Lattice points and Fourier expansions.

By S. Bochner in Princeton, N. J., and K. Chandrasekharan in Bombay.

1. Introduction.

We have recently given [4] ${ }^{1}$) a new line of reasoning for proving Hardy's identity [8] in the theory of lattice points in a circle, and for the related convergence theorems of Hardy, Landau [8, 9], Walfisz [12, 13], Oppenheim [11], Wilton [15, 16], Dixon and Ferrar [7]. We employed a general sum-mability-theorem, due to BOCHNER [3, Th. 1], for partial derivatives of multiple Fourier series, and we combined it with a theorem of AnAnda-Rau [1] on scales of Riesz summability for general Dirichlet series in which assumptions on the magnitude of the coefficients are made explicitly.

In the present paper we will throw the part due to Ananda-Rau into the differentiability-theorem itself, thus obtaining a much broader theorem on multiple Fourier series in general, from which to deduce the particular lattice-point conclusions by much shorter steps. Actually in § 3 we will first have a relatively simple version of the general differentiability theorem sufficient for the lattice-point conclusions envisaged, and afterwards, in § 5 and $\S 6$, we will enlarge on the differentiability theorem for its own sake. This will bring out its similarity with a criterion of Chandrasekharan and Minarshisundaram [6, Th. 4.1] which was the first attempt towards extending, from one to several variables, a convergence-test for Fourier series due to Hardy and Littlewood [10] in which the order of magnitude of the Fourier coefficients is prescribed; and it will also throw further light on the entire problem of localization of convergence and summability for Fourier series in general [2]; the latter problem is more delicate for multiple series than for simple series, and rather more delicate for formal (partial) derivatives of a series than for the original series proper, and the present paper may also be viewed as a further contribution towards managing this problem in some of its aspects.
${ }^{1}$) Numbers in brackets [] refer to the bibliography placed at the end of the paper.

2. Notations and Definitions.

Let $f(x)==f\left(x_{1}, \ldots, x_{k}\right)$ be periodic in each variable with period 2π, and Lebesgue integrable in (x). It has then a Fourier expansion which we indicate by writing

$$
f\left(x_{1}, \ldots, x_{k}\right) \sim \sum \ldots \sum a_{n_{1} \ldots n_{k}} e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)}
$$

Let

$$
A_{n}(x)=\sum_{n_{1}^{2}+\ldots+n_{k}^{2}=n} a_{n_{1} \ldots n_{k}} e^{i\left(n_{1} x_{1}+\ldots+\mu_{k} x_{k}\right)}
$$

and

$$
S_{n}(x)=\sum_{0}^{\prime \prime} A_{r}(x)
$$

Define for $l>0$

$$
\begin{gathered}
S^{l}\left(x_{1}, \ldots, x_{k} ; R\right) \equiv S^{l}(x ; R) \equiv S^{l}(R)= \\
=\sum_{n_{1}^{2}+\ldots+n_{k}^{2} \leqq R^{2}}\left\{R^{2}-\left(n_{1}^{2}+\ldots+n_{k}^{2}\right)\right\}^{l} a_{n_{1} \ldots u_{k}} e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)}= \\
=\sum_{r=0}^{n}\left(R^{2}-r\right)^{l} A_{r}(x)=2 l \int_{0}^{R}\left(R^{2}-u^{2}\right)^{l-1} S(u) u d u
\end{gathered}
$$

where

$$
n=[R] \quad \text { and } \quad S(R)=S^{0}(R)=S_{n}(x)
$$

Let

$$
T^{l}(R)=S^{l}(R) R^{-2 l}
$$

Define

$$
f(x, t)=\frac{\Gamma(k / 2)}{2(\pi)^{k / 2}} \int_{\boldsymbol{\sigma}} f\left(x_{1}+t \xi_{1}, \ldots, x_{k}+t \xi_{k}\right) d \sigma_{\xi}
$$

where σ denotes the unit-sphere $\xi_{1}^{2}+\ldots+\xi_{k}^{2}=1$ and $d \sigma_{\xi}$ its $(k-1)$-dimensional volume-element.

3. A Convergence Theorem.

We shall first state a few lemmas, which are needed for the proof of our theorem.

Lemma 1. Suppose that

$$
\frac{a_{n}}{l_{n}-l_{n-1}}=O\left(l_{n}^{\alpha}\right)
$$

where $\left\{l_{n}\right\}$ is a strictly increasing sequence of positive numbers diverging to ∞, and suppose that $\sum a_{n} l_{n}^{\gamma \gamma}$ is summable by Riesz's means of type l_{n} and of order r, briefly: summable $(l, r), \gamma$ being real. Let $0 \leqq s<r$. Then $\sum a_{n} l_{n}^{-\sigma}$ is summable (l, s) for

$$
\sigma>\frac{(\alpha+1)(r-s)+\gamma(s+1)}{r+1}
$$

This has been proved by Ananda-Rau [1, Th. 7], and if we choose $I_{n}=n, \gamma=0$, it reduces to the following

Lemma 1 A. If $\sum a_{n}$ is summable (n, r) and $a_{n}=O\left(n^{\alpha}\right)$ and $0 \leqq s<r$, then $\sum a_{n} n^{-\sigma}$ is summable (n, s) for

$$
\sigma>\frac{(\alpha+1)(r-s)}{r+1}
$$

Lemma 2. If $f(x)=f\left(x_{1}, \ldots, x_{k}\right)$ is a periodic function of class L, or an almost periodic function of Stepanoff class, and

$$
\begin{equation*}
f(x) \sim \sum_{n} a(n) e^{i \Lambda(n, x)} \tag{3.1}
\end{equation*}
$$

where $A(n, x)$ denotes $n_{1} x_{1}+\ldots+n_{k} x_{k}$, and $a(n)=a\left(n_{1}, \ldots, n_{k}\right)$ is the Fourier coefficient, and $D^{q}\left(n_{1}, \ldots, n_{k}\right)$ is, for any non-negative integer q, a homogeneous polynomial of total degree q in n_{1}, \ldots, n_{k}, then
(i) the operator

$$
D_{x}^{q}=D^{q}\left(\frac{\partial}{i \partial x_{1}}, \ldots, \frac{\partial}{i \partial x_{k}}\right)
$$

applies to the almost periodic function

$$
T_{R}^{\delta}(x)=\sum_{|n| \leqq}\left(1-\frac{|n|^{2}}{R^{2}}\right)^{\delta} a(n) e^{i \Lambda(n, x)}
$$

and the resulting function is almost periodic;

$$
\begin{equation*}
D_{x}^{q} T_{R}^{\delta}(x)=\sum_{|n| \leqq}\left(1-\frac{|n|^{2}}{R^{2}}\right)^{\delta} a(n) D^{q}(n) e^{i \Lambda(n, x)} \tag{ii}
\end{equation*}
$$

(iii) for every x at which the condition

$$
\int_{0}^{t}\left|f_{x}(t)\right| t^{k-1-9} d t=o\left(t^{k}\right)
$$

is satisfied, we have

$$
\begin{equation*}
\lim _{R \rightarrow \infty} D_{x}^{4} T_{R}^{\delta}(x)=0 \tag{3.2}
\end{equation*}
$$

for $\delta>\frac{k-1}{2}+q$.
This has been proved by Bochner [2, Th. I].
Lemma 3. If $k \geqq 1,0 \leqq n<\infty$, and if the numbers $a_{n_{1}, \ldots n_{k}}$ are arbitrarily given for $0 \leqq n_{1} \leqq n, \ldots, 0 \leqq n_{k} \leqq n$, then there exists an exponential polynomial.

$$
P\left(x_{1}, \ldots, x_{k}\right)=\sum_{\lambda_{1}=0}^{n} \ldots \sum_{\lambda_{k}=0}^{n} \gamma_{2_{1} \ldots z_{k}} e^{i\left(\lambda_{1} x_{1}+\ldots+\lambda_{k} x_{k}\right)}
$$

such that at the origin

$$
\left(\frac{\partial^{n_{1}+\ldots+n_{k}} P}{\partial x_{1}^{n_{1}} \ldots \partial x_{k}^{n_{k}}}\right)_{x=(0)}=a_{n_{1} \ldots n_{k}} .
$$

Proof. Obviously, if arbitrary numbers $b_{n_{1} \ldots n_{k}}, 0 \leqq n_{j} \leqq n,(j=1, \ldots, k)$ are prescribed, then there exists an (ordinary) polynomial

$$
Q\left(z_{1}, \ldots, z_{k}\right)=\sum_{\mu_{1}=0}^{n} \ldots \sum_{k_{k}=0}^{n} \delta_{\mu_{1} \ldots \mu_{k}} z_{1}^{\mu_{1}} \ldots z_{k}^{u_{k}}
$$

such that

$$
\left(\frac{\partial^{n_{1}+\ldots+n_{k}}}{\partial z_{1}^{n_{1}} \ldots \partial z_{k}^{n_{k}}}\right)_{z=0}=b_{n_{1} \ldots n_{k}}
$$

namely, $b_{n_{1}, \ldots n_{k}}=n_{1}!\ldots n_{k}!\delta_{n_{1} \ldots, n_{k}}$. Now consider the transformation of variables

$$
z_{1}=e^{i x_{1}}-1, \ldots, z_{k}=e^{i x_{k}}-1
$$

Obviously it transforms a $P(x)$ into a $Q(z)$ and conversely, under preservation of n, and for prescribed values $a_{n_{1} \ldots n_{k}}$ this leads to values $b_{n_{1} \ldots n_{k}}$ by ordinary rules of differentiation of a function of functions, and inversely from the b 's to the a 's, and hence the lemma.

Lemma 4. If $f(x)$ is a periodic or almost periodic function (3.1), and if in a neighborhood of the point $x=x_{0}$ the function has continuous derivatives of total order $\leqq q$, then at $x=x_{0}$ we have for $\delta>\frac{k-1}{2}+q$:

$$
\lim _{R \rightarrow \infty}\left[D_{x}^{q} T_{R}^{\delta}(x)-D_{x}^{q} f(x)\right]=0
$$

- Proof. The conclusion is obviously trivial for an exponential polynomial $P(x)$. In general we put, by lemma $3, f(x)=P(x)+f^{1}(x)$ where for $f^{\prime}(x)$ all partial derivatives of total order $\leqq q$ are zero at the point $x=x_{0}$. But $f^{\prime}(x)$ has also continuous derivatives of order q in the neighborhood of x_{0}. From this it follows easily that $f^{1}(x)$ satisfies assumption (iii) of lemma 2 and hence (3.2) follows.

Remark. The "modification" referred to in lemma 6 of our previous paper [4, p. 241] is made explicit now; even there, differentiability has to be assumed in a neighborhood of the point in question.

Theorem 1. If $f(x)$ is defined as in §2, and if

$$
\begin{equation*}
A_{n}=O\left(n^{a}\right) \tag{3.3}
\end{equation*}
$$

then at every point x in a neighborhood of which $f(x)$ possesses partial derivatives of all orders, the series $\sum A_{n} n^{h}$ is summable (n, δ) for $\delta \geqq 0$, and $\delta>2 a+1+2 h$.

Proof. By lemma 4, if we choose D as the Laplace operator

$$
\left(\frac{\partial^{2} f}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2} f}{\partial x_{k}^{2}}\right)
$$

and apply it q times to the function f, where q is a non-negative integer, we obtain that $\sum A_{n} n^{q}$. is summable (n, δ) for $\delta>\frac{k-1}{2}+2 q$. Since $A_{n} n^{q}=$ $=O\left(n^{\alpha+q}\right)$, it follows by lemma 1 A , that $\sum A_{n} n^{h}$ is summable (n, η) for $\eta \geqq 0$, and

$$
q-h>\frac{(\alpha+q+1)(\delta-\eta)}{\delta+1}
$$

or

$$
\eta>\delta-\frac{(q-h)(\delta+1)}{\alpha+q+1}
$$

Since δ may be any number greater than $\frac{k-1}{2}+2 q$, this implies that any

$$
\eta>\frac{\left(\frac{k-1}{2}\right)(\alpha+1+h)+h+2 q\left(\alpha+\frac{1}{2}+h\right)}{a+q+1}
$$

is admissible. Given k, α, h since q may be chosen as large as we please, the theorem will be true for $\eta>2 \alpha+1+2 h$.

Remarks. It should be noticed that there is no restriction on α. However, if

$$
\begin{equation*}
a_{n_{1} \ldots n_{k}}=O\left(\frac{1 \therefore}{\left(n_{1}^{2}+\ldots+n_{k}^{2}\right)^{2 / 2}}\right) \tag{3.4}
\end{equation*}
$$

then at every point of mean-continuity (etc.) we have convergence of $\sum A_{n}$. See [6, p. 741]. The significance of the theorem is that even though only something less than (3.4) is satisfied, a stronger hypothesis on the function than continuity will still lead to summability, and, in special cases, to convergence. We will show in the next section how the above theorem is entirely adequate to obtain the most complete results on the summation of certain series of Bessel functions occurring in the theory of lattice points.

4. Application to summations over lattice points:

Let $r_{k}(n)=\sum_{n_{1}^{2}+\ldots+n_{k}^{2}=n} 1$ for integral values of n_{k}, representation of n which differ only in $\overline{\mathrm{s}}$ sign or order being counted as distinct. Let

$$
R_{k}(x)=\sum_{n \leqq x}^{\prime} r_{k}(n)
$$

the last term $r_{k}(x)$ in the sum being replaced by $\frac{1}{2} r_{k}(x)$ if x is an integer.

Then it is known that $R_{k}(x)$ can be "represented" as a series of Bessel functions; in particular, if $k=2$, we have Hardy's identity [8]: if x is nonintegral,

$$
\begin{equation*}
R_{2}(x)=\pi x-x^{1 / n} \sum \frac{r_{2}(n) J_{1}(2 \pi \sqrt{n x})}{n^{1 / 2}} \tag{4.1}
\end{equation*}
$$

Here J_{1} stands for the Bessel function of order 1. When $k>2$, the expansion corresponding to the right of (4.1) is no longer convergent, but can be summed by Riesz's means. Walfisz has proved that the corresponding series in k-dimensions, namely

$$
\begin{equation*}
\sum \frac{r_{k}(n) J_{k / 2}(2 \pi \sqrt{n x})}{n^{k / 4}} \tag{4.2}
\end{equation*}
$$

is summable (n, δ) for $\delta>\frac{k-3}{2}$, and not summable for $\delta=\frac{k-3}{2}$. More complete results of this type were obtained by Dixon and Ferrar [7] and in a recent paper we obtained the following result [4, p. 248]: if
then

$$
\boldsymbol{r}_{k}(n, h)=\sum_{n_{1}^{2}+\ldots+n_{k}^{2}=n} e^{2 \pi i\left(n_{1} h_{1}+\ldots+n_{k} h_{k}\right)}
$$

is summable (n, η) for $\eta \geq 0$ and $l<\frac{3}{4}-\frac{k}{2}+\frac{\eta}{2}, \mu>-1$ whenever ξ^{2} is non-integral. (4.3) not only yields WaLFISz's result when $h_{1}=\ldots=h_{k}=0$, but is actually sharper since μ does not depend on k. We will now show that a result which includes Walfisz's and Hardy's, can be deduced as a direct consequence of theorem 1.

Corollary to theorem 1. If ξ^{2} is non-integral;

$$
\begin{equation*}
\sum r_{k}(n) J_{k / 2+\beta}(2 \pi \xi \sqrt{n}) n^{l} \tag{4.4}
\end{equation*}
$$

is summable (n, η) for $\eta \geqq 0$ and $l<\frac{3}{4}-\frac{k}{2}+\frac{\eta}{2}, \beta>-1$.
Proof. It is known that the series

$$
\begin{equation*}
A+B \sum \frac{r_{k}(n) J_{k / 2+\beta}(2 \pi \xi \sqrt{n})}{n^{i / 4+\beta / 2}} \tag{4.5}
\end{equation*}
$$

for suitable constants A and B, is the (spherical) multiple Fourier series of the function

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{k}\right)=\sum\left[\xi^{2}-\left\{\left(n_{1}^{2}+x_{1}^{2}\right)+\ldots+\left(n_{k}^{2}+x_{k}^{2}\right)\right\}\right]^{\beta} \tag{4.6}
\end{equation*}
$$

at the origin $x=(0, \ldots, 0)$, for $\beta>-1$. [4, p. 243 (3.4)]. If ξ^{2} is non-integral, the function given in (4.6) is infinitely differentiable in a neighborhood of the origin, and the terms of its Fourier series (4.5) satisfy the condition (in our notation of $\S 2$)

$$
\begin{equation*}
\dot{A_{n}}=O\left(n^{\frac{k-2}{2}+\varepsilon-\frac{k}{4}-\frac{\beta}{2}-\frac{1}{4}}\right)=O\left(n^{\frac{k-5}{4}-\frac{\beta}{2}+\varepsilon}\right) \tag{4.7}
\end{equation*}
$$

since $J_{\mu}(x)=O\left(x^{-1 / 2}\right)$ as $x \rightarrow \infty, \mu>-1$ and $r_{k}(n)=O\left(n^{\frac{\dot{k}-2}{2}+\varepsilon}\right)$. Hence we apply theorem 1 , and deduce that

$$
\sum \frac{r_{k}(n) j_{k / 2+\beta}(2 \pi \xi \sqrt{n})}{n^{k / 4+\bar{\beta} / 2}} n^{p}
$$

is summable (n, η) for $\eta>\frac{k-3}{2}-\beta+2 p$. Setting $l=p-\frac{k}{4}-\frac{\beta}{2}$ we obtain that

$$
\sum r_{k}(n) J_{k / 2+\beta}(2 \pi \xi \sqrt{n}) n^{l}
$$

is summable (n, η) for $\eta>2 l+k-\frac{3}{2}$ which is the required result.
Remark. The corollary will still hold when the order of the Bessel function in (4.4) is not necessarily $\frac{k}{2}+\beta$ but any $\mu>-1$; in order to see that, we have only to refer to the reasoning given in our previous paper [4, p. 246], which closely follows that of Dixon and FERRAR [7].

5. An improvement on theorem 1.

Theorem 1 was concerned with the case when the function $f(x)$ was infinitely differentiable in a neighborhood of a given point; we shall now prove a similar result in the case where the function has partial derivatives upto an assigned order which is finite; if this order exceeds the number $\frac{1}{4}(k-1$), (where k is the dimension-number) then we already can reach the conclusion of theorem 1 , without having to assume infinite differentiability. We shall however have a restriction on $\left\{a_{n_{1}} \ldots n_{k}\right\}$ instead of on A_{n}. For the proof of the theorem we need the following

Lemma 5. For given $\varepsilon>0$ and $\varepsilon \leqq x \leqq 2 \varepsilon$, let $\psi(x)$ be a function defined in the following way:
(i) $\psi(\varepsilon)=1, \psi(2 \varepsilon)=0$;
(ii) $\psi(x)$ possesses derivatives of all orders in $\varepsilon \leqq x \leqq 2 \varepsilon$;
(iii) $\left(\frac{d^{r} \cdot \psi}{d x^{r}}\right)_{x=\varepsilon}=0,\left(\frac{d^{r} \psi}{d x^{r}}\right)_{x=2 \varepsilon}=0$, for $r=1,2,3, \ldots$.

Let $g(y)$ be defined in the following way:
(iv) $g(y)=1 \quad$ for $|y| \leqq \varepsilon$;
(v) $\quad g(y)=\psi(y)$ for $\dot{\varepsilon} \leqq|\dot{y}| \leqq 2 \varepsilon$;
(vi) $g(y)=0$ for $2 \varepsilon \leqq|x| \leqq \pi$;
(vii) $g(y+2 \pi)=g(y)$.

Let $g\left(x_{1}, \ldots, x_{k}\right)=\prod_{r=1}^{k} g\left(x_{r}\right)$ and let the Fourier expansion of $g\left(x_{1}, \ldots, x_{k}\right)$ be

$$
g\left(x_{1}, \ldots, x_{k}\right) \sim \sum_{-\infty}^{\infty} \underset{-\infty}{\infty} b_{n_{1} \ldots n_{k}} e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)} .
$$

Then for every $\beta>0$ we have:

$$
\begin{equation*}
b_{n_{1} \ldots n_{k}}=O\left(\frac{1}{\left(n_{1}^{2}+\ldots+n_{k}^{2}\right)^{\beta}}\right) . \tag{5.1}
\end{equation*}
$$

Now let $f\left(x_{1}, \ldots, x_{k}\right)$ be any periodic function having the period 2π in each variable and Lebesgue integrable, and let

$$
\begin{equation*}
a_{n_{1} \ldots n_{k}}=O\left(\frac{1}{\left(n_{1}^{2}+\ldots+n_{k}^{2}\right)^{\alpha}}\right) \tag{5.2}
\end{equation*}
$$

where $\left\{a_{n_{1}} \ldots n_{k}\right\}$ are the Fourier coefficients of f. If $\left\{c_{n_{1} \ldots n_{k}}\right\}$ are the Fourier coefficients of the product $f . g$, then

$$
\begin{equation*}
c_{n_{1} \ldots n_{k}}=O\left\{\frac{1}{\left(n_{1}^{2}+\ldots+n_{k}^{2}\right)^{\alpha}}\right\} . \tag{5.3}
\end{equation*}
$$

Proof. An explicit example of a function ψ satisfying our requirements is found in Wiener [14, p. 562], where the interval $(0,1)$ is considered•instead of $(\dot{\varepsilon}, 2 \varepsilon)$.

Since $g\left(x_{r}\right)$ is infinitely differentiable, it follows by a well-known result in Fourier series that its Fourier coefficient

$$
a_{n}^{(r)}=O\left(\frac{1}{n^{\beta_{1}}}\right)
$$

for every $\beta_{1}>0$; from this it follows that (5.1) is satisfied for every $\beta>0$. Further, we have

$$
c_{n_{1} \ldots n_{k}}=\sum_{(m)=-\infty}^{\infty} \sum_{m_{1} \ldots m_{k}} a_{n_{1}-m_{1}, \ldots, n_{k}-m_{k}}
$$

Hence

$$
\begin{aligned}
& \left|c_{n_{1}} \ldots n_{k}\right|=O\left(\sum \ldots \sum\left[\left\{1+\left(n_{1}-m_{1}\right)^{2}+\ldots+\left(n_{k}-m_{k}\right)^{2}\right\}^{-\alpha}\left(1+m_{1}^{2}+\ldots+m_{k}^{2}\right)^{-\beta}\right]\right) \\
& =O\left(\int_{-\infty}^{\infty} \int\left\{1+\left(n_{1}-\xi_{1}\right)^{2}+\ldots+\left(n_{k}-\xi_{k}\right)^{2}\right\}^{-\alpha}\left\{1+\xi_{1}^{2}+\ldots+\xi_{k}^{2}\right\}^{-\beta} d \xi_{1} \ldots d \xi_{k}\right) .
\end{aligned}
$$

If we subject the above integrand to an orthogonal transformation

$$
\eta_{r}=\sum_{s} d_{r}, \xi
$$

with determinant +1 , and

$$
d_{11}: d_{12}: \ldots: d_{1 k}=n_{1}: n_{2}: \ldots: n_{k}
$$

then we have

$$
\Sigma \xi_{r}^{2}=\Sigma \eta_{r}^{2}, \Sigma n_{r} \xi_{r}=\sqrt{\Sigma n_{r}^{2}} \eta_{1}
$$

Hence

$$
\begin{gathered}
\left|c_{n_{1} \ldots n_{k}}\right|=O\left(\int \ldots \int\left[\left\{1+\left(\sqrt{\Sigma n_{r}^{2}}-\dot{\eta}_{1}\right)^{2}+\ldots+\eta_{k}^{2}\right\}^{-\alpha}\left\{1+\eta_{1}^{2}+\ldots+\eta_{k}^{2}\right\}^{-\beta}\right] d \eta_{1} \ldots d \eta_{k}\right) \\
\quad=O\left(\int \ldots \int\left\{1+\left(x-\eta_{1}\right)^{2}+\ldots+\eta_{k}^{2}\right\}^{-\alpha}\left\{1+\eta_{1}^{2}+\ldots+\eta_{k}^{2}\right\}^{-\beta} d \eta_{1} \ldots d \eta_{k}\right)
\end{gathered}
$$

where $x=\sqrt{\Sigma \eta_{r}^{2}}$. Setting $|\eta|=\sqrt{\Sigma \eta_{r}^{2}}$, we have

$$
\left|c_{n_{1} \ldots n_{k}}\right|=O\left(\int_{|\eta| \leq x / 2} \ldots \int_{|\eta|>x / 2}+\int_{\mid \ldots \int}\right)
$$

where

$$
\int_{|\eta| \leqq x \mid 2} \ldots \int=O\left(\left\{1+\left(\frac{x}{2}\right)^{2}\right\}^{-\alpha}\right) \int \ldots \int \frac{d \eta_{1} \ldots d \eta_{k}}{\left(1+\Sigma \eta_{r}^{2}\right)^{\beta}}=O\left(x^{-2 \alpha}\right)=O\left[\left(\Sigma n_{r}^{2}\right)^{-\alpha}\right]
$$

since β may be assumed large. Again,

$$
\begin{aligned}
& \left.\int_{|\eta|>x / 2} \ldots \int_{|\eta|>x / 2}\left\{1+\Sigma \eta_{r}^{2}\right\}^{-\beta} d \eta_{1} \ldots d \eta_{k}\right)= \\
& =O\left(\int_{t>x / 2} t^{k-1}\left(1+t^{2}\right)^{-\beta} d t\right)=O\left(x^{k-2 \beta}\right)=O\left(x^{-2 \alpha}\right)
\end{aligned}
$$

if we choose $\beta=\alpha+\frac{k}{2}$, and hence the lemma.
Theorem 2. If $f(x)$ which is defined as in $\S 2$ has continuous derivatives of total order $\leqq 2 q$, where q is a non-negative integer, at a point x, and if

$$
a_{n_{1} \ldots n_{k}}=O\left(\left(n_{1}^{2}+\ldots+n_{k}^{2}\right)^{\beta}\right)
$$

then at that point, the series ΣA_{n} is summable $(n, \delta), \delta \geqq 0$ and $\delta=\max (\eta, \gamma)$ where

$$
\eta>\frac{\left(\frac{k-1}{2}\right)\left(\beta+\frac{k}{2}\right)-q}{\beta+\frac{k}{2}+q}
$$

and $\gamma>2 \beta+k-1$; in particular, if $q \geqq \frac{k-1}{4}$, then it is summable (n, δ) for any ${ }^{\prime} \delta>2 \beta+k-1, \delta \geqq 0$.

Proof. Without loss of generality we can assume the point in question to be the origin. We write the function $f(x)$ as follows:

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{k}\right) & =f\left(x_{1}, \ldots, x_{k}\right) g\left(x_{1}, \ldots, x_{k}\right)+\left[1-g\left(x_{1}, \ldots, x_{k}\right)\right] f\left(x_{1}, \ldots, x_{k}\right) \\
& =\varphi_{1}\left(x_{1}, \ldots, x_{k}\right)+\varphi_{2}\left(x_{1}, \ldots, x_{k}\right), \text { say }
\end{aligned}
$$

where $g\left(x_{1}, \ldots, x_{k}\right)$ is defined as in lemma 5 . It follows from that lemma that $\varphi_{2}(x)$ is infinitely differentiable in a neighborhood of the origin (since
it vanishes there), while $\varphi_{1}(x)$ is continuously differentiable $2 q$ times everywhere. If we now write

$$
\varphi_{1} \sim \sum c_{n_{1} \ldots n_{k}} e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)}
$$

and

$$
\varphi_{2} \sim \sum d_{n_{1} \ldots n_{k}} e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)}
$$

by the same lemma 5 , we have

$$
\left.\left.\begin{array}{c}
c_{n_{1}, \ldots n_{k}} \\
d_{n_{1} \ldots n_{b}}
\end{array}\right\}=O\left(\left(n_{1}^{2}+\ldots+n_{k}^{2}\right)\right)^{\beta}\right) .
$$

Theorem 1 is now applicable to φ_{2}, and so it follows that its Fourier expansion (summed spherically) is summable (n, γ) for

$$
\begin{equation*}
\gamma>2\left(\beta+\frac{k-2}{2}\right)+1 . \tag{5,4}
\end{equation*}
$$

For g_{1} we proceed as follows. If we write

$$
C_{n}=\sum_{n_{1}^{2}+\ldots+n_{k}^{2}=n} c_{n_{1} \ldots n_{k}} e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)}
$$

and apply the Laplace-operator q times, then owing to the continuity of the derivatives, it follows that $\Sigma C_{n} n^{q}$ is summable (n, δ) for $\delta>\frac{k-1}{2}$, at the origin. [2, Th. VI.] Hence it follows, as in the proof of theorem 1 , that ΣC_{n} is summable (n, η) for

$$
\eta>\delta-\frac{q(\delta+1)}{\left(\beta+\frac{k-2}{2}\right)+q+1}
$$

or,

$$
\begin{equation*}
\eta>\frac{\left(\frac{k-1}{2}\right)\left(\beta+\frac{k}{2}\right)-q}{\beta+\frac{k}{2}+q} \tag{5.5}
\end{equation*}
$$

The first part of our theorem results from (5.4) and (5.5). If $2 \beta+k-1<0$ and $\frac{\left(\frac{k-1}{2}\right)\left(\beta+\frac{k}{2}\right)-q}{\beta+\frac{k}{2}+q}<0$, then $\eta=\gamma=0$ so that $\delta=0$.

In order to prove the second part we note that summability (n, δ) of $\searrow A_{n}$ for some $\delta>2 \beta+k-1$ could only fail if

$$
\begin{equation*}
\frac{\left(\frac{k-1}{2}\right)\left(\beta+\frac{k}{2}\right)-q}{\beta+\frac{k}{2}+q}>2 \beta+k-1 \tag{5.6}
\end{equation*}
$$

If we set

$$
\begin{equation*}
\beta+\frac{k-2}{2}=\alpha, \frac{k-1}{2}=r \tag{5.7}
\end{equation*}
$$

we see that (5.6) is equivalent to

$$
\begin{equation*}
r(\alpha+1)>(\alpha+1)(2 \alpha+1+2 q) \tag{5.8}
\end{equation*}
$$

Let us now discuss the following cases separately: (i) $\alpha+1=0$, (ii) $\alpha+1<0$, (iii) $0<\alpha+1<\frac{1}{2}$, (iv) $\alpha+1 \geqq \frac{1}{2}$:

If $\alpha+1=0$ then the strict inequality in (5.8) is impossible, and hence our theorem is proved in this case. If $\alpha+1<0$ then $-\beta>\frac{k}{2}$ so that $\Sigma_{A_{n}}$ converges absolutely, and our theorem is true trivially in this case. If $0<\alpha+1<\frac{1}{2}$ then we have $2 \beta+k-1=2 \alpha+1<0$; and since $\alpha+1+q>0$, and $r(\alpha+1)<q$ if $q \geqq \frac{k-1}{4}$, we also have

$$
\frac{\left(\frac{k-1}{2}\right)\left(\beta+\frac{k}{2}\right)-q}{\beta+\frac{k}{2}+q}=\frac{r(\alpha+1)-q}{\alpha+1+q}<0
$$

Hence in this case $\eta=\gamma=0$, provided that $q \geqq \frac{k-1}{4}$, and we have convergence of ΣA_{n}, so the theorem is true. Finally if $\alpha+1 \geqq \frac{1}{2}$ then $2 \alpha+1 \geqq 0$: and if $q \geqq \frac{k-1}{4}$ then $r \leqq 2 q$; so that we have $(2 \alpha+1+2 q) \geqq \frac{k-1}{2}$. which contradicts (5.8); hence in this case also the theorem is proved.

6. Another convergence theorem.

We shall now establish a theorem more general than that of Chandrasekharan and Minakshisundaram [6, Th. 4.1]. We need the following lemmas.

Lemma 6. Let $W(x)$ be a positive non-decreasing function of x, and $V(x)$ any positive function of x, both defined for $x>0$. Let $A(t)$ be a function of bounded variation in every finite interval, and

$$
A^{k}(t)=k \int_{0}^{t}(t-u)^{k-1} A(u) d u, k>0
$$

Then

$$
A(x+t)-A(x)=O\left[t^{\gamma} V(x)\right] ; \quad \gamma>0, t>0
$$

and

$$
A^{k}(x)=o(W)
$$

together imply

$$
A(x)=o\left(v^{\frac{k}{k+\gamma}} W^{\frac{\gamma}{k+\gamma}}\right)
$$

If further, $V^{\frac{k}{k+\gamma}} W^{\frac{\gamma}{k+y}}$ is nondecreasing, then

$$
A^{r}(x)=0\left(V^{\frac{k-r}{k+\gamma}} W^{\frac{\gamma+r}{k+\gamma}}\right)
$$

for $0 \leqq r \leqq k$.
This is a consequence of a convexity theorem of M. Riesz and the proof follows on well known lines. See [6, lemma 4. 2].

Lemma 7. (i) If $\delta>\frac{k-1}{2}+q$, we have

$$
\begin{equation*}
D_{x}^{q} T_{R}^{\delta}(x)=c R \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f(x+t) D_{t}^{q}\left[V_{k / 2+\delta}(|t| R)\right] d t_{1} \ldots d t_{k} \tag{6.1}
\end{equation*}
$$

where $|t|=\left(t_{1}^{2}+\ldots+t_{k}^{2}\right)^{1 / 2}, \quad V_{\delta}(x)$ stands for $J_{\delta}(x) / x^{\delta}, J_{\delta}$ stands for the Bessel function of order δ, and $D_{x}^{q}, f(x)$ have the same meaning as in lemma 2;
(ii) if $\delta>\frac{k-1}{2}+q$, then

$$
\begin{equation*}
R \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|f(x+t) D_{t}^{q} V_{k / 2+\delta}(|t| R)\right| d t_{1} \ldots d t_{k} \leqq \tag{6.2}
\end{equation*}
$$

(iii) if

$$
\begin{equation*}
F(x, t)=\int_{0}^{t}|f(x, s)| s^{k-1-q} d s=o\left(t^{k+\theta}\right), \quad \theta>0 \tag{6.3}
\end{equation*}
$$

as $t \rightarrow 0$, then

$$
D_{x}^{q} T_{R}^{\delta}(x)=o\left(\frac{1}{R^{\theta}}\right)
$$

as $R \rightarrow \infty$, provided that $\delta>\frac{k-1}{2}+q+\theta$.
Proof. Parts (i) and (ii) are contained in Bochner's paper [2, lemma 6, p. 349]; the argument for part (iii) runs parallel to Chandrasekharan's [5, Th. V]. We have only to consider the right side of (6.2). Assumption (6.3) yields

$$
\begin{equation*}
R^{k+q} \int_{0}^{1 / R}|f(x, s)| s^{k-1} d s=o\left(R^{-\theta}\right) \tag{6.4}
\end{equation*}
$$

and as for the second integral, we split it in two ; setting $\varrho=\delta-q-\frac{k}{2}+\frac{1}{2}$, we have

$$
R^{-e}\left[\int_{1 / R}^{\eta}+\int_{\eta}^{\infty}\right]=\varphi_{1}+\varphi_{2}, \text { say }
$$

To estimate φ_{2} we have only to use the fact that

$$
G(x, u)=\int_{0}^{u} t^{k-1}|f(x, t)| d t=O\left(u^{k}\right)
$$

as $u \rightarrow \infty$. See [5, p. 213 (2.11)]. For,
$\varphi_{2}=\frac{1}{R^{e}} \int_{\eta}^{\infty} \frac{t^{k-1}|f(x, t)| d t}{t^{k+q+e}}=\frac{1}{R^{e}}\left[\left\{\frac{G(x, t)}{t^{k+q+e}}\right\}_{\eta}^{\infty}+c \int_{\eta}^{\infty} \frac{G(x, t) d t}{t^{k+q+e+1}}\right]=O\left(\frac{1}{R^{\rho}}\right)=o\left(\frac{1}{R^{\theta}}\right)$
provided that

$$
\begin{equation*}
\varrho>\theta, \quad \text { or } \quad \delta>\frac{k-1}{2}+q+\theta \tag{6.5}
\end{equation*}
$$

As for φ_{1},

$$
\varphi_{1}=R^{-e} \int_{1 / R}^{\eta} t-k-e d F(t),
$$

and we now integrate by parts, and use (6.3) in the same manner as in [5, p. $219(3.26)]$, thus obtaining

$$
\varphi_{1}=o\left(R^{-\theta}\right) \text { if } \rho>\theta .
$$

This concludes the proof of the lemma.
Theorem 3. If $f(x)$ is defined as in $\S 2$, and if at a given point \dot{x},

$$
\begin{equation*}
\frac{1}{t^{k}} \int_{0}^{t}|f(x, s)| s^{k-1-2 q} d s=o^{\prime}\left(t^{\theta}\right), \theta \geqq 0 \tag{6.6}
\end{equation*}
$$

as $t \rightarrow 0$, where q is a non-negetive integer, and if

$$
\begin{equation*}
A_{n}=O\left(n^{\alpha}\right) \tag{6.7}
\end{equation*}
$$

then $\Sigma A_{n} n^{q}$ is summable (n, r) for $\delta \geqq r \geqq 0$ provided that θ, α, q and r satisfy the relation

$$
\begin{equation*}
2(\delta-r)(\alpha+q+1)-\theta(1+r)=0 \tag{6.8}
\end{equation*}
$$

for some $\delta>\frac{k-1}{2}+2 q+\theta$.
Proof. By lemma 7 (iii), assumption (6.6) implies that

$$
\mathcal{A}_{x}^{q} T_{R}^{\delta}(x)=0\left(R^{-\theta}\right)
$$

or

$$
\begin{equation*}
\Delta_{x}^{q} S_{R}^{\delta}(x)=o\left(R^{2 \delta-\theta}\right) \tag{6.9}
\end{equation*}
$$

where $\delta>\frac{k-1}{2}+2 q+\theta$ and $\Delta_{x}^{q}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{k}^{2}}\right)^{q}$.

If we now set
$B_{n}=A_{n} n^{4}, \quad B(R)=\sum_{n<R^{2}} B_{n}, \quad B^{\delta}(R)=2 \delta \int_{0}^{R}\left(R^{2}-u^{9}\right)^{\delta-1} B(u) u d u, \delta>0$,
as in $\S 2$, then (6.9) implies
(6.10).

$$
B^{\delta}(\sqrt{R})=o\left(R^{\delta-\theta / 2}\right)
$$

for $\delta>\frac{k-1}{2}+2 q+\theta$. On the other hand, $B_{n}=O\left(n^{\alpha+q}\right)$ and hence

$$
\begin{equation*}
|B(\sqrt{\omega+t})-B(\sqrt{\omega})| \leqq \sum_{\omega \leqq n \leqq \omega+t} B_{n}=O\left(\sum_{\omega \leqq n \leqq \omega+t} n^{\alpha+q}\right)=O\left(t \omega^{\alpha+q}\right) . \tag{6.11}
\end{equation*}
$$

From (6.10) and (6.11) it follows that we can apply lemma 6 if we choose $B(\sqrt{x})=A(x), x^{\alpha+q}=V(x)$ and $x^{\delta-\theta / 2}=W(x)$, and then we obtain

$$
\begin{equation*}
B^{r}(\sqrt{R})=o\left(R^{\beta}\right) \tag{6.12}
\end{equation*}
$$

where $0 \leqq r \leqq \delta$ and

$$
\begin{equation*}
\beta=\frac{(\alpha+q)(\delta-r)}{\delta+1}+\frac{(1+r)(\delta-\theta / 2)}{\delta+1} . \tag{6.13}
\end{equation*}
$$

Let us write (6.12) in the form

$$
\begin{equation*}
\frac{B^{r}(R)}{R^{2 r}}=o\left(R^{2 \beta-2 r}\right)=o\left(R^{\eta}\right), \text { say } \tag{6.14}
\end{equation*}
$$

If $\eta=0$, then it follows that $\Sigma A_{n} n^{q}$ is summable (n, r); this will be the case if

$$
\begin{equation*}
2(\delta-r)(\alpha+q+1)-\theta(1+r)=0 \tag{6.15}
\end{equation*}
$$

where $\delta>\frac{k-1}{2}+2 q+\theta$.
Remarks. (1) Let us write relation (6.15) in the form

$$
\begin{equation*}
r=\frac{2 \delta(\alpha+q+1)-\theta}{\theta+2(\alpha+q+1)} . \tag{6.16}
\end{equation*}
$$

Now if $\theta=0$ then $r=\delta$, where $\delta>\frac{k-1}{2}+2 q$. Thus we obtain Bochner's result [2, Th. I] as a special case.
(2) Let $q=0$ and $k=2$. Then it follows from (6.16) that $r=0$, if $2 \delta(\alpha+1)=\theta$ where $\delta>\theta+\frac{1}{2}$; and this will be the case if $\alpha<\frac{\theta}{2 \theta+1}-1$.

Suppose now that

$$
\begin{equation*}
a_{n_{1} n_{2}}=O\left(\frac{1}{\left(n_{1}^{2}+n_{2}^{2}\right)^{p}}\right) \tag{6.17}
\end{equation*}
$$

then $A_{n}=O\left(n^{\varepsilon-p}\right)$ for every $\varepsilon>0$, since $r_{k}(n)=O\left(n^{\frac{k-2}{2}+\varepsilon}\right)$. Hence under the assumption (6.6) with $q=0, k=2$ and the assumption (6.17) we conclude that ΣA_{n} converges if $\varepsilon-p<\frac{\theta}{2 \theta+1}-1$ for every $\varepsilon>0$ or if

$$
\begin{equation*}
p>1-\frac{\theta}{2 \theta+1}, \tag{6.18}
\end{equation*}
$$

which is exactly the theorem of Chandrasekharan and Minakshisundaram [6; Th. 4. 1].
(3) Though in the assumption (6.6) we have q as an integer, we can, if necessary, determine the order of summability of $\Sigma A_{n} n^{h}$ for arbitrary h by applying Ananda-Rau's theorem (lemma 1). We choose not to repeat this kind of computation.
(4) Our hypothesis (6.6) differs from the hypothesis in theorems 1 and 2 in as much as it governs the behaviour of the function $f(x)$ at a given point x, and not in a whole neighborhood of it.

References.

1. K. Ananda-Rau, On the convergence and summability of Dirichlet's series, Proceedings London Math. Soc., (2) 34 (1932), pp. 414--440.
2. S. Bochner, Summation of multiple Fourier series by spherical means, Transactions American Math. Soc., 40 (1936), pp. 175-207.
3. S. Bochner, Summation of derived Fourier series, an application to Fourier expansions on compact Lie groups, Annals of Math., 37 (1936), pp. 345-356.
4. S. Bochner and K. Chandraserharan, Summations over lattice points in k-space, Quarterly Journal of Math., 19 (1948), pp. 238-248.
5. K. Chandraserharan, On the summation of multiple Fourier series. I, Proceedings London Math. Soc., (2) 50 (1948), pp. 210-222.
6. K. Chandrasekharan and S. Minakshisundaram, Some results on double Fourier series, Duke Math. Journat, 14 (1947), pp. 731-753.
7. A. L. Dixon and W. L. Ferrar, Some summations over lattice points of a circle. (I) and (II), Quarterly Journal of Math., 5 (1934), pp. 48-63, 172-185.
8. G. H. Hardy, The average order of arithmetical functions $P(x)$ and $\Delta(x)$, Proceedings London Math. Soc., (2) 15 (1916), pp. 192-213.
9. G. H. Hardy and E. Landau, The lattice points of a circle, Proceedings Royal Soc., (A) 105 (1924), pp. 244-258.
10. G. H. Hardy and J. E. Littrewood, Some new convergence criteria for Fourier series, Annali della R. Scuola Normale Superiore di Pisa, (2) 3 (1934), pp. 43-62.
11. A. Oppenheim, Somme identities in the theory of numbers, Proceedings London Math. Sóc., (2) 26 (1927), pp. 295-350.
12. A. Walfisz, Über summatorische Funktionen einiger Dirichletscher Reihen; Dissertation Göttingen (1922).
13. A. Walfisz, Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern, Math. Zeitschrift, 22 (1925), pp. 153-188.
14. N. Wiener, The operational calculus, Math. Annalen, 95 (1926), pp. 557-584.
15. J. R. Wilton, The lattice points of a circle. An historical account of the problem, Messenger of Math., 58 (1929), pp. $67-80$.
16. J. R. Wilton, A series of Bessel functions connected with the theory of lattice points, Proceedings London Math. Soc., (2) 29 (1929), pp. 168-188.

Princeton University,
Tata Institute of Fundamental Reseaich.

