Fourier series with a sequence of positive coefficients.

By R. P. BOAS, JR. in Providence, R. I.

Let $f(\theta)$ be an integrable function of period 2π , with the Fourier series $\sum_{-\infty}^{\infty} c_n e^{in\theta}$. There are a number of theorems which indicate that if all c_n are nonnegative, then the magnitude of the c_n , and hence the behavior of $f(\theta)$, are controlled by the behavior of $f(\theta)$ near $\theta = 0$. We mention two such results: if $c_n \ge 0$ and $f(\theta)$ is bounded in a neighborhood of 0, then $\sum_{n=1}^{\infty} |c_n| < \infty$ and so $f(\theta)$ is continuous everywhere¹); if $c_n \ge 0$ and the *p*th derivative $f^{(p)}(\theta)$ exists at $\theta = 0$, then $f^{(p-1)}(\theta)$ exists everywhere²). We shall generalize the latter theorem by assuming that the c_n are real and that the changes of sign in the sequence $\{c_n\}$ are not too frequent; our conclusion will be that $f(\theta)$ has at least a (p-1)th derivative everywhere if it has an integrable *p*th derivative in a sufficiently large neighborhood of $\theta = 0$. Our theorem is, more precisely, as follows.

Theorem 1. Let $f(\theta)$ be an integrable function of period 2π , with real Fourier coefficients c_n . Let k_n be the subsequence of integers at which a change of sign in the sequence c_n does not occur, and suppose that $|k_n - nB| < L$, where $B \ge 1$ and L is a fixed positive number. Let p be a positive integer. If $f^{(p)}(\theta)$ exists and is integrable in the interval $(-\delta, \delta)$, where $\delta > \pi (1 - B^{-1})$, then $f^{(p-1)}(\theta)$ exists for all θ . More generally, the same conclusion follows if, for some fixed positive A, we count c_n as "positive" if $c_n > -A|n|^{-p}$ and as "negative" if $c_n < A|n|^{-p}$, i. e., if we count no "change of sign" between c_n and $c_{n+1} if$ either $c_n > -A|n|^{-p}$.

¹) R. E. A. C. PALEY: see, for example, G. H. HARDY and W. ROGOSINSKI, *Fourier* Series (Cambridge, 1944), p. 72.

²) R. FORTET, Calcul des moments d'une fonction de répartition à partir de sa caractéristique, Bulletin des Sciences Math., (2) 68 (1944), pp. 117—131; H. CRAMÉR, Mathematical Methods of Statistics (Princeton, 1946), p. 90.

35

Proof. We have

$$2\pi c_{n} = \int_{-\delta}^{\delta} f(t) e^{-int} dt + \int_{\delta}^{\pi} f(t) e^{-int} dt + \int_{-\pi}^{-\delta} f(t) e^{-int} dt,$$

$$(-1)^{n} 2\pi c_{n} = (-1)^{n} \int_{-\delta}^{\delta} f(t) e^{-int} dt + \int_{\delta}^{\pi} f(t) e^{-in(t-\pi)} dt + \int_{-\pi}^{-\delta} f(t) e^{-in(t+\pi)} dt =$$

$$= (-1)^{n} \int_{-\delta}^{\delta} f(t) e^{-ini} dt + \int_{\delta-\pi}^{0} f(t+\pi) e^{-int} dt + \int_{0}^{\pi-\delta} f(t-\pi) e^{-int} dt =$$

$$= (-1)^{n} \left\{ \frac{f(\delta) e^{-in\delta} - f(-\delta) e^{in\delta}}{-in} + \dots + (-1)^{p-1} \frac{f^{(p-1)}(\delta) e^{-in\delta} - f^{(p-1)}(-\delta) e^{in\delta}}{(-in)^{p}} + \dots + (-1)^{p-1} \frac{f^{(p-1)}(\delta) e^{-int} dt}{(-in)^{p}} + \frac{(-1)^{p}}{-in} \int_{-\delta}^{\delta} f^{(p)}(t) e^{-int} dt \right\} + \int_{-\pi}^{\pi-\delta} g(t) e^{-int} dt,$$

where $g(t) = f(t - \pi \operatorname{sgn} t)$. Hence

$$n^p (-1)^n 2\pi c_n = \varphi(n) + \psi(n),$$

where

$$\varphi(n) = (-1)^n i^{-p} \int_{-\delta}^{\delta} f^{(p)}(t) e^{-int} dt,$$

and
$$\psi(n)$$
 is obtained by putting $z = n$ in
 $\psi(z) = \{iz^{p-1}[f(\delta)e^{iz(\pi-\delta)} - f(-\delta)e^{-iz(\pi-\delta)_i}] + \dots + (-1)^{p-1}i^p[f^{(p-1)}(\delta)e^{iz(\pi-\delta)} - f^{(p-1)}(-\delta)e^{-iz(\pi-\delta)}] + z^p \int_{-(\pi-\delta)}^{\pi-\delta} g(t)e^{-izt}dt\}.$

Thus $\varphi(n) = O(1)$ as $n \to \infty$ and $\psi(z)$ is an entire function such that $|\psi(z)| \leq \text{const. } e^{(\pi - \delta)|z|}$. Furthermore, $\psi(x)$ is real for real x, as follows from our assumption that all c_n are real.

Consider now an index k_n . If both $c_{k_n} > -A|k_n|^{-p}$ and $c_{k_n+1} > -A|k_n+1|^{-p}$, and (for example) if k_n is even and positive, we have $\psi(k_n) \ge -2\pi A - \varphi(k_n) \ge -C$, and $\psi(k_n+1) \le 2\pi A - \varphi(k_n+1) \le C$, where C is some constant; hence $|\psi(m_n)| \le C$ for some number m_n , where $k_n \le m_n \le k_n+1$. If $k_{n+1} = k_n+1$, then $c_{k_{n+1}}$ satisfies the same inequality as c_{k_n} and $c_{k_{n+1}}$, and we determine m_{n+1} similarly, $k_n + 1 \le m_{n+1} \le k_n + 2$. If possible we select m_n and m_{n+1} so that $m_{n+1} - m_n \ge \frac{1}{2}$. If this is not possible, we must have $\psi(x) > C$ for $k_n \le x \le k_n + \frac{1}{2}$ and for $k_n + \frac{3}{2} \le x \le k_n + 2$, for otherwise we could choose either $k_n \le m_n \le k_n + \frac{1}{2}$ and $k_n + 1 \le m_{n+1} \le k_n + 2$, or $k_n \le m_n \le k_n + 1$ and $k_n + \frac{3}{2} \le m_{n+1} \le k_n + 2$. Then since $\psi(k_n + 1) \le C$, it follows that $\psi(x)$ has a Fourier series with a sequence of positive coefficients.

minimum between $k_n + \frac{1}{2}$ and $k_n + \frac{3}{2}$, and so m_n and m_{n+1} can be chosen so that they are separated by a point q_n such that $\psi'(q_n) = 0$. On the other hand, if $k_{n+1} > k_n + 1$, we have $k_n \le m_n \le k_n + 1$, $m_{n+1} \ge k_n + 2$, and so certainly $m_{n+1} - m_n > \frac{1}{2}$. Similar considerations apply for odd or negative *n*, or when the inequality satisfied by c_{k_n} is reversed.

Thus $\psi(z)$ satisfies $|\psi(z)| \leq \text{const. } e^{(\pi-\delta)|z|}$, and $|\psi(m_n)| \leq C$, where $|m_n - nB| \leq L + 1$ and either $|m_{n+1} - m_n| \geq \frac{1}{2}$ or else $\psi'(q_n) = 0$ with q_n between m_n and m_{n+1} . Now if $\delta > \pi(1-B^{-1})$, we have $\pi - \delta < \pi/B$ and by a result of DUFFIN and SCHAEFFER³), $\psi(x)$ is bounded on the whole real axis. (DUFFIN and SCHAEFFER require $|m_{n+1} - m_n| > \gamma > 0$, but an analysis of their proof shows that the theorem remains valid without this restriction if $\psi'(x)$ vanishes between any two m_n 's which differ by less than some fixed γ .) Since $\psi(x)$ is bounded, in particular $\psi(n)$ is bounded, and since $\varphi(n)$ is bounded. Hence $\sum |n^{p-1}c_n|^2$ converges and $f(\theta)$ has a (p-1)th derivative (belonging to L^2).

There is an analogous theorem for power series which can be proved in a similar way (it would be possible to formulate a general result including both theorems):

Theorem 2. Let $F(z) = \sum_{n=0}^{\infty} a_n z^n$ for |z| < 1 and suppose that for $-\delta \leq \theta \leq \delta$ and 0 < r < 1, we have $|F(re^{i\theta})| \leq \omega(\theta)$, where $\omega(\theta)$ is integrable; let F(z) have a radial boundary function $F(e^{i\theta})$ for $-\delta \leq \theta \leq \delta$, such that $F(e^{i\theta})$ has an integrable pth derivative in $-\delta \leq \theta \leq \delta$. Let the a_n be real and let k_n be the subsequence of positive integers at which a change of sign in the sequence $\{a_n\}$ does not occur. If $|k_n - nB| \leq L$, where $B \geq 1$ and L is fixed, then $a_n = O(n^{-p})$ and consequently F(z) has a radial boundary function, with at least p-1 derivatives, for all θ .

(Received July 17, 1949.)

³) R. J. DUFFIN and A. C. SCHAEFFER, Power series with bounded coefficients, American Journal of Math., 67 (1945), pp. 141-154.