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Bnlmear functionals over C><C

By MARSTON MORSE in Princeton, N. ]

§ 1. F. Riesz’s theorem and the Fréchet generalization.

It is perhaps appropriate in this volume in honor of F. RiEsz and L.
FEJER that a summary account be given of new and unpublished theorems on
the representation and uses of bilinear functionals over the cartesian product’
Cx C. These results were recently obtained by the author and Dr. WiLLIAM
* TRANSUE. The famous theorem of F. RIESz on the representation of the most

general functional f, lmear over the Banach space C, as a Riemann- -Stieltjes
integral : . -
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(where g is a functlonal of bounded ]ordan varlatlon over the interval [0, 1])
was followed by FRECHET’s representatlon of the most generd] functional. @.
bilinear (including continuous) over the cartesian product C X C. FRECHET
represents @ by a repeated Rxemann—Stlemes integral - '
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The distribution function k& was required to have a special finite variation
- P(E, k) (here termed an F-variation) over the unit interval E=[0, 1] [0, 1]
on which k was- defined. Bearing in mind. the celebrated contributions of
FEJER to the theory of Fourier series I am happy to include in this account-
the innovation in the theory of the Pringsheim convergence of double Fourier
series which our new theorems on the nature of the F-variation make possible. -
This report .will be restricted to bilinear as distinguished from multilinear
functionals, and to the F-variation over the 2-dimensional intervals [ as dis-- '
tinguished from the F-variation over the corresponding n-dimensional interval
I™. The major part of our theorems have, however, ‘been extended to the -
n-dimensional case (see MT -6). There remain outstandmo difficulties which
have been solved only for the case n=2.
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We shall recall the definition of P[/, k] and extend this definition.
Let E" and E” respectively represent the interval [0, 1] on the s and f-axes.
We admit a partition = of E—= E’X E” into subintervals defined by straight lines
[s==s,] and [t=1t,]. The values S, and £, used to define 7t shall satisfy the
conditions

(].3) 0=So<sl<.-..<sr(n)=l,
(1.4) 0=t0<t1<---<tn(n)=l-
For r=1,...,r(n); n=1, n(n) set

(1'5) . ‘dm(k): k(sr) ! ) k(sr—l’ ﬂ k(sr)tn—1)+k(sr—1’ tn—l)'
Let e, be a constant, with-|e/|< 1, associated with the rth interval of the

partition (1.3) of E’, and let e, with |e;/|<1 be similarly ass_ociafed with the
nth interval of the partition (1.4) of E”. We say that the set

(1.6) . - ler, - ey @i “(n)]—-e
1S associated thh the partition 7.

Then by definition _
(1.7) . P(E, k)=sup F reyd. (k)

takmg the sup over all admissible partmons 7z of E and assocnated sets e.
We admit the possibility that P(/, k) ==+ oo.

One immediately extends the definition of P{/, k] over any closed sub-
interval /=U X V of E, restricting the partitioning values s, to the interval
U of the s-axis and the partitioning values ¢, to the interval V of the #-axis.
" We also extend the definition of P[/, k] to the case.in which U and V may
be open at either end point, both end points, or neither end point. In this
‘case we set ) '

(1.8) - Pll, k]= sup P[/, k]

where / rangeé over all closed subintervals of /. (MT 6, § 2)
So defined P[/, k] should be compared with the Vitali-variation V[/, k].
This may be defined as

(1.9) ' VI, k]=sup 2|4, (k).
in case / is closed, and as sup V(/, k), taken as in (1.8), in case / is not
J ° .

closed. It is immediately obvious that
(1.10) P[L k1< V[, k).

It was known previously that functions k exist for which P(/, k) < and
V[I, k] == oo, but the example given was of a function k& which vanished almost
everywhere in E, and was inadequate for the purposes of our theory. (See
CLarksoN and ADAMS.) How much less restrictive numerical conditions on k&
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.in terms of the F-variation are, than correspondingA conditions in terms of
the V-variation, is shown by the following theorem, established in MT 8, § 6.

Theorem 1.1. Lef I, be the interval [0, x]X {0, y], and let p be an
arbitrary positive number. There exists a function k mapping E continuously
into the axis of reals, vanishing on the boundary of E, absolutely continuous
in the sense:of Carathéodory over every closed subznterval of (0, 1) % (0, 1)
and such that

(1.11) | VIL,, kl=25, P[L,, K=wy

for arbitrary positive x and 2 5

‘ There are other important re<pects in which the F-variation differs from
“the V-variation. If / and J are 2-intervals intersecting in a common edge then

(1.12) . V[IuU ], k]_V[I K1+ VI k]
while '
(1.13) - P[Iujk] P[1, k] + Pl ], k]

with the equality in general not holding in (1.13). In addition the decom-
position k= P—N of k into two monotone functions P and N, possible when
V(l, k) <oo, is not in general ‘possible when P(/, k) <oo. In spite of these
considerable differences the F-variation can be used with great advantage in
place of the V-variation in many branches of analysis.

~§ 2. Some basic prdperﬁes of the F-variation.

The properties of the F-variation described in- this section parallel in a
remarkable way well known properties of the Jordan variation 7%(g) over
the interval [a, 6] of a function g with values g(s) defined for s€[a, 0]. Assuming
that T}(g) <oo we list the known properties to which we shall .give analogles |
for the F-variation.

I. The limits g(s—) and g(s+) exist for sE(O 1] and [0 1) respecuvely

II. The pomts at which g fails to. be continuous are at most countably
infinite.

Il]. If g* and g- are functions defined by settmg gr(s)=g¢ (s+),
87 =g(). fors€(0 1) and g(0)=g"* (0) =g (0), g(l)—g (=g~
then
Tig") =Ti(g™) = Ti(g).
IV Referrmg to the Riesz representation (1.1) we have

'sup%_ﬁt Tie") = Tig™). (x|} 0).

z€C

Volf e<s<s'< then for fixed ¢ and varxable sand &' hm TY(g)==0."

> c
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The analogies of these properties of the Jordan variation have been
‘obtained in MT 1,2,6 and 10. We shall suppose that P[E, kj < oo and that
on at least one section K of E on which s==-const., and on one section of E
on which #=const, the finction k|K defined by k over K has a finite Jordan

variation. We say then that k is in I~(E) For k¢ F(E) the followmg holds:

I. Let (a,b) be an arbitrary point in the (s,t) plane and let. S,, be any
one of the four open quadrants into which the (s, t)-plane is dlvzded by the
lines s=a and t—b For fixed (a, b) and for (s, t)GS
@n o lim k(s t) = kS(a, b) (s, H)€S,;)

(s, )~ (a, 1) -
exists whenever S,, intersects E. The four limits corresponding fo the four
quadrants may all be different. (MT 1, Theorem 5.1.) '

Il. The points in E at which k fails to be continuous lie on a c0uﬁlable
number of straight lines parallel to the coordinate axes. (MT 1, Theorem 6.3.)

lIl. Corresponding to any one of the variable quadrants S,, of I taken
with a fixed orientation, we shall define a function k* over E. The detailed
definition in case s>a and t>b in S,, follows. Let kS(a, b)=k5(a, b) for
(a, b)€(0, 1) X (0, 1), with kS(a, by=1k(a, b) at each corner point of E. Let
kS0, 6)=k(0,t+) and k3(1, t)=k(1,t+) for t€(0,1); and let ks, 0)=
= k(s4,0), k5(s, 1)=k(s+, 1) for s€(0, 1). The remaining three functions
kS are similarly deéfined. Then k5(s,t)=k(s, t) at each point of continuity of
k and for any two quadrant types S and-§', of fixed orientation, :

P|E, k)= P[E, k1< P[E, k]
(MT 6, Theorem 8.2 §6)

IV. Referring fo the Frechet representanon (1. ”) _
sup LD pre sy [0% x€C;0+yeC]
sy || X] Y]]
where S is any one of the four quadrant types of fixed orzem‘atzon (MT 2
Theorem 12.1, MT 3, §3.)

V. Let S,, be an odpen quadrant with vertex at (q, b)EE Let ] be a
variable 2-interval in S,,NE. Then P[], k]-0 as the maximum distance
of the vertices of ] from an edge of S,, tends to zero. (MT 10, Theorem 3.1.)

Property V has the following important application. If k is continuous
over £ and in F(E) then P[/, k]->0 uniformly. for arbitrary choice of
J€E as the area of J tends to zero. (See MT 10, Corollary 3.5.) ,

* We add the useful fact that when k is in F(E), k is bounded and
measurable over E. (See MT 4, § 2) ’
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§ 3. The Pringsheim 4'_conv'ergence of double Fourier series.
On observing that the Dirichlet integral

1 : nvA sin(m—}-—é—,—)s sin(n—}—%)t

'Fjjf(s’t) _ - ———dsdt
sin—- sin -~
which 01ves the partlal sum S,,, of the Fourier senes for f, is really a special
evaluatlon @(x,y) of a bilinear functional @ with
, sm(m—}— 5 ) ) sm(n—{— )
x(3)=*—‘7—§_—.» J’(f)———t—,—, '
sin—- sin —-

it is clear that the general theory of such functionals should- be relevant to
" the convergence problem. Just as the second law of the mean is historically
associated with the 1-dimensional Dirichlet integral, so here there is a gene-
ralized law of the mean which involves .the F-variation of f, and is funda-
mental in treating the Dirichlet integral. As established in MT- 10, Theorem
5.1, this law may be stated as foilows,

Theorem 3.1. Lef f; and f, be mtegrable over [O 1]. Let I the open

interval = (0, 1) X (0, 1). Suppose gEF(I) and that g(0+, t)~0 for tE(O 1)
and g(s,0+)—0 for s€(0, 1). Then

(3.2) |/ ff1<s>f2<t>g(s t) dsdt| slf fi(s)ds | lf fz(i)df| Pl g1

for some chozce of cand d in [0, 1].

With-the aid of this theorem one ‘can extend the 1 dlmensmnal Jordan
test as follows.

Theorem 3.2. Let f be integrable over the interval ]— ©, 2n) X (0, 2n)

have the period 2n in each of its arguments, and be in F( J). Then the Fourier
series for f converges at each point (a, b) to the mean of the four open quadrant
limits of f at (a,b). If f is contmuous thts convergence is uniform over J.
(MT 7 Theorem 1.) :

As Theorem 1. 1-indicates, the class of functions f which sastisfy this
test .is- much larger than the class defined by HARDY in extending the Jordan
test, using the V-variation of f. This theorem of course implies the Hardy
theorem but not conversely. ' ‘

We. have  weakened all of the classical two-dimensional tests (known
to us) which use V-variations. These tests appear to include all the tests for
Pringsheim convergence except the Tonelli test, and we prove that the Tonelli
test is more restrictive than some of our “MT=tests”. The tests so modified
include those  generalizing the Jordan, Dini, Young-Pollard, de la Valiée
Poussin, Lebesgue and Gergen tests. (See MT 11) We shall refer to the Dini
test as typical.

(3.1)
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If one is concerned with convergence at"th_e' -origin one sets
4F(S,Tt)_='f(3,t)+f(—s, t)+f(8,—t)+f(—s,—-t) :
and then writes ¢ (s, t)—F(s t)—c. In the Young-Dini- test the Fourier
series of f converges to ¢ if :

G3) o J J
' 0 0 .
A much weaker version of this condition may be obtained as follows.

Let J be the interval (0, sz) X (O, m). Ifg is defmed over Jand integrable
over every closed submterval of J, set

LICTI] PRV
st

"o

Ewo =] faG, pasat BN (COI)E
The condmon @G 3) may be wntten in the form o
(34) o VLJ, (@lsD)] < oo lg=F—]

and our weakened form of the Dini test is as follows. . :
Theorem 3.3. If ¢ is integrable over J=(0,n) X (0,n), and zf

-(3.5) P[], (9lst)] < oo,
2hen the Fourier series of f converges to ¢ at the origin.

This MT-Dini test is less restrictive than the Young-Dini test, as .we
show by an example. It is in fact so broad in its coverage that the class of
functions ¢ which satisfy its conditions are included in none of the classical
tests, not excepting the Gergen test (MT 11, § 11). We add the following

Theorem 3.4. Each MT-test is less restrictive than the corresponding
.classical test. (See GERGEN for enumeration of classical tests.) In particular
the MT-tést modifying the Gergen ftest is less restrictive than each classical
ztest for Pringsheim convergence. (See MT 1.1, Theorem 1.1.)

The last result is. somewhat surprising since there is no proof known
to us that the Gergen test in its original form is actually less restrictive than
some of the other tests of Lebesgue type in the form given by GERGEN.
‘Our MT-Gergen test is, however, shown to be less restrictive than each of
these tests.

Among the many theorems necessary in the calculus of Fréchet variations
‘we shall state three which are typlcal

Theorem 3.5. Suppose g is integrable over every closed subinterval
of J=(0,1)x (0, 1) and that P[], g] <eo. Let f, and f, be two functions in
the' Banach. space M of functions essentially bounded over [0, 1). Then the
~ function fif,g with values f,(s)f,(t)g (s, t) over ] satisfies the condition

36) PLJ G R =IAIIAN PL, 8] |
~ where || f]] and |||l are norms of f, and f, in M. (MT 10, Theorem 6.2).
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We point out that g may not be integrable over / so that it is possible
that V(J,g)=x. In g we really have a Harnack integral with special prop-
erties. Under the conditions of the theorem one can show that g has a
continuous extension over J; we term this extension of & over J an FL-integral
of g and develop its properties (MT 10, § 6). If VIJ, g]-—oc then for g in
the theorem

P(J,81<==, ~ PlJlgl I]—V[] g]—oc

. Thus g may have an FL-integral g over J while | g is not FL-integréble.
We refer to a theorem of LEBESGUE. Let x>0,y>0 be positive

mfm1tes1mals If g is in L over J=(0, 1)><(O 1), according to Lebesgue
1-x 1-y

a1 | f |A,;g(s t)|dsdt—o(l),
0

where  4,,g(s, 1) =g(_s+x, t+9)—gls, 1) —g(s+x ) +e(s .
If J=v denotes the interval of integration in (3.7), one can write (3.7) in the form -

(3.8) | VI T gl =o(1). ‘
Theorem 3.6. If & is an FL-integral over J=I[0,1]1x[C, 1] then
(39) ' P[jzu, Axyg] : 0(]) .

(MT 10, Theorem 8.1.)

As we have shown, (3.9) can hold without g bemg mtegrable over J,
or (3.7) holding. (MT 8, §6.)

When g is integrable over /= (0, 1) X (0,.1), the mean Zluv, where

o

g1, v) = _[ds(_][ 2(s, t)dt (w, v) €/,
0 .

-enters fkequently, _for example in the generalized de la Vallée Poussin test.
‘The following theorem is then useful. See MT 10, Theorem 7.1 and Corollary 7.1.-

Theorem 3.7. If g is in L over j-%—(O, 1) % (0, 1)' and f,(s) dndf2(t) »
~are positive, monolone decreasing and continuous over (0, 1), then
(3.10) . PlU.f/81=4PILAS8),

(3.11) P[], (glst)] =PI/, g)-

In this theorem the right member of (3.10) can be finite while f1fe€ is .
ot integrable over ] (MT 8, §6)

§ 4. Variational theory.

The precedihg results are a by-product of the studies of MORSE and.
‘TRANSUE in the variational theory of quadratic functionals. For the purposes
of this variational theory one considers the‘,pr'qduct ‘A X B of any two normed
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linear vector spaces A and B of which the products
C Ly X Ly, L2><L1,C><L1, CXL,, CxC ;

are- 1mportant special cases. Let us suppose here that the spaces A and B are
spaces of functions defined on the interval [0, 1]. Given any distribution
function & mapping the interval £=E’ X E” into the axis of reals, a variation
- h(A, B, k) of k over E is defined generalizing the. definition of P[E, k]. The
Riesz—Fréchet representation theory is then extended ‘and a variational theory
" and spectral theory initiated. This spectral theory is not a transformation -

theory but rather a direct critical point theory with the aspects characteristic
- of such a theory.
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