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Algebraic formulation óf the problem of measure. 
By M. H. STONE in Chicago. 

Under a similar title, "Algebraische Fassung des Massproblems", A L F R E D 

T A R S K I has shown how the general problem of constructing an additive 
measure can be reduced to an interesting algebraic form1). In this paper we 
intend to carry T A R S K I ' S reduction a little further2). 

We consider, as T A R S K I does, a non-void abstract set X with an arbitrary 
fixed triadic relation R, writing R(x,y,z) to indicate that the elements x,y,z, 
of X are in the relation R. A non-negative real function /t defined on A" will 
be called an /?-additive measure if R(x, y, z) implies fi(x) = fi{y) -{-(i{z). 
A suggestive notation consists in writing x = y-\-z whenever R(x, y, z); but 
the operation + thus introduced need not be defined for all pairs (y,z), need 
not be single-valued, and need not enjoy any special algebraic properties: 
Illustrations and interpretations" of these concepts may be found in T A R S K I ' S 

paper1). A particularly interesting example arises in abstract geometry: let 
the geometrical structure of a space be defined in terms of a-relation of 
congruence among its subsets, let X be a family of subsets Of the given space, 
and let R(x, y, z) if and only if x is the union of disjoint, sets congruent 
respectively to y and to z; then ah 7?-additive measure defined over X will 
in general have the characteristic properties of a geometrical content, being 
additive for the union of disjoint sets and invariant under the replacement 
of a set by a congruent one. 

Since, the real number system can be viewed as a rational-linear space, 
that is, as a linear space with the rational number system as coefficient-field, 
we may regard an /?-additive measure as merely a special instance of an 
/?-additive mapping of X into a rational-linear space. Our first step will be 
to analyze the structure of such general mappings. It is comparatively easy 
to show that any such mapping decomposes into a fixed mapping óf X into 

i) A. TAKSKI, Fundamenta Math., 31 (1938), pp. 4 7 - 6 6 . 
s) Our results were included in Colloquium Lectures delivered before the American 

Mathematical Society at Madison, Wisconsin, in September, 1939. Tliey have also been 
presented in lectures at Harvard University (1945 —46) and the University of Chicago (1946). 
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a certain fixed rational-linear space Lx and a rational-linear mapping of the 
space Lx. The problem of constructing an tf-additive measure is thus reduced 
to the problem of constructing a rational-linear mapping of Lx into the real 
number system, subject to certain requirements of positivity. The latter problem 
can then be solved in terms of the theory of convex sets in a rational-linear 
space. 

The rational-linear space Lx and the natural /?-additive mapping 7 of X 
into Lx will now be constructed. Let L be the rational-linear space of all 
rational-valued functions / on X such 'that the set ( x ; / ( x ) = j = 0 ) is finite. 
Let fx designate that member of L defined by the relations fx{x) = 1, fx(y) = 0 
when y 4= x. The mapping H: x-+fx carries J in a one-to-one manner 
onto a set of rationally-linearly independent elements in L. Let L0 be the 
rational-linear subspace of L generated by the functions of the special form 
fx—fy—fz where R(x, y, z); an element of L belongs to L0 if and only if it 
is a rational-linear combination of a finite number of these special functions. 
Identification of the elements of L modulo L0 in the standard way produces 
a rational-linear space Lx = L — L0, and can be regarded as a rational-linear 
mapping of L on Lx. We shall denote this mapping as G and refer to it 
as the natural mapping of L on Lx. The mapping T=GH is a mapping 
of X into Lx which is /?-additive in the sense that R(x, y, z) implies 
Tx=Ty+Tz: for R(x,y,z) implies that the elements fx and / „ + / are to 
be identified modulo L0 in as much as their difference is in L0; and thus 
Tx^G (Hx) = Gfx = G(/„+/,) = Gf„ +Gf2 = G (Hy) + G (Hz) = Ty+ Tz. 

We now have: 

Theorem 1. If M is a rational-linear space and A an R-additive 
mapping of X into M (in the sense that R(x,y,z) implies Ax = Ay + Az), 
then there exists a rational-linear mapping S of Lx into.M such that A = ST. 
Conversely, if S is any rational-linear .mopping of Lx into M, then the 
mapping A = ST of X into M is R additive. 

P r o o f . Consider the mapping AH_1, which c a r r i e s / , into Ax. Since 
every element of L is a rational-linear combination of the rationally-linearly 
independent elements fx, this mapping has a unique rational-linear extension 

U which maps L into M : U carries the element ^ ctkfx of L into the element 
7 t = l k 

j£akAxt. Now R(x,y,z) implies U ( / , - / „ - / ) = U f x - U f y - Ufz = 
k—-1 
= Ax — Ay — Az = 0. It follows that U carries every element of the rational-
linear subspace L0 into the element 0 of M. Consequently U can be decomposed 
as a product U—SG where 5 is a rational-linear mapping of Lx — L — L0 

into M and G is the natural mapping of L on Lx. We how have A— UH= 
— SGH — ST, as we wished to prove. The converse statement is trivial. 
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Corollary. .If M is the real number system, considered as a rational-
linear space, then the mapping A of Theorem 1 is an R-additive measure if 
and only if the mapping S is a rational-linear real-valued Junctional which 
assumes only non-negative values on the subset T(X) of Lx. 

From Theorem 1 and its corollary, we see that the problem of finding 
the /?-additive measures for X has been reduced to an algebraic problem 
about rational-linear spaces. We shall now discuss the latter problem in some 
detail. Let V be a rational-linear space with elements u,v,w,...; and let 
V0 be an arbitrary non-void subset of V. Our problem, to state it in one way, 
is to construct a real-valued function I on V with the properties 

(1) l(u + v) = l{u) + l{v), (2) for ueVa. 

To eliminate trivial solutions we shall also require that 
(3) l(v0) > 0 for some' v0£ V0; " 

From (1) we infer at once, in a familiar way, that I is rational-linear., having 
the property that l(au) = al(u) for all rational «. Let us consider what 
implications the existence of such a function I may have for the relative 
positions of and V0 in- the rational-linear geometry of V. For this purpose 
we shall need some simple definitions. First, let us define a subset of V to 
be convex if, whenever it contains u and v, it also contains au-\-(3v where 
« and p are any rational numbers such that « ^ 0 , / 3 ^ 0 , « + / 3 = 1 . Similarly, 
let us define a subset of l/ to be a cone.with vertex «„ if, whenever it contains u, 
it also contains ««-f-,<?i/0 where and /3 are any rational numbers such that 
« ^ 0 , « -{ - /3= 1. A convex cone with vertex at the origin is thus characte-
rized- by the property that, wheneve it contains u and v, it also contains 
ctu + fiv where « and (i are any non-negative rational numbers. In the sequel 
we shall use the term "cone" to mean always a convex cone-with vertex at 
the origin, no other type of cone being required for our purposes. Any non-
void subset of V is contained in a smallest cone, consisting of all the linear 
combinations with non-negative rational coefficients of the element of the 
given subset. Finally we shall define a point u0 beloging to a set U to be 
internal to U if for each « =j= u

0 the element «H + /3U0, where « and /3 are 
rati >nal numbers with « ^ 0 , ¿3^0 , a + / 3 = 1 , belongs to U not merely for 
« = 0 but also for-all sufficiently small « > 0 . Geometrically this means that 
every straight.line through u0 has in common with U a certain segment on 
which u0 lies but of which it is not an end-point. Consider now the smallest 
cone C(V0) containing V0, and the set K= (u ; l(u) < 0). It is clear that A is 
non-negative on C(V0) as well as on V„, and hence that K is disjoint from 
C(Vo). At the same time K is obviously a convex set containing — v

0
. 

Indeed, it is easy to see that — v
0
 is internal to K: for if « 4 = — w e have 

X(au '[¡v0) = aX(u) — [}X(v0) < 0 for all sufficiently small rational « > 0 when 
w-f / 3 = 1. These necessary properties can now be shown to be sufficient as well: 
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T h e o r e m 2. A necessary and sufficient condition for the existence of 
a function X with properties ( i) , (2), (3) above is that -v0 be internal to some 
convex set K disjoint from the smallest cone containing V,,. 

P r o o f . Only the sufficiency remains to be proved. ZORN'S maximal 
principle3), is applicable to the .system of cones containing and disjoint 
from K. Thus there is a maximal such cone, say S0 . An important property 
of S0 is that it must contain at least one of the two elements u and —u, 
zieV. To prove this, let us observe that the smallest cone containing the 
element u and the maximal cone S0 consists of all elements of the form 
ceu-f v where « is a non-negative rational number and v£S0• Hence if u is 
not in S0 this cone must have a point in common wi:h K because of the 
maximally of S0; in other words, there exist a positive rational « and an 
element v in S0 such that au + vtK. Similarly, if — a is not in S0 there 
exist a positive rational /3 and an element w in S„ such that —¡3u-j-wEK. If 
neither u nor —u is in S0 we obtain a contradiction as follows: putting a ' = 
= /?/(a /?), ¡3' = a/(a + ft), we see that these positive rational numbers have 1 as 
sum; the convexity of A'thus implies a'v-\-(3'w=a'(c<u + + §'(—^u-\-w)£K\ 
but on the other hand, the convexity of S0 implies a 'v + /?'iv£S0. In particular 
we see that the set —K=(u\ - utK) is contained in S0 and obviously 
contains v0 as an internal point. Hence S0 also contains ?;„ as an internal 
point. A second application of ZORN'S principle provides us now with a maximal 
cone S containing S0 and excluding — v0. Clearly S, like its subset S0, contains 
at least one of u and —u, u£V. Since U— (u; utS, —u£S) is obviously a 
rational-linear subspace of V, we may effect the identification of elements in 
V modulo U so as to obtain the rational-linear space W= V—U. The 
natural mapping of V on W will be designated as X. The space W can be 
ordered by putting X(u)<X(v) if and 'only if v — utS, u—v non eS. In this 
ordering we have ¿ ( i ; 0 )>0 , X(u)^Q ior-uES. Thus, if we can show that the 
order in H/ is archimedean, we can identify VKwith a rational linear subspsce 
of the real number system, ordered in the standard way ; and we can identify 
X as the function which we desired to construct. Hence all that remains for 
us to do is to show that X(u) > 0 implies the existence of positive rational 
numbers « and ¡3 for which aX(va) < X(u) <L(3X(v0). To find «, we observe 
that —u non £ 5 and hence that there exist a positive rational number y and 
an element v in S f o r which -yu-\-v= -v», in accordance with the maximality 

of the cone S. Taking a = ]/y, we have u — «?;0 = — v£S and hence 
Y 

X(u)^X(av0) — aX(v0). To find /3, we note that for sufficiently small positive 

3) This principle asserts that any non-void partially ordered system in which every 
chain is bounded has at least one maximal element. In our case we consider the system 
of cones to be partially ordered by inclusion. 
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rational a we have «(—tz) —f— (1—«)u 0 €5 because v
0
 is internal t o ' 5 . Then 

taking / ? = ( l — a)/a we have Pv
0
 — u£S and hence This comp-

letes the proof 4) . 
Inspection of the proof just given shows that we can state 

T h e o r e m 3. For the existence of a function I with the properties (1). 
(2), (3) above it is sufficient that the smallest cone containing VQ contain v

0
 as 

an internal point bui exclude —v0. 

Using Theorem 3 it is easy to see that under certain circumstances the 
p rob len of the existence of an ^-addit ive measure for X becomes a purely 
combinatorial one. We have 

T h e o r e m 4. Let x0 be such an element of X that Tx0 is an internal 
point of the smallest cone containing TX in Lx. Then a necessary and.sufficient 
condition for the existence of an R-additive measure ¡i for X with n(x(t) > 0 is 
that for every finite subset Y of X containing x0 there exist an R-additive 
measure fiy with fiY(x0)>0. 

P r o o f . The necessity of the condition is trivial since we can put'1wr(x) = 
= /u.(x) for all x£Y when the /?-additive measure /i is known to exist. To 
prove the condition sufficient, we derive from it the result that — T x 0 does 
not belong to the smallest cone containing TX; and we can then apply 
Theorem 3. If —TxQ belongs to the indicated cone, we may observe that 
this cone is the image under the natural mapping G of the smallest cone 
containing HX in L and hence that the latter cone must contain an element 
/ which is to be identified modulo L0 with Hx0 = —fXQ. We note that the 
function / i s non-negative and that there exist rational numbers ak and elements 

n 
xk,yk,zk in X with R(xk.yk,zk) such that f„o +f=g=2ak (f^—fyh—fk)eLo--

Let Y be the set consisting of x0, x1,y1,z1,.. .,xn,y„,zn and those elements x, 
finite in number, for which f(x) =(= 0. The rational-linear space of rational-
valued functions defined on Y is -isomorphic to the rational-linear subspace 
of L generated by HYcHX; and the rational-linear space Lv associated 
with Y can be identified with the rational-linear subspace of Lx generated 
by TYcTX. The existence of the /?-additive measure /¿r with /<r(Xo)>0 
implies, by. Theorem 1, the existence of a rational-linear real function ¿T on 
Lr such that lY is non-negative on T F and lv{Tx0) > 0. Observing now 
that G / C Q = Tx0, Gf is in the smallest cone containing TY, and G / c 0 + Gf= 
= Gg = 0, we arrive at the absurd result 0 < ly(Tx0) + l y ( G f ) = Ar(0) = 0. 

4) In this presentation, we have taken advantage of a short paper of J . DIEUDONNÉ, 

Sur le théorème de Hahn—Banach, Revue Scientifique, 79(1941), pp. 642— 643, where the 
author treats the Hahn—Banach theorem in terms of the theory of convexity in a real 
linear space. -' 
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Hence we see that — Tx0 is outside the smallest cone containing TX, a s 
we asserted above. This completes the proof. 

By way of conclusion we may make two remarks. In the first place,. 
G. M O S T O W 5 ) has observed that in terms of a certain "natural" topology for 
rational-linear spaces Theorem 2 may be given the equivalent form : the 
required function X exists if and only if — v0 is not a point of the smallest 
closed cone containing Vn. The topology of MOSTOW is that in which a set. 
is said to be open if and only if each of its points is internal to some 
convex part of the set. We shall not pursue this remark further here. Our 
second remark is the rather obvious one that the general theory developed 
in TARSKI'S paper and in this one needs to be tested on specific examples. 
The discussion in TARSKI'S paper shows that the construction of the space 
Lx conceals apparently difficult combinatorial problems met in determining 
whether or not certain elements in L are to be indentified modulo ¿ 0 ; and 
this fact suggests the difficulties which can be anticipated in trying to ascertain 
the relative positions of Tx0 and TX in Lx in any concrete case. Furthermore, 
the observation that in some simple cases, familiar to everyone, the R-additive 
measure for X is essentially unique leads to an inquiry as to the conditions, 
on TX which will guarantee uniqueness in general terms. 

(Received July 26, 1949.) 

• 5) Mr. MOSTOW was a member of a Harvard class to which 1 presented Theorem 2 
in 1945 - 4 6 . I have since made systematic use of his topology in developing the theory 

convexity relative to an arbitrary ordered field (unpublished). 


