 

</„, и Р„„ образующие возрастающие последовательности ( 3 , 7 ) и (3, 8), и 
нее действительные числа (3 ,9 ) . В то я?е время мы определяем измеримые 
множества Е„„ Сип, т = 1, 2 , . ; . , действительные числа «,., /?Я) /? = 1, 2 , . . . , и 
тригонометрические полиномы т„,(х), пт{х), т= 1,2. . . . , для которых имеют 
место соотношения ( 3 , 1 0 ) — (3 ,19) . Отметим еще, что мы имеем неравенства 
,"„,_!< < ,"т, / п — 1 , 2 , . . . Если воспильзоватся леммой 3, то можно до-
казать, что тригонометрические ряды ( 3 , 3 ) и (3, 4), коэффициентами которых 
служат определённые нами числа (3, 9), удовлетворяют всём . условиям тео-
ремы IV. 

§ 4 . Мы видели в прошлом параграфе, что сушдетвуют тригонометри-
ческие ряды с коэффициентами, стремящимися к нулю при п —>- ° о , у ко-
торых любая подпоследовательность частных сумм не сходится к конечному 
пределу почти всюду. В то же время мы видели, что существуют универ-
сальные тригонометрические ряды с коэффициентами, стремящимися к нулю 
при п . - > - о о . Рассмотрим теперь класс тригонометрических рядов, сходящих-
ся почти всюду к конечному пределу. Прежде всего естественно поставит!, 
вопрос, какие функции могут быть суммами таких рядов. Как известно, для 
того, чтобы конечная почти всюду функция /(ж) была суммой сходящегося 
почти всюду тригонометрического ряда, необходимо, чтобы ]{х) была изме-
римой. Можно доказать, что это условие является также достаточным; а 
именно, можно доказать следующую теорему : 
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Т е о р е м а V. Для любой измеримой функции /(.г), конечной почти 

всюду на [—Я, Л], можно оиределить тригонометрический ряд 
СО 

( 4 . 1 ) ^ (а„ c o s п . гН- b„ s in /?.г), 

сходящийся к этой функции почти всюду на [ — я - , я - ] [6].
 ,J

) 

Идея доказательства теоремы V состоит в следующем. Пользуясь тео-
ремой III, а таклсе рассуждениями, которые применяются при построении • 
тригонометрического ряда, сходящегося почти всюду к нулю [5], мы можем 
определить для любой измеримой функции f ( x ) , конечной почти всюду на 
[— я:, я], непрерывную функцию F(x) такую, что 

7Г 
( 4 . 2 ) - I l i m f F { l ) d - M ^ L d l = ¡ ( x ) 

71 н-V® • «t 
почти всюду на [— гг я], где 

sin {п + i - ) х 

i к (•'•) • • 
2 sin 

Предполояшм, что ряд (4, 1) получается в результате почленного диф-
ференцирования ряда Фурье от функции F ( X ) . Легко видеть, что 

—71 

где S (ж) есть сумма л первых членов ряда (4 ,1 ) . В таком случае, на осно-
вании (4, 2), ряд (4 ,1 ) сходится к / (х) почти всюду на [ — .т. я ] , откуда 
следует доказательство теоремы V. 

Будем теперь рассматривать тригонометрические ряды, имеющие почти 
всюду определенную сумму, коночную или бесконечную. Естественно поста-
вить вопрос, будет ли справедлива теорема V, если в ее формулировке от-
казаться от требования конечности почти всюду функции f ( x ) . В частности, 
возникает вопрос, существует ли тригонометрический ряд, сходящийся 
почти всюду к -f- оо. 10) 

Ответа на эти вопросы до сих пор не было дано. Однако, если вместо 
обычной сходимости рассматривать сходимость по мере, то мы будем иметь, 
положительный ответ на поставленные вопросы. 

9) Эга теорема является обобщением теоремы Н. Лузина, который доказал, что дл® 
любой измеримой функции /(.я:), конечной почти всюду на [—л, я], можно определить 
тригонометрический ряд, который суммируется к ней методом Рогевои'а [4]. 

10) Этот вопрос был поставлен Н. Л У З И Н Ы М . 
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Введем следующие определения и обозначения. Будем говорить, что 
функция определена всюду на некотором множестве Е , если она имеет оп-
ределенное значение, конечное или равное - f - оо или — оо, в каждой точке 
итого множества. Через {fn(x)} будем, обозначать последовательность Функ-
ций faix) , /x(:c), /¡.(.г),. . . , измеримых и конечных почти всюду на некотором 
сегменте [«,/>]. 

Мы скажем, что последовательность {fn(x)} сходится по мере на сег-
менте [a , b] к измеримой функции f ( x ) , определенной ночти всюду на этом 
сегменте ( f ( x ) необязательно должна быть конечной почти всюду на [а , й]), 
если функции fn(x) молено представить в виде 

fn{x) = gn{x) + «n{x) ( „ - 0 , 1 , 2 ), 

где ди(х) и ап(х) конечны почти всюду на [я, Ь\, 

l im дп(х) = f ( x ) 
Il—>-со 

почти всюду на этот сегменте и ап{х) сходится по мере к нулю на [а, Ь), 
когда п—э-оо.11) 

Можно доказать следующую теорему. 

Т Е О Р Е М p. V I . Для любой измеримой функции / ( . Т ) , определенной 
почти всюду на [—я, я], существует тригонометрический ряд ( 5 ,1 ) , сходя-
щийся по мере к f ( x ) на [—я, я] и удовлетворяющий условию 

(5,3) l ima^O, lim Ьи = 0 [10]. 4 ' 11—> оо п—> со 

Это утнержедение является частным случаем более общих теорем, для 
формулировки которых нам потребуются следующие определения. Мы ска-
жем, что функция F ( х ) , определенная почти всюду на сегменте [a , Z>], есть 
верхний предел по мере на [а, Ь] последовательности {/«(.г)}, если Г (.г) из-
мерима и у д о в о т в о р я е т следующим условиям : 

1) lim m e s {Е [/„ (.г) > <р (.г)]. Е [<р(а) > Г(х)]} = 0 " ) 
И >-СО . 

для любой измеримой функции ф(х) , определеной почти всюду на [а , Ь] ; 

2) l im s u p mes {Е [}п(х) >у (х)]. Е [F{x) >ч>(х)]} > 0 
ÍÍ —>-ео 

для любой измеримой функции ц>(х), определенной почти всюду на [а, Ь\ и 
такой, что mesE[F(x)>y(x)]>0. 

•11) Это определение совпадает с обычным определением сходимости по мере, если 
/¡я:) конечна почти всюду на [а, 6]. 

'-) Если ф,(.г) и ср.,(х)—две какие-нибудь измеримые функции, определенные почти 
всюду на [а, Ь\, то мы будем обозначать, как обычно, через Е [ф](.г) > <р>(х)] множество 
всех точек на [«, /> |, для которых срД.т) > ф2С'1:)-
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Функцию G(x), определенную почти всюду на [а, 6], мы будем назы-
вать нижним пределом по мере на [er, ö] последовательности {/и (,т)}, если 
— G(x) есть верхний предел по мере ва [а, 6] последовательности { — f n ( x ) } . 

Для верхних и нижних пределов по мере на [а, ö] последовательности, 
{/'„(.г-)} молено доказать следующие утверлсдения: 

A. Любая последовательность {fn(x)} имеет хотя бы один верхний пре-
дел и хотя бы один нижний предел по мере на [а, 6]. 

B. Если /<\(.т) и F2(х) являются верхними пределами по мере на [а , ¿ ] 
для одной и той лее последовательности {/„(х)}, то Ft{x) = F2(x) почта всю-
д у на [а, Ъ] 

C. Если Gi(x) и G3(x) являются нижними пределеми по мере на fa,£>] 
для одной и той лее последовательности {/«(ж)}, то Gi(x) — G2(x) почти 
всюду на [я ,й ] . 

D. Если F(x) и G (х) являются соответственно верхним и нижним пре-
делами по мере на [ Í Í , Ö ] одной и той же последовательности {/»(х)}, то 
G (ж) < F (X) почти всюду на [Ö, Ö]. 

E . Если верхний и нижний пределы по мере на [а, Ь] послегователь-
ности {fn(x)} равны функции /(ж) почти всюду на [а, Ь] то последователь-
ность {/и (х)} сходится по мере к /(ж) на данном сегменте. 

Будем называть функции F(х) и G (х) верхним и нпленим пределами 
to 

по мере на [а,Ь] ряда Чп(х). если они являются такими пределами для 
11—о 

частнпх сумм этого ряда. Молено доказать следующие теоремы: 

Т е о р е м а . V I I . Для любых двух измеримых функций F(x) и G(x), 
•>определенных почти всюду на [—я, ж] и таких, что G (х) < F (ж) почти 
всюду на этом сегменте, существует тригонометрический ряд ( 4 , 1 ) об-

. ладающий следующими свойствами : 

1) F(x) и G (х) являются верхним и нижним пределами по мере 
на [ — я , я] рядя ( 4 , 1 ) . 

2) Какова бы ни была, измеримая функция у(х), определенная почти 
•всюду на [— я, я] и удовлетворяющая условию G (ж) < у (ж) < F (ж) почти 
всюду на этом сегменте, можно определить последовательност Snk(x), 
к—1,2,..., частных сумм ряда (4, 1) с возрастающими индексами па, ко-
торая сходится к у(х) почти всюду на [—¡т., я] . 

3) l im а„ = 0, l im Ъп = 0. 
п > -а ) п—>-СО 

Ясно, что теорема V I является частным случаем теоремы V I I . 

Т е о р е м а V I I I . Для любых измеримых функций F(x), С(ж) и 
y-'i(x), г = 1, . . . . р, определенных почти всюду на [ — я , я] и удовлет-
воряющих неравенствам 
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в(х)<гр.(х)<1'(х) ( £ = ] , 2 , />) 

почти всюду на этом сегменте, можно определить тригонометрический 
ряд ( 4 , 1 ) который обладает следующими свойствами: 

1) F(x) и G (х) являются верхним и нижним пределами по мере 
на [ — я , я ] ряда ( 4 , 1 ) . 

2) Для любого i = 1 , 2 р существует последовательность частных 
сумм. б ' в Д ж ) , / с = 1 , 2 , . . . , ряда ( 4 , 1 ) с возрастающими индексами па.' 
Л- = 1, 2 . . . . , которая сходится к i/л(.г) почти всюду на [ — я, я] . 

3) Если какая нибудь последовательность частных сумм ряда (4, 1) 
с возрастающими иддексами сходится на множестве Е положительной 
меры к функции •>[)(х), Е а [—я-, я ] , то для одного из значений г = 1 , 2,.... р 
•ijj (х) = у. (х) почти всюду на Е. 

4) l'im <i„ = 0 , l im b„ = О [Ю]. 
11—>-аэ п— 
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