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A remark on functions of several complex variables.

By A. ZYGMUND in Chicago.

1. Let f(2) be a function of a ‘complex variable 2z, regular for |z]|<1.

The very well: known result of NEVALINNA and OSTROWSK! asserts that, if
- 2n

(1) : - ilog If(re”’)ldf’——O(l)

then f(2) has a finite non- tangentnal limit at almost every point of the circum-
ference |2] = 1. Condition (1) is equivalent to the fact that the subharmonic
and non-negafive function log*|f(2)| has a harmonic majorant for |2| < I.
Since the existence of a harmonic majorant is an invariant of conformal
mapping, the Nevanlinna—Ostrowski result may be stated for any domain lim-
ited by a simple and rectifiable curve, and even in a much more general case.

The situation is different for functions f(z,, 2,, . . ., 2;) of several compiex
variables. Only in exceptional cases are iwo topologically equivalent domains
in the space Z, of the complex variables z,=x,+i},, ..., =X, iy, equi-
valent through complex analytic mapping. Two S1mplest examples of such
‘non-equivalent domains are the unit hypersphere

(S) A T S S EAR S
and the unit polycylinder :
©) ‘ |zl < Lz <1, ..z < 1.

As regards the latter, it has been shown (see [6]) that if f(z), 2,...,2;)
is regular in C and if

2 2n .
@ ... [10g*|fl(log" log* S }-d6,...d0,—= O(1)  (O=rerryri < 1),
0 0 :

‘where f stands for f(r,e,r,e,...,r,e%), then f has a finite limit for almost
every (¢,...,60) as the point (r,e®,...,r.e%) approches (¢*,...,e";) along
any non-tangential path, Though the problem is open, there seems to be
little doubt that the factor (Idg*log* |f|)*' in (2) cannot be omitted. This
factor is analogous to the Jogarithmic factor in the theorem on the strong
differentiability of multiple mtegrals and the latter is known to be mdlspensable

(see [2]. [5]).
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The purpose of this brief note is to consider the case of the h.y_persphere S.
[t turns out that the iterated logarithm does not enter there and the situation
resembles very much the Nevanlinna—Ostrowski theorem.

Theorem. Let f(z, zg,...,z,;f) be régular in fhe hybersphere S and
suppose that the integral
(3) ‘ Jtog* If(riei®,...,r,e% )| do,
is bounded where o, denotes the boundary of the hypersphere 113 +...+ri<r
and do, is the element of volume of this boundary. Then for almost every
point (2, 23,...,2%) of o, the function f has a finite non-tangential limit.

The proof is easy, if one uses a recent and important result of CALDERON
(see [1]) concerning boundary values of functions harmonic in a hypersphere.
This result may be stated as follows. Suppose that u(§;, &,,...,5) is a real-
valued-harmonic function of the real variables &, &, .. E,, in the hypersphere

E+&8+... +E<.

Suppose that for every point p, of a set E situated on the boundary of thls
hypersphere there is a (finite) cone with vertex at p,, with axis .along the
radius terminating at p,, and such that # is bounded in this cone. Then at
almost every point of E the function « has a-finite non-tangential limit,
(For n=2, this is an old result of PRIVALOFF (see [3]), who proved it by the
method of conformal mapping. For n> 2, however the proof requlres a totally
different 1dea)

Let us now assume the boundedness of - the mtegral (3) for r <1 The
function log* ]f(xl—i—zy“ X, +iy)| is in S a subharmonic function of the 2k
variables x,,3.,...,X,,¥.. The proof of this is essentially the same as in the
familiar case k= 1. First of all, log*|f| is continuous in S. It is therefore
enough to show that for every pdin’t p, in S, and for every sufficiently small
sphere S’ with center at p,,- the value of log*|f| at p, does not exceed the
average of log*|f| taken on the boundary of . If f vanishes at p,, this is
immediate, since log*|f| is non-negative. If f is distinct from 0 at p,, then
in a sufficiently small neighborhood of p, the function log|f| is harmonic in
each pair of the variables x;, y;, and so also is harmonic in all the variables .
Xy, Vire - X, Vi Hence log*|f| = Max {0, log|f|} is subharmonic in that
" neighborhood, so that the required mequahty is. sahshed Thus log*|f] is
_subharmonic in S.

Let u (xl,yl, X Yi) be the Poisson integral fmmed with the values .
of log*|f| on o.. Thus u, is a non:negative harmonic function -in the interior
of o, and majorizes log*|f| there. By a familiar resuit from the theory of
subharmonic functions, u,(x,,...,»,) is a non-decreasing function of r at every
point x,,...,¥; (of course for the values of r such that.r*>xi--...4-37). By
the theorem of HARNACK u, tends in S either to a harmonic functlon u,. or
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to oo, The lafter is impossible since

1 +
@ o | o 17140,
_ o

represents the value of u, at the origin and is a bounded function of r [the
boundedness of (4) follows from the fact that itis a non-decreasing function
of r and from the boundedness of the integral (3)].

Thus the function log*|f(z,,...,2)| has a harmonic majorant u(z,,...,2;)
in S. This harmonic function being non-negative, it is the Poisson integral of a
positive mass distributed over the boundary ¢, of S. Hence (as in the case
k=1) u(z,...,2;) has a non-tangential limit at almost every point of o,.
Since u=log*|f|, 'it follows that fis at any rate bounded as (z,...,2,)
approaches non-tangentially almost every point of ¢,. Since the real and the
imaginary part of f are real-valued harmonic functions, an application of
CALDERON’s result shows that f has a non-tangential limit at almost. every
point of ¢,. This compleies the proof the theorem.

2, Let f(2,,...,2%) be afunction regular in S, and let p be a positive num-
ber. As in the case k— 1, we say that f belongs to the class A7, if the infegral

(5) o Jmﬂdo

remains bounded for r < 1. Since log*lflglf;"+Const., the boundedness of
the integral (5) implies that of (3). Thus if f is of the class H?, the non-tan-
gential limit of f exists at almost every point of ¢,, and is of course of the
- class L? over o,. We shall denofe this limit also by f. Let F(z,...,2,) denote
the upper bound of | f| on the radius of S terminating at the point (z,,...,2) € 0,.
It has recently been proved (see [4]) that if f€ H, then FEL? on o,.

From this we immediately deduce the following

Theorem. If f(z, 2,...,2,) €H", then
NIf @z = frz, 20 pdo, >0 as 11,
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