Lattice -points and Fourier expansions.

By S. BOCHNER in Princeton, N. ], and K. C‘HAN[_)RASEKHARAN in Bombay. -

1. Introduction.

We have recently given [4]') a new liné of reasoning for proving HARDY’s
identity [8] in the theory of Jattice points in a circle, and for the related
convergence theorems of HARDY, LANDAU [8, 9], WALFIsz [12, 13], OPPENHEIM
[t1], WiLTON [15, 16], DixoN and FERRAR [7]. We employed a general sum-
mability-theorem, due to BOCHNER [3, Th. 1], for partial derivatives of multiple
Fourier series, -and we combined it with a theorem of ANANDA-RAU [1] on
scales of Riesz summability for general Dirichlet series in which assumptions
on the magnitude of the coefficients are made explicitly.

In the present paper we will throw the part due to ANANDA-RAU into
the differentiability-theorem itself, thus obtaining a much broader theorem

on multiple’ Fourier series in general, from which to deduce the particular -

‘lattice-point conclusions by much shorter steps. Actually in § 3 we will first
have a relatively simple version of the general differentiability theorem suffi-
cient for the lattice-point conclusions envisaged, and afterwards, in § 5 and
§ 6, we will enlarge on the differentiability theorem for its own sake. This
will bring out its similarity with a criterion of CHANDRASEKHARAN and
MINAKSHISUNDARAM [6, Th. 4.1] which was the first attempt towards extending,
from one to several variables, a convergence-test for Fourier series due to
'HARDY and LITTLEwoOD [i0] in which the order of magnitude of the Fourier
coefficients is. prescribed; and it will also throw further light on the entire
problem of localization 'of convergence and summability for Fourier series
" in general [2]; the latter problem is more delicate for multiple series than
for simple series, and rather more delicate for formal (partial) derivatives of
a series than for the original series proper, and the present paper may also
be viewed as a’ further contribution towards managmg this problem- in some‘
of its aspects. : ‘

1) Numbers in brackets [ ] refer to the blblxography placed at the end of the paper v ‘
: "E 1
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2. Notafions and Definitions.

Let f(x)=f(x,,...,x;) be periodic in each variable with period 27,
and Lebesgue integrable in (x). It has then a Fourier expansion which we
indicate by writing

Xy e X) oD D Gy €O ),

An (x)h— Z anl-..111.ei("‘m‘+"'+"’~'mk)

+. +ni_n
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Define for />0 I
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where :
Lot n=[R] and S(R)=S°(R)=S,(x).
e
T'(R)=S'(R) R
Define ‘

£ 1) = gt J FlxAts, . X 18) dog

where o denotes the unit-sphere E24...+E&=1 and do; its (k—1)-dimen-
sional volume-element.

3. A Convergence Theorem.

We shall first state a few lemmas, which are needed for the proof of
our theorem.

Lemma 1. Suppose that
' a,
‘ lL,—1,,
where {l,} is a strictly increasing sequence of positive numbers diverging to oo,
and suppose that Za I is summable by Riesz’s means of {ype I, and of
order r, briefly: summable (I,r), y being real. Let 0<s<r. Then Za 1% is
summable {, s) for

=01,

(a—{— D(r—s)4+y(s+ I)
=
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This has been proved by ANANDA-RAU [1, Th 7], and if we choose
l,=n, y_O, it reduces to the following

Lemma 1 A, If Za is summable (n, 1) and a, — O andO<s<r,
then > a,n-° is summable (n,s) for

S e+ 1)(f—8)
r—l—l .
Lemma 2. If f(xX)=f(x,,...,X,) is a periodic function of class L, or
an almost periodic function of . Sz‘epanoff class, and
@) )~ am)eirea
_whére A(n, x) denotes nx,+. ..+ mx,, and a(n) =a(n,.. ., 1) is the Fourier

coefficient, and D"(n,, . . ., n,) is, for any non-negative mteger q, a homogeneous
polynomial of total degree qinny,..., n, then .

. (i) the operator _
. ¢ e 0 d )
D”_.D (if)x1 SR 175

bpplies to the almost périodic function , :
' . 2\0 . .
rtew= 3 (1- 10w eninn

. and the resulting function is almost periodic; _

|n]|=R Ra‘

(iii) for every x at which the condition

@ o= 3 (- Inl)a(ﬂ)Dq(ﬂ)e'A(" 2,

t

[ £, ==vdt =08
is satisfied, we have ’ _ | ' '
@2 lim DITR(x)=0
‘ for 0> !{—+q

This has been proved by BOCHNER 2, Th 1.

Lemma 3. If k=1, 0<n<oo, and if the numbers a,,..., are arbit-
rarily given for 0<n1<n .,0<n,<n, then there exists an exponential
polynomial -

n. n

P.(xla ey xk) — 2 . .. . Z ?/;'I 2 el(zxxrf' +2kzk)

4,=0 A=
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such that at the origin

) any{-. ..+ﬂhP
(——.,——,.) =lpy...ny e
ax,". .. 0x,* /==
Proof. Obviously, if arbitrary numbers bn,...n,, 0=<n,<n, (j=1,..., k)
are prescribed, then there exists an (ordinary) polynomial

Q... 25)= Z Z Ot 2t o 2

#,=0 =0
such that :
0’\1+--.+ﬂk
| (—;——Q = by, e
3z*. .. 023k /s=0
namely, by,...n,=m!...n! 0, ... Now consider the transformatxon of va-
riables

L=e%—1,,, ., 2, =¢e%—1,

Obviously it transforms a P(x) into a Q(2) and conversely, under preserva-
tion of n, and for prescribed values a,,...., this leads to values b,,.. .., by
ordinary rules of differentiation of a function of functions, and inversely
from the &’s to the a’s, and hence the lemma. '

Lemm’a 4. If f(x) is a periodic or almost periodic function (3.1), and
~if in a neighborhood of the point x==x, the function has continuous derivatives

of total order <gq, then at x=x, we have for 0> —k—:2_—1+_q:
11m [DLTE(x)— Df(x)] =0.

Proof. The conclusnon is obviously trivial for an exponentzal polynomial -
P(x). In general we put, by lemma 3, f(x)=P(x)-+f'(x) where for f'(x)
all partial derivatives of total order < g are zero at the point x =x,. But f'(x)
has also continuous derivatives of order ¢ in the neighborhood of x,. From
this it follows easily that f1(x) satisfies assumption (iii) of lemma 2 and
hence (3. 2) follows.

Remark. The “modification” referred to in .lemma 6 of our previous
paper [4, p. 241] is made explicit now; even there, differentiability has to be
assumed in a neighborhood of the point in question. '

Theorem l..Iff(x) is defined as in § 2, and if
33 - A, = O(n?)

then at every point x in a izetghborhood of which f(x) possesses partial deri-
vatives of all orders, the series 2, A, n" is summable (n, 6) for 6=0, and
0>2a-1+42hA. .
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Proof. By lemma 4, if we choose D as the Laplace operator

(22

) ox3 ax3
and apply it g times to the function J, where q is a non-negative integer, we
obtam that >, A,n is summable- (n, 6) for 6>k——+2q Since A,n'=

=O(n*+), it follows by lemma 1A, that 3, A,n* is summable (n, ) for n=0;
and -

(@+q+1)(3—n)
,q—h>, 641

or .
(g—hm@E+1)
atqg41 7

Since ¢ may be any number greater than k;

n>0—

! —|—2q, thfs implies that any

>'("—;1)>(a+ L)+ h2q(d 5+ 1)
CRwES |

is admlssxble leen k, a, h since ¢ may be chosen as large as we please,
the theorem will be true for n>2a+1+2h.

~ Remarks. It should be noficed that there is no restriction on a.
However, if ' : ' '
‘ -
(3.4) am.unk—-()((n%4_..'_Flﬁ)wz)
then at every point of mean-continuity (etc.) we have convergence of D A,.
See [6, p. 741). The significance of the théorem is that even though only
something less than (3.4)is satisfied, a stronger hypothesis on the function
than continuity will still lead to summability, and, in special cases, to con-
vergence. We will show in the next section how the above theorem is entirely
adequate to obtain the most complete results on the summation of certain
series of Bessel functions occurring in the theory of lattice points.

4. Application to summations over lattice points.

Let r,‘(n) =, 221 for integral values of n,, represeﬁtation of n which
n1+ +n =n - .

differ only 1nislgn or order bemg counted as distinct. Let
R.(x) ’__—”g'fk(”)

~ the last term r(x) in the sum beihg replaced by %r,,(x) if x is_aﬁ integer,
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Then it is known that R.(x) can be “represented” as a series of Bessel
functions; in particular, if k=2, we have HARDY’s identity [8]: if x is non-
integral, '

4.1) A Ry(X) == mtx—x'n D) rz(n)jlfl%hn Vnx) .
Here J, stands. for ‘the Bessel function of order 1. When £>2,.the
expansion corresponding to the right of (4. 1) is no'longer convergent, but

can be summed by RiESz’s means. WALFISz has proved that the corresponding
series in k-dimensions, namely

: Z'r n) /(27 nx
(4. 2) k( .)jl-/2n(k/4 V )
o k=3 . k—3
is summable (n, d) for 6>—2—, and not summable for 6=——2——. More

‘complete results of this type were obtained by DixON and FERRAR [7] and
in a recent paper we obtained the following result [4, p. 248]: if

rk(n, h) — E ezﬂi(ﬂ‘hl'i' et ny hk)’-
’ nf+...+n,%=n

then
4.3) 2 r(n, B Ju2nE V) 0t
is summable (n,7) for =0 and l<%——§+%, u>—1 whenever & is

non-integral. (4.3) not only yields WALFISz’s result when f,=...=h,=0,
but is actually sharper since # does not- depend on k. We will now show
that a result which includes WALFIsz’s and HARDY’s, can be deduced as a
direct consequence of theorem 1.

.Corollary to theorem 1. [f § is non-integral,
@4 2 1(0) Jupsp(2nE V)

is summable (n,n) for n=0 and l<—i——§+_%, g>—1.

Proof. It is known that the series

4.5) ) A+B Z rn) Jujprp(27cE VI?)

nkia+8/2

for suitable constarits A and B, is the (spherical) multi.ple Fourier series of
" the function

4.6 fln,..ox) =2 [E—{@+D @D
at the origin. x=(0,...,0), for §>—1. |4, p. 243 (3. 4)}. If £ is non-inte-
gral, the function given in (4. 6) is infinitely differentiable in a neighborhood

of the origin, and the terms of its Fourier series (4.5) satisfy the condition
(in our notation of §2)
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‘ . k-2 E-Lﬁ-i k-5 B e
wn- P et o I P
’ c k-2 .
. since jM(x)—O(x“/’) as x-o0, u>—1 and rk(n)—- (nTH).- Hence we
apply theorem 1, and deduce that ' - '
r(n) Jie 2nEVn)
2 k( )./ kﬂ;ﬁ(ﬂ/z

is summable (n, ) for 17>-I-c———§—,8+2p Settmg l-—p-—k———g— we ob-

tain that
X fk(n)/k/z+ﬂ(2,7‘§ Vn) n
is summable (n, n) for n>2l+k—7¥g— which is the required result.
Remark. The corollary will stilt hold when the order of the Bessel

functlon in (4 4) is not necessarlly 2 —}—ﬂ but any u>—1; in order to see

that, we have only to referto the reasoning given in. our previous paper
[4, p. 246], which closely follows that of DixoN and FERRAR [7]-

5. An improvement on theorem 1.

" Theorem 1 was concerned with the case when the functlon F(x) was
infinitely differentiable in a neighborhood of a given point; we shall now
prove a similar result in the case where the function has partial ‘derivatives
upto an assigned order which is finite; if this order exceeds the number

—14-(k—1), (where k is the dimension-number) then we already can reach the

_ coriclusion of theorem 1, without having to assume infinite differentiability.
~We shall however have a restriction -on {au,....,} instead of on A,. For the
~proof of the theorem we need the following

Lemma 5. For ‘given £¢>0 and e<x<2¢ let Y(x) be a functton de-
fined in the following way :

) pE—1, pe9=0;

(i)  w(x) possesses derivatives ‘of all orders in e<x< 28

(iii) (—‘f;—xtf’—)x_fo ( ‘;x’f ) =0 for r=1,23,.
Let g(y) be defined in the followmg way.: '

@) g=1  for lyl=e; -

V) g =vy(y) for e<|y|=2e;

(vi) - g(y)=0  for 2e<|x|=7;

(viiy g(y+2m)=g(y). |
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Let g(x,,...,x)= I [ g(x,) and let the Fourier expanszon of g(xl, cea X))
be : -
g(xl, oo xk) oV Z Z b"l o etimz+.. +nkxk)

Then for every‘ 8>0 we have:

: : 1
©- b"l'-'"k"‘o( ¥y )
Now let f(x,,...,x,) be any periodic function having the period 27t in each
variable and Lebesgue integrable, and let :

' 1
(5 2) . . a"l--'"k%~o( (ﬂ%+v..+n12,)a)

where {ay,...n,} are the Fourier coefficients of f. If {¢n,...n,} are the Fourier
coefficients of the product f.g, then ~

1
(3. ..+nd)e

Proof. An explicit example of a function v satisfying our requirements
is found in WIENER [14, p. 562], where the mterval (0, 1) is considered-in-
stead of (g, 2¢).

Since g(x,) is infinitely differentiable, it follows by a well-known result
in Founer series that its Fourier coefficient

1
o) — -
an - O (nﬂl)

for every §,>0; from this it follows that (5.1) is satisfied for every > 0.
Further, we have ' -

(5.3) =  Cnemy

= 3 by, o=

(m)_ -®

Hence ]
[eneerong = O (20 2T+ (=)o (e— )Y (1 o i mi) 1))
=o(].- J{1+(nl-—§1>2+ = B (B B ).

If we subject the above mtegrand to an orthogonal transformatxon' ‘

= Z d,k,

with determinant <+ 1, and
dy:dp ....:_dl,‘.=n1:n2:...:n,,,'
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then we have ‘ o
I8=239, InE=|Znty,.
Hence '

- Cap.om|=0 J f[{l+(1/2n2 )+ e (U ) ‘g]d’h dﬂk)
=0 f f{1+(x—n1)2+ A {l+n+. . +m} .. dm)
where x—37. Setting || = VEn,, we have .

|cnx...n,,l=.o( [o]-+ 1)

Iplsa2  nl> a2

f f =0‘( ’+(i)2 )f %%=O(x-2“>%0[<znz>-al,
In| ==/ . .

smce # may be assumed large Agam
fj = O( f‘ {1 -l--‘.n,} 8dn, . > d?],,)=

tnl>z/2 [7]>=/2

.=O( j (1 4-12) 5dt) O (x*-26) = O (x-29),

t>x/2

~if we choose =« + , and hence the lemma.

Theorem 2. If f(x) which is defined as in § 2 has continuous deri-
vatives of total order =< 2q, where q is a non- negattve infeger, at a point x,
and if

; —O((n1+ A2,
then at that pomt the series EA is summable (n ), 6>0 and 6_max (n, ;r)
where :
( ,)(ﬂ+7)-

s+5-+q

and y > 2ﬂ+k—1 m parttcalar if 9=—F— k— e 1 , then it zs summable (n, d) for

any 6>2,8+k—1 0=0.

Proof. Without loss of generality we can assume the point in question’
to be the origin. We write the function f(x) as follows : :

F@u oo x)=F(, ., %) 8% X)) F =g, o, X)Xy e, %)

' =.‘p1(x1;---rxp)+¢2(x1"f"xk)) Say, .
.- where g(x,,...,X;) is defined as in lemma 5. It follows from -that lemma
- that gy(x) is infinitely. -differentiable in a neighborhood of the origin (since
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it vanishes there), while ¢,(x) is continuously differentiable 2¢ times every-
where. If we now write

Prev Z Cry.. € BT TL)

and |
(/)2(\1 Z dlll,,_.)1kei(”’xl+"'+"kmk)

by the same lemma 5, we have '
Cry.oom

o —O((n‘;’—{—.,..—l—nf.)ﬁ).

Theorem 1 is now applicable to ¢,, and so it follows that its Fouirier ex-
pansion (summed spherically) is summable (n, y) for

(5.4) y>2(ﬂ+—2—)_—l—l.
For ¢, we proceed as follows. If we write

C,.== Z Cn,...,._ei("xwx+-.-+"w;~).
n + +n}:=n
and apply the Laplace operator g times, then owmg to the contmulty of the
derivatives, it follows that 2C,n? is summable (n, d) for 6>Z{-2—I, at the
origin. [2, Th. VI.] Hence it follows, as in the proof of theorem 1, that ZC,
is summable (n, %) for

n>0— 1?£62+1)
(B+558) +q+1
or, :
(E:_l) (5+ B
2 2
(5.5) n> a
' , B+=5+4q :
The first part of ourtheorem results from (5.4) and (5 5) If26+4+k—1<0
() (5+5)—a
and <0,, then n=y==0 so that 6 =0.

ﬁ+'—+q ,
In order to prove the second part we note that summablllty (n, 9) of
- XA, for some 6> 2[3—{- k—1 could only fail if

: k-1 N _
(5.6) ( 2 )(ﬂ+2) q

; > 28+k—1,
B+5+4q
If we set A
_ : 1
6.7 B e L
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we see that (5. 6) is equivalent to
(5.8)  ra41)> @+ 1)@a+1+29).
Let us now discuss the following cases separately: (i) e¢-+1=0,
(i) e41<0, (111)0<a—}—l<2,(1v) a—|—1>—;—v' |
If @4 1=0 then the strict inequality in (5. 8) is impossible, and hence
our theorem is proved in this case. If @+ 1<0 then —p’>l{— so that A, -
converges absolutely, and our theorem is true trivially .in this- case. If

O<ai1 <—2— then we have 2ﬂ+k-—-l——2a—|—l<0 and smce a—|—1+q>0

and r(a+l)'<q if q;ﬁ—l, we also have

4 S
| (k—E—l)(H%)—q :-r—(a—l—l)—q <0'
PR atltg

Hence in this case 12=y=0 provided that q>‘k%l, and we have con-

vergence of TA,, so the theorem is true. Finally if ¢4 1=—- then 2a--1=0:

2
and if qgk—'4— then r=2q; so that we have (2a+1+2q);—'—;—‘which

contradicts (5.8); hence in this case also the theorem is proved.

6. Another convergence theorem.

We shall now establish a theorem more general than that of CHANDRA-.
 SEKHARAN and MINAKSHISUNDARAM [6, Th. 4. 1]. We need the following lemmas.

"Lemma 6. Let W(x) be a positive non-decreasing function of x, and -

V(x) any positive function of x, both defined for x >0. Let A(t) be a function
of bounded varzatzon in every fznzte mterval and

A"(t) = kj (t— u)HA (W) du, k>0.
Then _
A(x+ t)—A(x) = O[t7 V)], v>0, >0
and '
A¥(x) = o(W).
together imply :

_ S
AX)=o0 (v"” W“’) .
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P ,
If further, V" W™ is nondecreasing, then

Jor oy
w60l W)
for 0<r=k.

This is a consequence of a conve;xity_ theorem of M. RiESz- and the
proof follows on well known lines. See [6, lemma 4. 2].

Lenmma 7. (i) lf6> +q, we have

®.1) _pgr;:(x)=c1\>j...ff(x+t)D:'[vk,2+6(|t|1e)]dtl.,;dt

- where |t|=(}+...+12)" Vd(x) stands for Js(x)/x®, j@ stands for the
Bessel function of order 6, and DY, f(x) have the same medning as in lemma 2;°

© i) if 6>"—;1+q, then - -

©.2) Rf...[l/x+0) D Vigu(tl R dby .. dt=
- ) YR §
éc[R“qJ\f(x, Hltdt-R™2° I (t)ld’],
. 1] . 1R [ 22
(iii) if
, |
(6.3) F(x, )= |f(x, s)|s-1-2ds =0 (%+2), 6>0,
- 0
as t-0, then '
q 1y .
.Dx Tg’ (x) = o (I_e?) N
as R~ oo, provided that -0 >k%]—|—q—|-0.

- Proof. Parts (i) and (ii) are contained in BOCHNER’s paper [2, lemma
6, p. 349]; the argument for part (iii) runs. parallel to CHANDRASEKHARAN'S
[5, Th. V]. We have only to consider the right side of (6. 2) Assumption
(6. 3) yields
: 1/R .
6.4) . RWG[ £, 5)] S+ 1ds — 0 (R-), |
and as for the second integral, we split it in two; settmg g-—é q—%—{-—;—,

we have

R "[ j:—l—fm] 901+9>;, say.

z
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~To estimate p, we have only to use the fact. that

G(x, u)_ftk G, |dt—0 @)

as u-»oo, See [5, p. 213 (2. 11)]. For,

B -1 f(x, t)|dt G(x B G(x nHdf] - (1 1) .
P:= Rej—'tk—ﬂwl— R[ T ktate 2 +c tk+q+e+l ]_O(Ro) o(k?) 4
' . n . .

provgded that _ o
6.5) . >0, or 6>_‘-I%+q+0.
_ As for ¢y, '

¢ =R j - edF(t)

1R

and we now - integrate by parts, and use (6. 3) in the same manner as in
[5, p. 219 3. 26)], thus obtaining ' '

<p1=o(R % if p>0
This concludes the proof of the lemma.

Theorem 3. If f(x) is defmed as in §2, and. zf at a given pomt X,
(6. 6) ' J|f(x s)| s* l~2qa's—o(t‘i’) 6=0

as f»O, where q is a non-negettve integer, and if
6.7) S A,= O (n%)

then 2A,n% is summable (n r) Jor 6=r=0 provtded that 0, a,q and r sattsfy
the relation

6.8) 2(6—r)(a+q+1)—0(1+r)—
for some 6>—————+2 —}—0

Proof. By lemma 7 (m),' assumption (6.6) implies that

, - dZT,‘ﬁ(x)=o(R‘0) .
or

©9 1516) = 0 (R

-where 6>k——]+2q+0 and 4= ( = 4.+ ) _
2. o _ ax: .
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If we now sét . o
B,=A,m, BR)= Z B,,, B'(R) =26 | (R®= w1 B(uyudu, 6>0,
as in § 2, then (6.9) 1mplles : ’

(6. 10) . B (VR)= o (R*%?

~ for 6-> L;—l-{—?q-{—e. On the other hand, B,== O {(n*+?) and hence

®11) [B(foFt)—B([)l< 2@ B=0( 2 nmt)=0(tw).

OENS w4+t
_ From-(6. 10) and (6.11) it follows that we can apply lemma 6 if we
choose B(/x)=A(x), x#1= V(x) and x3-62 = W(x), and then we obtain

(6.12) ' B (JR)=o0 (R’
~ where 0<r<0 and
_(a+qg)(d—1)
(6.13) e
Let us write (6.-12) in the form

(6. 14) BRg?) o (R26-2ry=0 (R"), say.

If 7]='0, then it follows that £A,n? is summable (n, r); this will be the case if
{6. 15) 2(d—r)(a—|-q+l) 0(1—{—r)—0
where d>k—+2q+0

(d+r@— 0/2)
S

Remarks. (1) Let us write relation (6. 15) in the form
2d(atq4-1)—40
3 16 p——
(6.16) B+2@tg+1)

Now if 6—0 then r=4d, where 0> Ei+2q. Thus we obtain BOCHNER's

result [2, Th. I] as a special case. :

(2) Let ¢=0 and k= 2 Then it follows from (6 16) that r_O if
:26(«-}— 1)=0. where 0> 0+.7, and this will be the case if @ <ﬁ—_*~_—]— 1.

Suppose now that-

1
(6. 17 : Ay, =0 |———|;
e )
-2

then A, = O (n*-?) for every £> 0, since’ r,(n)=0 (nTH'). Hence under the
assumption (6.6) with g=0, k=2 and the assumption (6. 17) we conclude

— 1 for every ¢>0 or if

6
)y 1 J— SRR
that XA, converges if ¢—p < 581

G
(6. 18) _ p>‘—m,
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which is exactly the theorem of CHANDRASEKHARAN and MINAKSHISUNDARAM
[6, Th. 4.1].

(3) Though in the- assumptlon (6.6) we have g as an mteger we can,
if necessary, determine the order of summability of A, n* for arbitrary h by
applying ANANDA-RAU’s theorem (lemma 1). We choose not to repeat this
kind of computation.

(4) Our hypothesis (6. 6) dlffers from the hypothesis in theorems 1
“and 2 in as much as it governs the behaviour of the function f(x) ata gwen
pomt x, and not in a whole nelghborhood of it.
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