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Fourier series with a sequence of positive coefficients. 

By R. P . BOAS, JR. in Providence, R. I. 

Let / (0) be an integrable function of period 2n, with the Fourier series 
CP 

2 c„ein9. There are a number of theorems which indicate that if all c„ are 
- 0 0 ' 

nonnegative, then the magnitude of the c„, and hence the behavior of / (0) , 
are controlled by the behavior of / (0) near 0 = 0. We mention two such 
results: if c „ ^ 0 and / (0) is bounded in a neighborhood of 0, then 2 K l < 0 0 

and so / (0) is continuous everywhere1); if c „ ¿ 0 and the pth derivative f^F)(8) 
exists at 0 = 0, then / ( p " 1 ) (0) exists everywhere2). We shall generalize the 
latter theorem by assuming that the c„ are real, and that the changes of sign 
in the sequence {c„} are not too frequent; our conclusion will be t h a t / ( 0 ) 
has at least a ( p — l ) t h derivative everywhere if it has an integrable /7th 
derivative in a sufficiently large neighborhood of 0 = 0. Our theorem is, more 
precisely, as follows. 

. T h e o r e m 1. Let f (0) be an integrable function of period. 2n, with real 
Fourier coefficients c„. Let k„ be the subsequence of integers at which a change 
of sign in the sequence cn does not occur, and suppose that \k„—nB\<L, 
where B^ l and L is a fixed positive number. Let p be a positive integer. 
If f(p)(0) exists and is integrable in the interval (—<5, d), where ó > 7t(l —B'1), 
then fip'l) (6) exists for all 0. More generally, the same conclusion follows i f , 

for some fixed positive A, we count c„ as "positive" if cn>—A\n\~p and as 
"negative" if cn < A\n\'p, i. e., if we count no „change of sign" between c„ and 
c„+1 if either c„>—A\n\'v and cn+l> —A\n+\\'p, or else cn<A\n\'p and 

!) R . E. A . C, P A L E Y : see, for example, G. H . . HARDY and W. ROGOSINSKI, Fourier 
Series (Cambridge, 1944), p. 72. 

2) R. FÔRTET, Calcul des moments d'une fonction de répartition à partir de sa . 
caractéristique, Bulletin des Sciences Math., (2) 68 (1944), pp. 117—131 ; H. CRAMER, Mathe-
matical Methods of Statistics (Princeton, 1946), p. 90. 
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P r o o f . We have 
• a . n -a 

27ic„=lf(t)e-u"dt+\f(t)e-intdt+jf(t)e-inidt, 
-a a -ye 

a :i -a 
(— l)"27rc„ = (— 1)" J / ( / ) e - l B t r f / + J / ( O c - < n ( t - " > f l t f + [ / ( O r ™ * * * ^ == 

-a a 
a o n-&. 

- (— 1)" ) f(t)e-inidt+ [f(t+.n)e-i"tdt+ j f(t—Tt)e-int'dt = 
-d , i-n 0 

K , \ - i n -f—-t-v u •(—//?)* ^ 

+ J /̂ iO*"4"'̂  j + J g(t)e~intdt, 
-a - (rc-a> 

w h e r e g ( t ) = f ( t — n s g n t ) . Hence 

l)»27rcB = 9P(/i) + V(«) , 
where 

a 
(p(n) = {— 1)»/-» f/(J,)(Oe-<B<d/, 

-a ' 
and ^ ( n ) is obtained by putting z=n in 

71-6 

+ (— l)p-' iv \ f * ~ l ) f t - V ( — 6 + [ o-^e-^c/i}. 
. -(n-aj 

Thus cp(n) = 0 ( 1 ) as n-+oo and if>(z) is an entire function s u c h ' t h a t 
const. e ^ ' ^ l ' l . Furthermore, y(x) is real for real x, as follows from 

our assumption that all c„ are real. 
Consider now an index k„. If both ck„> — 1 Ar„|—^ and c,;„+i> — v4|/c„-f-lp:p, 

and (for example) if /r„ is even and positive, we have tp (k n )^—2TcA — (p (k n ) ^ — C, 
and ,ip(k„+ \)<.2nA—</>(£„ + 1 ) ^ C , where C is some constant ; hence 
\ip(m„)\<^C for some number m„, where k„^mn^k„+ 1. If k„+1 = k„+ 1, 
then ckn+1 satisfies the same inequality as ckn and ckn+i, and .we determine 
mn+1 similarly, kn-\-1 <Lm„+1<Lkn + 2. If possible we select mn and mn+1 so 

that 
/ n „ + 1 — — . If this is not possible, we must have for 

1 3 

kn x<Lk„— and for kn +-¡Lx kn + 2, for otherwise we could choose 

either ka<Lm„<Lk„Jr-^- and k„+\ ^m„+1^k„ + 2,' or kn^m„<,k„+ 1 and 3 K+ + 2. Then since ip(km+\)^C, it follows that y(x) has a 
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1 3 
minimum between k„-f--^- and Ar„ + - y , and so m„ and m„+1 can be chosen 

so that they are separated by a point q„ such that ip'(q„) = 0. On the other 
hand, if £ „ + ! > £ „ + 1 , we have k„<,m„<Lk„-^mn+1^kn + 2, and so certainly 

m„+1 — mn > . Similar considerations apply for odd or negative n, or when 

the inequality satisfied by ckn is reversed. 
Thus xp(z) satisfies |?/>(z)| ¿ c o n s t . and \ip{tn„)\<C, where 

|m„—nB\<±L-\-\ and either \mn+1 — m„\^~ or else ip'(qn) = 0 with q„ 

between m„ and m„+1. Now if ó > 7 t ( l — Z T 1 ) , we have tl — d<n/B and by 
a result of DUFFIN and SCHAEFFER 3 ) , ' s bounded on the whole real 
axis. (DUFFIN and SCHAEFFER require \m„+1 — m„\ > y > 0, but an analysis of 
their proof shows that the theorem remains valid without this restriction if 
i p ' ( x ) vanishes between any two m„'s which differ by less than some fixed y.) 
Since ip(x) is bounded, in particular ip(n) is bounded, and since cp(n) is 
bounded, npc„ is bounded. Hence 2 \ n V ' l c n \ 2 converges and / (0) .has a 
(p— l)th derivative (belonging to Z.2).' 

There is an analogoqs theorem for power series which can be proved 
in a similar way (it would be possible to formulate a general result including 
both theorems): -

c c 

T h e o r e m 2. Let F(z) = 2anz" for \z\ < 1 ar,d suppose that for 

— and 0<r < 1, we have \F(rei0)\ where «>(0) is integrable; 
let F(z) have a radial boundary function F(eie) for —6¿6<ó, such that 
F(el°) has an integrable pVa derivative in —d <L-0<Ld. Let the an be real and 
let k„ be the subsequence of positive integers at which a change of sign in 
the sequence {a,) does not occur. If \k„—nB\<LL, where B^> 1 and L is fixed, 
then a„ = 0{n:1') and consequently F(z) has a radial boundary function, with 
at least p—1 derivatives, for all 0. 

(Received July 17, 1949.) 

3) R. J. DUFFIN and A. C. SCHAEFFER, Power series with bounded coefficients, 
American Journal of Math., 67 (1945), pp. 141—154. 


