Fourier series with a sequence of positive coefficients.

By R. P. Boas, JR. in Providence, R. I.

Let f(6) be an mtegrable functlon of period 25, with the Fourxer series
S‘c "9, There are a number of theorems which indicate that if all c, are

nonnegatwe then the magnitude of the ¢,, and hence the behavxor of f(6),
“are controlled by the behavior of f(f) near §=0. We mention two such

results: if ¢,=0 and f(6) is bounded in a neighborhood of O, ‘then > |c,| <o
and so f(6) is contmuous everywhere') ; if ¢,=0 and the pth derivative f(")(())
exists at # =0, then f -1 (6) exists -everywhere?).  We shall generalize the
latter theorem by assuming that the ¢, are real and that the changes of sign
in the sequence {c,} are not too frequent; our conclusion will be that f(6)
has at least a (p—1)th derivative everywhere' if it has an integrable pth-
derivative in a sufficiently large neighborhood of 0——0 QOur theorem is, more
precisely, as follows. : :

Theorem 1. Let f(6) be an integrable. functton of period 2n, with real
Fourzer coefficients c,. Let k, be the subsequence of integers at which a change
of sign in the sequence c, does not occur, and suppose that |k,—nB|<L, .
where B=1 and L is a fixed positive number. Let p be a positive integer. .
If fPU0) exists and is integrable in the interval (— 6, 6), where 6 > n(1—B™),

_ then f®"(8) exists for all . More generally, the same conclusion follows if,
Jfor some fixed positive A, we count c, as “positive” if c,> —A|n1“1’ and as
“negative” if ¢, < Alnl"’, i. e., if we count no ,,change of sign” between c, and

Coe1 if either ¢,>-—Aln|™" and ¢,,;>— Aln—]—l! ¥ or else c, <A]n] ? and
,,+1<A|n+ll"’ : :

) R.E.A. C, PaLey: see, for example, G. H. Harby and W ROGOSINSK], Fourter
Series (Cambridge, 1944), p. 72

2) R. Forrer, Calcul des moments d’une fonction de répartltron & partir de sa .
caractéristique, Bulletin des Sciences Math., (2) 68 (1944), pp. 117—131 ; H. CraMER, Mathe-
matical Methods of Statistics (Princeton, 1946), p. 90. :
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Proof We have

2’“ = ff(f)e‘“"df+ff(t)e-mtdt+jf(z)e—mdf

(— 1) 27c, = (— 1)7»] f(t')e"""‘ dt-l-J f@Oyeinemat ] f‘('t)e-iu<t+n>dt=
-8,

= l)nl f(t)ewd”* [f(’+ﬂ)e'“"dt+ Jf(f—ﬂ)E'Lntdf_
e
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+ ( ln))p ff(?)(t)e—zntdts_*_ J‘ g(t e—zntdt
- (7-8)
where- g(t) =f(t—7msgn t) Hence ' :
n? (—1)r2me, = g(n) + w(n),

where
J

g(n)=(—1yi» | fP(t)e e dt,
-8

and vy(n) is obtained by putting z=n.in’
I,D(z) o {1‘21)—1 [f(é)eiz(n-é) _f(_ 5)e-iz(n—6).] +.. .4 \ ‘
+(_1)p—1 i? [f(p—l)(d)eis(n-é) f‘p 1)( 6)e-u(n 6)]_}_21) l (t)é—iztdt}"

iy
Thus - ¢(n)=0(1) as n-+oo and w(z) is an entire function such that
|9 (2)| < const. e=-dlsl Furthermore, w(x) is real for real x, as follows from
our assumption that all ¢, are real.

Consider now anindex k,. If both ¢, > —Alk,|* and ci,41>—Alk, 1|72,
and (for example) if &, is even and positive, we have ¥ (k,) =—27A—¢(k,)=—C,
and y(k,+1)<27nA—q¢(k,+1)<C, where C is some constant; hence
fw(m,)|<C for some nimber m,, where k,<m,<k,+1. If koy=k,+1,
then ¢, satisfies the same inequality as ¢k, and ¢+, and we determine
m,., sxmxlarly, +1<m,,+1_k +-2. If possible we select m, and m,,, so

that m,,+1 m,,z—z— If this is not possible,'.we must have w(x) > C for
k,,gxgk,,—i—? and for k,,—l——%éﬁc;k,,-{—Z, for otherwise we could choose
cither k ém,,'__<=k,',+% and k4+1<m.<k-+2 or k<m <k-+1 and

k, +-_<_m_ﬂg-k,,+2. Then since w(k,+1)<C, it follows that w(x) has a
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. minimum between k&, ; and k, + R and so m, and m,., can be chosen

so that they. are separated by a point q,, such that ¢'(g,) =0. On the other
hand, if k,,,>k,--1, we have k,<m,<k,}1, m,,+1>k +2, and SO certamly
m,,,—m,> ; S1mllar con31derat10ns apply for odd or negative n, or when
the inequality sahsﬁed by ¢, is reversed. :

.Thus w(2) satisfies |1p(z)]<const e=dlzland |¢(m,)|<C, - where

|m,—nB|<L+1 and either lmm—mn];—; or else y’'(g,)=0 with gq,

“between m, and m,,,. Now if 6 >n(1—B™"), we have n—6 < n/B and by

a result of DUFFIN and SCHAEFFER®), +(x) is bounded on the whole real
axis. (DUFFIN and SCHAEFFER require |m,,,—m,|>y >0, but an analysis of
their proof shows that the theorem remains valid without this restriction if
4’ (x) vanishes between any two m,’s which differ by less than some fixed y.)
Since y(x) is bounded, in particulaf y(n) is bounded, and since ¢(n) is

bounded, n?c, is bounded. Hence Z [nf’lc,,|~ converges and f(O) has-a

"~ (p—1)th derivative (belonging to L2%).

There is an analogous -theorem for power series Wthh can be proved
in a sxmllar way. (1t would be possible to formulate a general result including
both theorems) :

Theorem 2. Let F(R)= Z a2 for |z|<1 and ‘suppose that for

—0<0<6 and 0 < r<l1, we have |F(re19)| < w(0), where w(0) is znz‘egrable
let F(z) have a radial boundary function F(e*®) for —0<6<96, such that
F(e®) has an integrable pth derivative in —0<6<d. Let the a, be real and
. let k, be the subsequence of "positive infegers -at which a change of sign in
the sequence {a,} does not occur. If |k,—nB|<L, where B>1 and L is fixed,
then a,= O(n?) and consequently F(z) has a radial boundary funcizon with
at least- p—1 derivatives, for all 0
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