
41 

Bilinear functionals over CxC. 
By MARSTON M O R S E in P r i n c e t o n , N. J. 

§ 1. F. Riesz's theorem and the Fréchet generalization. 

It is perhaps appropriate in this volume in honor of F . R I E S Z and L. 
F E J É R that a summary account be given of new and unpublished theorems on 
the representation and uses of bilinear functionals over the cartesian product 
C X C . These results were recently obtained by the author and Dr. WILLIAM 

T R A N S U E . The famous theorem of F . R I E S Z on the representation of the most 
general functional / , linear over the Banach space C, as a Riemann-Stieltjes 
integral 

L • • • 

(1.1) ' / ( * ) ' = I ' x ( s ) ^ ( s ) [xeC] 
• . . 0 

(where g is a functional of bounded Jordan variation over the interval [0,1]) 
was followed by F R É C H E T ' S representation of the most .general functional O 
bilinear (including continuous) over the cartesian product C x C . F R É C H E T 

represents <5 by a repeated Riemann—Stieltjes integral -. 
I I 

<1.2) 0(x,y)= | x ( s K \y(t)dtk(s,t) . . [x,yeC). 
Ó Ö 

The distribution function k was required to have a special finite variation 
P(E,k) (here termed an F-variation) over the unit interval £ = [0, 1] X [0, 1] 
on which k was defined. Bearing in mind the celebrated contributions of 
F E J É R to the theory of Fourier series I am happy to include in this account 
the innovation in the theory of the Pringsheim convergence of double Fourier 
series which our new theorems on the nature of the F-variation make possible. 
This report will be restricted to bilinear as distinguished from multilinear 
functionals, and to the F-variation over the 2-dimensional intervals / as dis-
tinguished from the F-variation over the corresponding n-dimensional interval 
/ ( n ) . The major part of our theorems have, however, been extended to the 
/z-dimensional case (see MT 6). There remain outstanding difficulties which 
have been solved only for the case n = 2. 
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We shall recall the definition of P[I, kJ and extend this definition. 
Let E and E" respectively represent the interval [0, 1] on the s and /-axes. 
We admit a partition n of E = E'xE" into subintervals defined by straight lines 
[s = s r] and [¿ = 4 ] - The values sr and tn used to define n shall satisfy the 
conditions 

(1.3) 0 = s0 < Si < . . . < Sr(n) = 1, 
(1.4) 0 = t0 <U <...<*„(„,= 1. 

For r — 1 , . ..,r(n); /2 = 1 , . . .,n{n) set 
(1.5) 4 „ W = ^ ( s r , i „ ) - A : ( 5 r _ 1 , / J - / : ( s r ) / „ _ 1 ) + /:(5 r_1 ,4_1). 

Let e'r be a constant, with \e'r\^\, associated with the rth interval of the 
partition (1.3) of E', and let e'„' with be similarly associated with the 
nth interval of the partition (1.4) of E". We say that the set 

(1-6) . >• '••> < ( n ) ] = e 

is associated with the partition n. 
Then by definition 

(1.7) P(E,k) = sup Ze're'„'Jrn(k) 
e r, u 

taking the sup over all admissible partitions n of E and associated sets e. 
We admit the possibility that P(I, ¿) = + oo. 

One immediately extends the definition of P[l, k] over any closed sub-
interval I=UxV of E, restricting the partitioning values sr to the interval 
U of the s-axis and the partitioning values tr to the interval V of the /-axis. 
We also extend the definition of P[I, k] to the case in which U and V may 
be open at either end point, both end points, or neither end point. In this 

•case we set 

(1.8) P [ / , * ] = sup P[J,k] 
J 

where / ranges over all closed subintervals of I. (MT 6, § 2.) 
So defined P[I, k\ should be compared with the Vitali-variation I/[/, k]. 

This may be defined as 

(1-9) V[I,k] = sup 
.1 r, H . 

in case / is' closed, and as sup V(J, k), taken as in (1.8), in case / is not 
J 

closed. It is immediately obvious that 

(1.10) . P[I,k]^V[I,k\. 
It was known previously that functions k exist for which P(l,k)< oo and 
V[I, k] = oo, but the example given was of a function k which vanished almost 
everywhere in E, and was inadequate for the purposes of our theory. (See 
CLARKSON and ADAMS.) HOW much less restrictive numerical conditions on k 
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in terms of the F-variation are, than corresponding conditions in terms of 
the V-variation, is shown by the following theorem, established i n M T 8 , § 6 . 

T h e o r e m 1.1. Let Ixy be, the interval [0, x] X [0, y] , and let p be an 
arbitrary positive number. There exists a function k mapping E continuously 
into the axis of reals, vanishing on the boundary of E, absolutely continuous 
in the sense-of Caratheodory over every closed subinterval of (0, l ) x ( 0 , 1) 
and such that 

(1-11) V[Ixv,k] = ™, P[Itu,k]^x>y> 
for arbitrary positive; x and y. ' . 

There are other Important respects in which the F-variation differs from 
the V-variation. If / and J are 2-intervals intersecting in a common edge then 
(1.12) V[iVj,k] = V[l,k]+V[f,k] 
while 
(1.13) P[IUj,k]^P[I,k] + P[J,k] 
with the equality in general not holding in (1.13). In addition the decom-
position k = P—N of k into two monotone functions P and N, possible when 
V{I, k)<oo, is not in general possible when P(I, k) < oo. In spite of these, 
considerable differences the F-variation can be used with great advantage in. 
place of the V-variation in many .branches of analysis. 

§ 2. Some basic properties of the F-variation. 

The properties of the F-variation described in this section parallel in a 
remarkable way well known properties of the Jordan variation Th

a(g) over 
the interval [a, b] of a function g with .values g(s) defined for s€[a , b}. Assuming 
that T\{g) <oo we list the known properties to which we shall give analogies 
for the F-variation. • 

I. The limits g(s—) and ¿ f ( s + ) e x i s t for s€ (0 , 1] and [0, 1) respectively. 

II. The points at which g fails to be continuous are at most countably 
infinite. 

III. If g+ and g~ are functions defined by setting g+(s) 
.gris)=g(s-)loTse(P, 1) a n d g ( 0 ) = g + (0) = g~(0), g(\) =g+(\) =g~(l) 
then 

Tl(g+) = Tl(g-)^Tl(g). . 

IV. Referring to the Riesz representation (1.1) we have 

' s u p ^ l - = 7 i ( r ) = 7 ; ( | r - ) ( | |x | | =}=0). 
xiC ||X|| 

V. If c<s<s' < 1 then for fixed c and variable s and s' lim T','(g)=0. 
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The analogies of these properties of the Jordan variation have been 
obtained in MT 1 , 2 , 6 and 10. We shall suppose that P\E, k) < oo and that 
on at least one section K of E on which s = const., and on one section of E 
on which t — const., the function k \K defined by /rover / f h a s a finite Jordan 
variation. We say then that A: is in F(E). For k£F(E) the following holds : 

I. Let (a,b) be an arbitrary point in the (s, t) plane and let Sab be any 
one of the four open quadrants . into which the {s, t)-plane is divided by thé 
lines s = a and t = b. For fixed (a, b) and for (s, t) € S„ b 

(2.1) lim k(s,t) = ks(a,b) [ f e O ^ S . » ] 
(M)-Mo, 6) 

exists whenever Sab intersects E. The four limits corresponding to the four 
quadrants may all be different. (MT 1, Theorem 5.1.) 

II. The points in E at which k fails to be continuous lie on a countable 
number of, straight lines parallel to the coordinate axes. (MT 1, Theorem 6.3.) 

III. Corresponding to any one of the variable quadrants Sab of I taken 
with a fixed orientation, we shall define a function ks over E. The detailed 
definition in case s>a and t>b in Sab follows. Let ks(a, b) = ks(a, b) for 
(a, b) <E (0, l ) x ( 0 , 1), with lcs(a, b) = k(a, b) at each corner point of E. Let 
ks(Q,t) = k(Q,t + ) and ks(\,t) = k{\,t+) for f e<0, 1); and let ks(s, 0) = 
= k(s -}-, 0), ks(s, l) = A:(s + , 1) for s £ (0, 1). The remaining three functions 
ks are similarly defined. Then ks(s, t) = k(s, t) at each point of continuity of 
k and for any two quadrant types S and• S', of fixed orientation, 

P[E, ks) = P[E, ks'] ^ P\E, k], 
(MT 6, Theorem 8.2, § 6.) 

IV. Referring to the Fréchet representation (1.2) 

• [0 + x € C ; 0 + y 6 C ] 

where S is any one of the four quadrant types of fixed orientation. (MT 2, 
Theorem 12.1, MT 3, § 3.) 

V. Let Sab be an open quadrant with vertex at (a,b)Ç.E. Let J be a 
variable 2-interval in SalC\E. Then P[J, k] -* 0 as the maximum distance 
of the vertices of J from an edge of Sab tends to zero. (MT 10, Theorem 3.1.) 

Property V has the following important application. If k is continuous 
over E and in F(E), then P[J,k]-*0 uniformly for arbitrary choice of 
JÇ.E as the .area of J tends to zero. (See MT 10, Corollary 3.5.) 

' We add the useful fact that , when k is in F(E), k is bounded and 
measurable over E. (See MT 4, § 2.) 
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§ 3. The Pringsheim convergence of double Fourier series. 

On observing that the Dirichlet integral : 

i f f . sin(m + 4 ~ ) s s in in + ^ - h 
(3.1) ¿ / ( 5 , / ) j^—dsdt 

0 u S m 2 ' s i n " 2 -
which gives the partial sum Sm„ of the Fourier series for / , is really a special 
evaluation @(x, y) of a bilinear functional with 

sin ( m + - i - ) S ' sin(/z + 4 - ) i 
x(s) = -.—• i — , y(t) = - t - , 

sin — s i n ~2~ 

it is clear that the general theory of such func t iona l should be relevant to 
the convergence problem. Just as the second law of the mean is historically 
associated with the 1-dimensional Dirichlet integral, so here there is a gene-
ralized law of the mean which involves the F-variation of / , and is funda-
mental.in treating the Dirichlet integral. As established in MT 10, Theorem 
5.1, this law may be stated as follows. 

T h e o r e m 3.1. Let f and f2 be integrable over [0, 1]. Let I the open 
interval / = ( 0 , l ) x ( 0 , 1). Suppose geF(I) and that g(0 + , t ) = 0 for t £ ( 0, 1) 
and.g(s,0+) = 0 for s6(0, 1). Then 

(3.2) | J' $Ms)Mt)g(s, Í) dsdt | á | ¡Ms) ds 11 ¡f,{t)dt | P[i, 
I c d 

for some choice of c and d in [0,1]. ' 
With the aid of this theorem one can extend the 1-dimensional Jordan 

test as follows. 
T h e o r e m 3.2. Let f be integrable over the interval J= (0, 2n) x (0, 2n), 

have the period 2n in each of its arguments, and. be in F(J). Then the Fourier 
series for f converges at each point (a, b) to the mean of the four open quadrant 
limits of f at (a, b). If f is continuous this convergence is uniform over J. 
(MT 7, Theorem 1.) 

As Theorem 1.1 indicates, the class of functions / which sastisfy this 
test is much larger than the class defined by HARDY in extending the Jordan 
test, using the V-variation of / . This theorem of course implies the Hardy 
theorem but not conversely. 

We. have weakened all of the classical two-dimensional tests (known 
to us) which use V-variations. These tests appear to include all the tests for 
Pringsheim convergence except the Tonelli test, and we prove that the Tonelli 
test is more restrictive than some of our "MT-tests". The tests so modified 
include those generalizing the Jordan, Dini, Young-Pollard, de la Valfée 
Poussin, Lebesgue and Gergen tests. (See MT 11.) We shall refer to the Dini 
test as typical. 
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If one' is concerned with convergence at the' origin one sets 
4F(s, t ) = f ( s , t) +f(—s, t) +f(s, -1) + f ( - s , - t ) 

•and then writes (p(s,i) = F(s,t)—c. In the Young-Dini test the Fourier 
.series of / converges to c if 

71 71 

(3.3) • j ' J 
0 0 

A much weaker version of this condition may be obtained as follows. 
Let J be the interval (0, n) x (0, n). If g is defined over / a n d integrable 

•over every closed subinterval of y, set 
o ' • M V 

g(u,v)^ttg(s,t)dsdt [(a) V)ZJ]. 
71 71 

The condition (3.3) may be written in the form 
(3.4) V [ y , ( W ) ] < ~ V p - F - C ] 
and our weakened form of the Dini test is as follows. 

T h e o r e m 3.3. If cp is integrable over J= (0, n) x (0, n), and if 

(3.5) P [ J , ( y B ) ] < ^ , 
ihen the Fourier series of f converges to c at the origin. 

This MT-Dini test is less restrictive than the Young-Dini test, as .we 
show by an example. It is in fact so broad in its coverage that the class of 
functions (p which satisfy its conditions are included in none of the classical 
tes^s, not excepting the Qergen test (MT 11, § 11). We add the following 

T h e o r e m 3.4. Each MT-test is less restrictive than the corresponding 
•classical test. (See G E R G E N for enumeration of classical tests.) In particular 
the MT-tést modifying the Gergen test is less restrictive than each classical 

.test for Pringsheim convergence. (See MT 1.1, Theorem 1.1.) 

The last result is somewhat surprising since there is no proof known 
to us that the Gergen test in its original form is actually less restrictive.than 
some of the other tests of Lebesgue type in the form given by G E R G E N . 

Our MT-Gergen test is, however, shown to be less restrictive than each of 
these tests. . 

Among the many theorems necessary in the.calculus of Fréchet variations 
we shall state three which are typical. 

T h e o r e m 3.5. Suppose g is integrable over every closed subinterval 
of y = (0, 1) x (0, 1) and that P[J, < oo. Let f and f be two functions in 
the Banach space M of functions essentially bounded over [0, 1]. Then the 
function f x f g with values fi(s)f2(t)g(s, t) over J satisfies the condition 

(3-6) P{JAlte)]^\\fMMP[J,g] 
where H / J and ||/2|| are norms o f f and f2 in M. (MT 10, Theorem 6.2). 

<P(s,t) 
st 

dsdt<oc. 



Bilinear funct ional . 47 

We point out that g may not be integrable over y so that it is possible 
ihat V(J,g) = jo. In g we really have a Harnack integral with special prop-
erties. Under the conditions of the theorem one can show that g has a 
•continuous extension over ] ; we term this extension of g over J an FL-integral 
•of g and develop its properties (MT 10, § 6). If V[J,g] = cc, then for g in 
the theorem 

P[J,g]<™, PlJ,\g\] = VU,g) = ^ 
• Thus g may have an FL-integral g over / w h i l e is not FL-integrable. 

We refer to a. theorem of LEBESGUE . Let x > 0 , y > 0 be positive 
infinitesimals. If g is in L over / = (0, l ) x ( 0 , .1), according to Lebesgue 

l-x 1-t/ 

(3 7) : f J \zlxyg(s,t)\dsdt = o(\), 
0 0 

where t)=g{s + x, t+y) — g(s, t + y)—g(s + x, t)+g(s, t). 
If Jx" denotes the interval of integration in (3.7), one can write (3.7) in the form 

(3.8) V\J*»,J^¡\ = o{\). 

T h e o r e m 3.6. If g is an FL-integral over / = [0,1] x [0, 1] then 

(3.9) P[Jxu,^g] = o( 1). 
(MT 10, Theorem 8.1.) 

As we have shown, (3.9) can hold without g being integrable over J, 
•or (3.7) holding. (MT 8, § 6.) 

When g is integrable over / = ( 0 , l ) x (0, 1), the mean g/uv, where 
tí ' v 

i(u,v)=\ds\g(s,t)dt [(U,V)ZJI 
0 0 

•enters frequently, for example in the generalized de la Vallée Poussin test. 
The following theorem is then useful. See MT 10, Theorem 7.1 and Corollary 7.1. 

T h e o r e m 3.7. If g is in L over / = ( 0 , 1 ) X ( 0 , 1) and f ( s ) and f2(t) 
are positive, monotone decreasing and continuous over (0, 1), then 

<3.io) P[JJM^P[J,KKgl 
(3.11) PU,(g/st)]^P[J,g]. 

In this theorem the right member of (3.10) can be finite while f f 2 g is 
not integrable over J. (MT 8, § 6.) 

§ 4 . Variational theory. 

The preceding results are a by-product of the studies of MORSE and. 
TRANSUE in the variational theory of quadratic functionals. For the; purposes 
of this variational theory one considers the product Ax B of any two normed 
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l inear vec tor s p a c e s A a n d B of which the p r o d u c t s 

L2xl2 j X j 0 X , C X C X C 
are i m p o r t a n t specia l cases . Let u s s u p p o s e he re that the s p a c e s A a n d B a r e 
s p a c e s of f u n c t i o n s de f ined on the interval [0, 1]. G iven a n y d i s t r ibu t ion 
func t ion k m a p p i n g the interval E = E xE" in to the ax i s of reals , a var ia t ion 
h{A,B,k) of k over E is de f ined gene ra l i z ing the. def in i t ion of P[E,k]. T h e 
R i e s z — F r é c h e t r ep re sen t a t i on theory is t hen ex tended a n d a var ia t ional t heo ry 
a n d spect ra l theory ini t ia ted. T h i s spec t ra l theory is no t a t r a n s f o r m a t i o n • 
theory bu t ra ther a direct critical poin t theory wi th the a s p e c t s charac te r i s t i c 
of such a theory . 
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