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Lattice points and Fourier expansions. 

By S. BOCHNER in Princeton, N. ]., and K. CHANDRASEKHARAN in Bombay. 

1. Introduction. 

We have recently given [ 4 ] 1 ) a new line of reasoning for proving H A R D Y ' S 

identity [8] in the theory of lattice points in a circle, and for the related 
convergence theorems of HARDY, L A N D A U , [ 8 , 9 ] , W A L F I S Z [ 1 2 , 1 3 ] , O P P E N H E I M 

[ 1 1 ] , W I L T O N [ 1 5 , 1 6 ] , D I X O N and F E R R A R [ 7 ] . We employed a general sum-
mability-theorem, due to B O C H N E R [ 3 , Th. 1 ] , for partial derivatives of multiple 
Fourier series, and we combined it with a theorem of ANANDA-RAU [ 1 ] on 
scales of Riesz summability for general Dirichlet series in which assumptions 
on the magnitude of the coefficients are made explicitly. 

In the present paper we will throw the part due to ANANDA-RAU into 
the differentiability-theorem itself, thus obtaining a much broader theorem 
on multiple Fourier series in general, from which to deduce the particular 
lattice-point conclusions by much shorter steps. Actually in § 3 we will first 
have a relatively simple version of the general differentiability theorem suffi-
cient for the lattice-point conclusions envisaged, and afterwards, in § 5 and 
§ 6, we will' enlarge on the differentiability theorem for its own sake. This 
will bring out its similarity with a criterion of CHANDRASEKHARAN and 
MINAKSHISUNDARAM [ 6 , Th. 4 . 1 ] which was the first attempt towards extending, 
from one to several variables, a convergence-test for Fourier series due to 
HARDY and L I T T L E W O O D [ 1 0 ] in which the order of magnitude of the Fourier 
coefficients is. prescribed; and it will also throw further light on the entire 
problem of localization of convergence and summability for Fourier series 
in general [2]; the latter problem is more delicate for multiple series than 
for simple series, and rather more delicate for formal (partial) derivatives of 
a series than for the original series proper, and the present paper may also 
be viewed as a further contribution towards managing this problem in some 
of its aspects. 

!) Numbers in brackets [ ] refer to the bibliography placed at the end of the paper. 
E l 
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2. Notations and Definitions. 

Let f(x) = f ( x u . . x k ) be periodic in each variable with period 2n, 
and Lebesgue integrable in (x). It has then a Fourier expansion which we 
indicate by writing 

f(xu .. .,xk)~Z • • • Z^,...»,e!'(",'TI+•••+"A•a"i>• 

<> o 
«[+•. •. + "f.—" 

and 

a 
Define for / > 0 

Sl(x1,...,xk;R) = Sl(x;R) = Sl(R) = 

n . R 

= 2 (/?2—r)'Ar(x) = 21 f (R2 — u2)'-lS(u)u du, 
r=o • (3 

where 
n = [R] and S(R) = S°(R) = Sn(x). 

Let 
T\R) = S\R)R-2\ 

Define 

fix, 0 = + • • .,xk + fi,)da£ 

a 

where a denotes the unit-sphere Hj2 + . . . -}- £ | = 1 and do¡ its (k— ^-d imen-
sional volume-element. 

3. A Convergence Theorem. 

We shall first state a few lemmas, which are needed for the proof of 
our theorem. 

L e m m a 1. Suppose that 

y A — = 0 ( 0 , 

where {/„} is a strictly increasing sequence of positive numbers diverging to 
and suppose that 2 aJñv is summable by Riesz's means of type l„ and of 
order r, briefly: summable (I, r), y being real. Let 0 < L s < r . Then 2 aJñ" is 
summable (I, s) for 

_ (a+])(r-s) + y(s+\) 
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This has been proved by ANANDA-RAU [1 , Th. 7], and if we choose 
L = n, 7 = 0, it reduces to the following 

L e m m a 1 A. / / £ a„ is summable (n, r) and a„ = 0(na) and 0 <; s < r, 
ihen a„n-" is summable (n, s) for 

( a + l ) ( r _ 5 ) . . 
o > 

r + 1 . 

L e m m a 2. If f(x)—f{x1, ...,xk) is a periodic function of class L, or 
an almost periodic function of Stepanoff class, and 

(3 .1) f(x) «(") (">x) 

n 

where A(n, x) denotes rnx^ +.. .+nkxk, and a(n) = a(nu nk) is the Fourier 
coefficient, and Dq(nu .. .,nk) is, for any non-negative integer q, a homogeneous 
polynomial of total degree q in nlt..., nk, then 

. (i) the operator 

' u \ idx, ' • idxk 

applies to the almost periodic function 

l»ISBl I X ) 
and the resulting function is almost periodic; 

. (ii) ' Dq
xTi(x)— ^ f l 

(iii) for every x at which the condition 
i 

¡ \ f x ( t ) \ t ^ ' d t = o(t") 
0 

is satisfied, we have 

(3.2) lim DlTl(x) = Q 
M-y a> 

for S + 

This has been proved by BOCHNER [2, Th. 1]. 

L e m m a 3. / / £ ¡ > 1 , 0 s : « < cc, and if the numbers a„u,.„k are arbit-
rarily given for 0<n1<n,...,0^nk<n, then there exists an exponential 
polynomial 

n • n 

¿ , = O ; . A = O 
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such that at the origin 

P r o o f . Obviously, if arbitrary numbers bni...„k, 0 ^ n ^ n , (J—\,...,k) 
are prescribed, then there exists an (ordinary) polynomial 

i*L=0 ,«¡1=0 
such that 

f . _ 

namely, ¿>fll ....«*= " J . . . nk\ <5„,...„,.. Now consider the transformation of va-
riables 

^ = eiXi— 1,.. .,zk = eixi<— 1. 

Obviously it transforms a P(x) into a Q(z) and conversely, under preserva-
tion of n, and for prescribed values ani...„k this leads to values, bni.,.„k by 
ordinary rules of differentiation of a function of functions, and inversely 
from the b's to the a's, and hence the lemma. 

L e m m ' a 4. If f(x) is a periodic or almost periodic function (3. 1), and 
•if in a neighborhood of the point x = x0 the function has continuous derivatives 

k j 
of total order <Lq, then at x = x0 we have for d>—-—|-q: 

lim [DlTl{x)-Dlf{x)] = Q. 

P r o o f . The conclusion is obviously trivial for an exponential polynomial 
P{x). In general we put, by lemma 3, / (x) = P ( x ) + / 1 (x) where for / ' ( x ) 
all partial derivatives of total order <Lq are zero at the point x = x0. But / ' ( x ) 
has also continuous derivatives of order q in the neighborhood of x0. From 
this it follows easily that f1(x) satisfies assumption (iii) of lemma 2 and 
hence (3. 2) follows. 

R e m a r k . The "modification" referred to in lemma 6 of our previous 
paper [4, p. 241] is made explicit now; even there, differentiability has to be 
assumed in a neighborhood of the point in question. 

T h e o r e m 1. / / / ( x ) is defined as in § 2, and if 

(3.3) A„=0{na) 

then at every point x in a neighborhood of which f(x) possesses partial deri-
vatives of all orders, the series 2 A„nh is summable (n, <5) for (5:>0, and 
6>2a+] +2 /z . 
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P r o o f . By lemma 4, if we choose D as the Laplace operator 

Uxf dxl J 

and apply it q times to the function / , where q is a non-negative integer, we 

obtain that ^ A„nq. is summable (n, 6) for 6 > ^ 1 +2q. Since A„nq = 

= 0(n o + 4 ) , it follows by lemma 1 A, that £A„nh is summable (n, i?) for i?;>07 
and 

/t h- + q <5+1 
or 

fa-tKi+D 
a + q+l 

k ] 

Since <5 may be any number greater than — ^ — V 2 q , this implies that any 

(*^)(a+\+h) + h + 2g(d + ±+h) 

is admissible. Given k, a, h since q may be chosen as large as we please, 
the.theorem will be true for rj > 2a-{- 1 +2h. 

R e m a r k s . It should be noticed that there is no restriction on a. 
However, if 

( 3 - 4 ) • f l n ' - " * = 0 ( ( « ? + . . 

then at every point of mean-continuity (etc.) we have convergence o f ^ A „ . 
See [6, p. 741]. The significance of the theorem is that even though only 
something less than (3. 4) is satisfied, a stronger hypothesis on the function 
than continuity will still lead to summability, and, in special cases, to con-
vergence. We will show in the next section how the above theorem is entirely 
adequate to obtain the most complete results on the summation of certain 
series of Bessel functions occurring in the theory of lattice points. 

4. Application to summations over lattice points; 

Let rk{n)= ^ 1 for integral values of nt, representation of n which 

differ only in | s ign or order being counted as distinct. Let 

n g i 
the last term rk(x) in the sum being replaced by \rk{x) if x is an integer. 
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Then it is known that Rk(x) can be "represented" as a series of Bessel 
functions; in particular, if k = 2 , we have HARDY'S identity [ 8 ] : if x is non-
integral, 

(4 .1) R¿x ) = n x - * Z 

Here / ! stands for the Bessel function of order 1. When k > 2 , the 
expansion corresponding to the right of (4. j) is no longer convergent, but 
can be summed by R I E S Z ' S means. W A L F I S Z has proved that the corresponding 
series in Ar-dimensions, namely 

2 ) £ 
¿ 3 k 3 

is summable (n,6) for d > — , and not summable for <5 = — — - . More 
m ¿t 

complete results of this type were obtained by DIXON and F E R R A R [7 ] and 
in a recent paper we obtained the following result [4, p. 248]: if 

rk(n, ti) = 2 e27Ci^+-+ni'hk), 

then 

(4 .3) Z r k ( n , h ) M 2 n ^ ) n l 

3 k v is summable (n, tj) for and — 2 ' f A , > ~ 1 whenever §2 is 

non-integral. (4.3) not only yields W A L F I S Z ' S result when h1=.. . = hk = 0, 
but is actually sharper since ¡i does not depend on k. We will now show 
that a result which includes W A L F I S Z ' S and HARDY'S , can be deduced as a 
direct consequence of theorem 1. 

C o r o l l a r y t o t h e o r e m 1. / / | 3 is non-integral, 

(4.4) H h { n ) h 2 ^ i 2 7 i ^ n ) n l 

is summable (n,r¡) for i j > 0 and — + ^ > ~ 

P r o o f . It is known that the series 

( 4 . 5 ) • 

for suitable constants A and B, is the (spherical) multiple Fourier series of 
the function 

(4. 6) f(xu ...,xk) = Z [ S * - { ( " ! + *?) + • ••• Jr(nl + x\)}f 

at the origin x = ( 0 , . . . , 0), for ¡3 > — l. [4, p. 243 (3.4)]. If is non-inte-
gral, the function given in (4. 6) is infinitely differentiable in a neighborhood 
of the origin, and the terms of its Fourier series (4. 5) satisfy the condition 
(in our notation of § 2) 
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( 4 . 7 ) 4 " 2 " 4 ) = O ( « 4 " 2 J • 1 

since /« (*) = 0(x-1 / a) as x - o o , (i-> — 1 and rk(n) = 0[n 2 J. Hence we 
apply theorem 1, and deduce that ' . ' 

x r rk(n)Jki2+?(27ci Yn) . . 
^ nk/4 + iI/2 " * 

is summable (n, rj) for n> —fi + 2p. Setting w e o b ~ 

tain that . . . 
\ E r k { n ) h , 2 + ? { 2 n ^ h ) n x 

3 

is summable (n,y) for ii>2l + k— y which is the required result. 

R e m a r k . The corollary will still hold when the order of the Bessel 

function in (4 .4) is not necessarily y + /3 but any /*> — ] •, in order to see 
that, we have only to refer to the reasoning given in. our previous paper 
[4 , p. 2 4 6 ] , which closely follows that of DIXON and FERRAR [7] . 

5. An improvement on theorem I. 

Theorem l was concerned with the case when the function f ( x ) was 
infinitely differentiable in a neighborhood of a given point ; we shall now 
prove a similar result in the case where the function has partial derivatives 
upto an assigned order which is f ini te; if this order exceeds the number 
\(k— l), (where k is the dimension-number) then we already can reach the 
conclusion of theorem l, without having to assume infinite differentiability. 
We shall however have a restriction on {ani...„k} instead'of on An. For the 
proof of the theorem we need the following 

L e m m a 5. For given £ > 0 and £<Lx<L2e, let ip(x) be a function de-
fined in the following way : 

(i) 1/>(£)=1, < / ' ( 2 < 0 - 0 ; . 
(ii) ip(x) possesses derivatives of all orders in e<x<,2e; 

Let g(y) be defined in the following way: 
(iv) g(y)=l for \y\^e; 

• (v) g(y) = y(y) for £<\yl^2e; 
(v0 ¿i(y)~0 for 2E<,\x\<,rt-, 
(vii) g(y + 2n)=g(y). 
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Let g(xu . . x h ) = rig(xr) and let the Fourier expansion of g(xu ...,xk) 
r=l 

be 
00 

g(X •. •2bní.:HeÍ{niXi + - + nkXk)-
-co 

Then for every /?>0 we have: 

(5 .1) n i = o ( ( / j ? + > ) • 

Now let /(*!,.. .,xk) be any periodic function having the period 2n in each 
variable and Lebesgue integrable, and let 

1 (5 .2) ani...„k—,0 

where {ani...ni} are the Fourier co, 
coefficients of the product f . g , then 
where {a n i . . . n i} are the Fourier coefficients of f . If {c n i . . . n i} are the Fourier 

( 5 - 3 ) (n^ + . - ' . + n?)" i ' 

P r o o f . An explicit example of a function i/; satisfying our requirements 
is found in WIENER [14, p. 562], where the interval (0, 1) is considered-in-
stead of (f, 2s). 

Since g(xr) is infinitely differentiable, it follows by a well-known result 
in Fourier series that its Fourier coefficient 

for every A > 0 ; from this it follows that (5.1) is satisfied for every / ? > 0 . 
Further, we have 

c, 
00 

I...nk — 2 • • • 2 bmi,,,mka ¿-J • • • Um i . , .mkUn i-m l , . . , ,nk-mk . 
( m ) = - oo 

Hence 

|c„,...n,[ = O 1 + («i -wi)a + - + (nk-mkf}-«{\ + m\ +... + ml)-?]) 

= O ( f . J {1 + ( f l l - £ ) 2 + • • • + (n k -B k ) 2 }-" { ! + § + • . . + • • • • 
- 00 

If we subject the above integrand to an orthogonal transformation 

s 
with determinant + 1 , and 

i/u : dn :... :dlk = n1: n2:...: nk, 
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then we have 

Hence 

= О ( J . . . J {1 + (х-п.)2 + ... + rfk}-a{ 1 + >й + • • • + Vl}'? ¿Ъ •'• • drjk) 

where x — Y^h2,. Setting — ][2rfr, we have 

|C n i . . .„J = 0 ( J . . . J + { . . . { ) 

where 

j ' - J - o i l ' + i f i n j - J T S F W - 0 ^ " 0 ^ ' 
since ¡3 may be assumed large. Again, 

J . . . J = 0 ( = 
11? | > x/2 1171 > x/2 

= o( J tk~l(\ +t2)^dt) = 0(xk-2?) = 0(x-2a), 
i Г • x 2 " . . . 

к 
if we choose /3 = « + ^ - , and hence the lemma. 

T h e o r e m 2. If f(x) which is defined as in § 2 has continuous deri-
vatives of total order ^ 2<7, where q is a non-negative integer, at a point x, 
and if 

then at that point, the series 2A„ is summable (n, 6), <5^0 and S = max (rj, y) 
where 

m u + l ) - » 
V> v -

к j 
and y>2p + k— 1 ; in particular, if q ^——, then it is summable (n, 6) for 

any 6 > 2/3 +A:— 1, <5s:0. 

P r o o f . Without loss of generality we can assume the point in question 
to be the origin. We write the function f(x) as follows: 

/ f o , . . x 4 ) = / ( * i . • • •,xk)g(xl!..., x4) + [l — g { x l t x k ) \ f ( x l t ...,xk) 
= <Pi (xu • ••,**) + cp2 {x1}..., xk), say, 

where g{xu...,xk) is defined as in lemma 5. It follows from that lemma 
that- <p2(x) is infinitely -differentiable in a neighborhood of the origin (since 
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it vanishes there), while g>i(x) is continuously differentiable 2q times every-
where. If we now write 

rP\ ~ 2 c>h • •. Hk
 eil+1"'+:Xk' 

and 

by the same lemma 5, we have 

; t ! = o ( ( n i + . . . . + / i 2 ) " ) . 
""1 •••»4 J . 

Theorem 1 is now applicable to <¡p2, and so it follows that its Fourier ex-
pansion (summed spherically) is summable (n, y) for 

(5-4) r > 2 ( / ? + ^ ] + l . 

For r/i, we proceed as follows. If we write 

2 cn i , . .„ke^n 'x 
2 • 

and apply the Laplace-operator q times, then owing to the continuity of the 
fc i 

derivatives, it follows that 2C„nq is summable (n, ó) for ő > —^—, at the 

origin. [2, Th. VI.] Hence it follows, as in the proof of theorem 1, that 2C„ 
is summable (n, rj) for 

v > d • 
( / ? + ^ ) + <7+i 

or, 

( 5 . 5 ) N > V 2 M - I I . 

' fi+T+q 

The first part of our theorem results from (5.4) and (5.5) . If 2/3—f-A:— 1 < 0 

and t; < 0 , then j? = y = 0 so that <3 = 0. 

In order to prove the second part we note that summability (n, ő) of 
X4„ for some d > 2/3 + /r— 1 could only fail if 

(5 .6) 2 ~ >2fi+k-\. 

If we set 
k—2 k—\ 
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we see that (5. 6) is equivalent to 

(5 .8) r ( a + l ) > ( a + l ) ( 2 a + l + 2 0 . 

Let us now discuss the following cases separately: (i) a + 1 = 0, 

(ii) a + 1 < 0 , (iii) 0 < a + 1 < , (iv) 

If a - ( - 1 = 0 then the strict inequality in (5 .8) is impossible, and hence 
k 

our theorem is proved in this case. If o .+ l < 0 then — s o that '2A„ 

converges absolutely, and our theorem is true trivially , in this case. If 

0 < a + 1 < y then we have 2p+k~\ = 2a + 1 < 0 ; and since a + 1 + < 7 > 0 , 
£ 1 

and r(a+\)<q if q^ 4 , we also have 

C + y + i " + ' + » 
k: j 

Hence in this case t] = y = 0, provided that q ^ ^ , and we have con-

vergence of ZA„, so the theorem is true. Finally if a + l then 2 a + 1 ^ 0 : 

^ j fa. ] 

and if q ^ — j — then r ^ 2 q \ so that we have ( 2 a + l + 2 g ) ^ 2 which 

contradicts (5. 8 ) ; hence in this case also the theorem is proved. 6. Another convergence theorem. 
We shall now establish a theorem more general than that of CHANDRA-, 

SEKHARAN and MINAKSHISUNDARAM [6 , Th. 4 . 1]. We need the following lemmas. 

L e m m a 6. Let W(x) be a positive non-decreasing function of x, and 
V(x) any positive function of x, both defined for x> 0. Let A{t) be a function 
of bounded variation in every finite interval, and 

t 
Ak{t) = k\{t—u)k-xA{u)du, k>0. 

u • 
Then 

+ = y > 0 , t>0 
and 

Ak(x) — o(W). 
together imply 
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U y 

If further, V^W1^ is nondecreasing, then 

(k-r y+r'i . 

v i « r w * + y J 
for O^r^k. 

This is a consequence of a convexity theorem of M. R I E S Z and the 
proof follows on well known lines. See [6, lemma 4. 2]. 

^ j 

L e m m a 7. (i) If d> —-—(- q, we have 

00 00 
(6 .1) DlTi{x) = cR\...\f(x+t)Dq

i[V^6{\t\R)]dt1...dtl 
- 00 - 00 

where | f | = ( / ? - f . . . + Va(x) stands for Ji{x)/xd, Jd stands jor the 
Besset function of order d, and D\, f ( x ) have the same meaning as in lemma 2; 

k j 

' (ii) if d > - ^ - + q, then 
00 (6 .2) / ? { . . . ¡\f(x + t)Dq

lVm+6(\t\R)\dt1...dtk^ 
- 0 0 

MR oo . 

c J | /(x, t) It"-1 dt4- it1*' *" ̂  J 
(¡¡0 if : . ° 

t 

(6 .3) F ( x , / ) = J \f{x, s)\sk-^ds = o(V'+B), 0 > O , 
o 

as t-+0, then 

DlTd
R(x) = o[ 

3 
1 ¡R { 2 ' 2 

V? J_L 
Re 

k j 
as R-+ oo, provided that 6>—^—+ 

P r o o f . Parts (i) and (ii) are contained in BOCHNER'S paper [2, lemma 
6, p. 3 4 9 ] ; the argument for part (iii) runs parallel to CHANDRASEKHARAN'S 

[5, Th. V]. We have only to consider the right side of (6. 2). Assumption 
(6 .3) yields 

MR 
(6 .4) . R,:+i j \f(x, s) | s'--' ds = o (R-°), 

k 1 
and as for the second integral, we split it in two; setting Q = d — q — ^ + 

we have tj CO 
I + J * ] = 9,i + 9>3, say. 

w ' v ' 
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To estimate <p2 we have only to use the fact that 
« 

G(x,u) = $ t*-1\f(x,t)\dt=0(u>) 
• • o 

as oo. See [5, p. 213 (2.11)]. For, 

1 rt^\f(x,t)\dt 1 n G(x,t) r fG(x,t)dn • f 1 \ _ f 1 \ 
ReJ tk+i+e / ? e | ) ' tk+q+Q J I l/?e I 

n . ,. 
provided that 

(6 .5) q>6, or + g + 

As for 9>i, 

^ = J' t'k'edF(t), 
. • l/B 

and we now integrate by parts, and use (6. 3) in the same manner as in 
[5, p. 219 (3. 26)], thus obtaining 

q>1 = o.(jR-e) if Q>e. 
This concludes the proof of the lemma. 

T h e o r e m 3. If f(x) is defined as in § 2 , and. if at a given point x, 
t 

(6.6) ^rj\f(x,s)\sk-l-^ds = o(te), 03=0 

o 
as t->- 0, where q is a non-negetive integer, and if 

(6 .7) A„ = 0(n«) 

then 2Anw is summabte (n,r) for provided that 0, a,q and r satisfy 
the relation 

(6.8) 2 ( ( 5 - r ) ( a + < 7 - j - l ) - 0 ( l + / - ) = O ^ j 
for some d>—- 1-2*7 + 0. 

P r o o f . By lemma 7 (iii), assumption (6.6) implies that 

- Jni(x)- -o(R-°) . 

or 

(6.9) ^ S d
R ( x ) = o ( R 2 i - e ) 

k — \ f a2 . , a2 V where <5 > + 2q + 6 and 
dx\ 1 '" 1 dx\ 
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If we now set 
E 

B„ = A„ n'1,. B(R) = £ Bn, B\R) = 2d f {R9- - B(u)udu, J>0, 
n<JP (j 

as in § 2, then (6. 9) implies 
< 6 . 1 0 ) . = 

u 1 

for 6> — - — \ - 2 q - \ - 0 . On the other hand, B„ = 0(na+«) and hence 

<6.11) I f i G A ^ H ^ - f l G ^ k £ Bn=0{ 2 na+q) = 0(twtt+q). 

agnSii+f 
From (6. 10) and (6 .11) it follows that we can apply lemma 6 if we 

choose £ ( ! /* ) = ,4 (x), xa+*=V(x) and x6-6'2 = W{x), and then we obtain 
(6.12) Ei{fR) = o{R9) 
-where 0 < r g , d and 
/ f i (a + g ) ( d - r ) (!+/•)(rf-g/2) 

p
 ~ 1 

Let us write (6. 12) in the form 
<6- 14) = = say. 

If ?; = 0, then it follows that 2A„n<l is summable (n, r); this will be the case if 
<6.15) 2(d-r)(a + q+\) —0(l+r) = O 

where + + 

R e m a r k s . (1) Let us write relation (6. 15) in the form 
/fi iftt 2 J ( « + g + l ) - f l 
<6"16) 8 + 2(a + q + \ ) ' 

k J 
Now if 8 = 0 then r = d, where d>—= 1 - 2 q . Thus we obtain BOCHNER'S 

A 
result [2, Th. I] as a special case. 

(2) Let <7 = 0 and k=2. Then it follows from (6. 16) that r = 0, if 
1 B • 

:2<f(« + 1 ) = 0 where <J> 0 + y ; and this will be the case if a < 2 [ — 1. 

Suppose now that 

<6. 17) a ,H n i = o { 1 

{n\ + n\Y 
l '^2+e\ 

ihen A„ = O (/¡"-p) for every e > 0, since rk(n) = 0{n 2 ). Hence under the 
assumption (6 .6 ) with q = 0, k — 2 and the assumption (6. 17) we conclude Q 
that 2A„ converges if £ — p < . ) i . . . — 1 for every e > 0 or if ¿u 1 

<6.18) p>\ 0 
2 6 + 1 ' 
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w h i c h is exac t ly the t h e o r e m of CHANDRASEKHARAN a n d MINAKSHISUNDARAM 

16, T h . 4. 1]. 
(3) T h o u g h in the a s s u m p t i o n (6. 6) w e have q a s an in teger , w e can , 

if necessa ry , d e t e r m i n e the o rde r of s u m m a b i l i t y of ZA„nh fo r arbitrary h b y 
a p p l y i n g A N A N D A - R A U ' S t heorem ( l emma 1 ) . W e c h o o s e not to repea t th is 
k ind of c o m p u t a t i o n . 

(4) O u r hypo thes i s ( 5 . 6 ) d i f fe rs f r o m the hypo thes i s in t h e o r e m s 1 
a n d 2 in a s m u c h a s it g o v e r n s the b e h a v i o u r of the func t i on / ( x ) at a g iven 
po in t x , a n d not in a w h o l e n e i g h b o r h o o d of it. 
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