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" Uniform Distribition and Lebesgue Integration.

By _] F. KOKSMA in Amsterdam.and R. SALEM in Cambridge, Mass.

1 If u;,u,, ... denotes a sequence of real numbers uniformly distribu-
ted .modulo 1 and 1f f(x) is a bounded Riemann- mtegrable function of the
real variable x, w1th period 1, then : -

11m —_— Zf(u,,)—Jf(t)di
It is obvious that the theorem becomes false if, instead of supposing that f
is Riemann-integrable, we assume only that f is Lebesgue-integrable, since
we can change arbitrarily the values of f .at all points u, (mod 1) w1thout
changing the integral.

A natural question to ask is whether for fEL the relahon

03 L m ”Zf(eru,,)—ff(t) at

holds almost everywhere in x. If u,=6n, where 0 is any fixed ifrational
number, the relation (1) holds for almost all x, under the only assumption
that f€ L. This result, due to KHINTCHINE?) is actually an instance of BIRKHOFF’s
- ergodic theorem?), and one cannot expect a generahzatxon of the argument
to general uniformly distributed sequences.

‘ Here, using an argument based on different ideas, we shall nge some
results of the type (1), confining ourselves to the case f€ L% and to certam
types of sequences {u,}. .

If, instead of a result of the type (l) we consxder convergence in mean,

we can .state the following general theorem3)

1) A, KHINTCHINE, Eme arithmetische Elgenschaft der summierbaren Funktlonen,
Recueil Math. Moscou, 41 (1934), pp. 11—13,

%) For litterature see ).

3) This theorem, the -proof of Wthh is very simple, may be known but we did not
find it in the htterature’ ‘ : . %
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Theorem l Let f(x)EL2 be a function wzth period 1 and mean value

zero, I e. f J(x) dx_O Then, for any sequence {u,} uniformly dzstrtbuted

modulo 1, one has

dx—

'J
o ) N | &

Proof. Let Z c, €27k be the Fourier series of f(x) (C==0, c.,=T,).
Let us write

Sk_.i_(ezntkul_l_ +82ntkuN)

so that the mtegral considered in the theorem is. equal to

2.3 el S

and, since'|S,|=<1, does not exceed
h . . [
22 |Ck|2|Sk|2+2Z A

If we now choose A such that Z[ckP <e (¢>0), and then N, such that
|Sif? < & for k—l 2,...,h and N>N the mtegral will not exceed

”f a’x—}—2]
for N=N,, which proves the theorem.

2.-We are unable to.state a result of the type (1) without making
certain additional hypotheses on the function f and on the sequence {u,}.
(That some additional hypotheses, at least on the function f, are necessary,
will be shown at the end of the paper, with the use of an argument due .
to ErDOS).

Let again f€L? have penod 1 and mean value zero, so that

F)~ D aemin (=0, =)

Let us denote by R(f) the remainder Dlek
h+1
Let us now denote by S(M, N, k) the sum

M4N

> 2 ikun (M, N and k being integers).

n=aM+1
We can state the following theorem :



* Uniform Distribution and Lebesgue Integration. ‘89
Theorem Il Let feL?® have peribd 1 and mean value zero, and be

\(log h)=
distributed modulo 1 such that ‘ .
|S(M, N, k)| < AK*N*(M~+N)'  (k=1,M=1,N=1),
where A4, 9, 6, ¢ are constants such that c+z<1 and © < /2 Then, almost
everywhere in x, :

such that'R(h)=. O(' ! ) where-a> 1. Let {u,} be (zAsvequence uni]cofmly

i L[+ A fxFiy)] =0,

"Remark. As f(x) needs not be bounded, theorem Il is applicable to
certain periodical functions which are on]y 1mproperly integrable in the sense
of RIEMANN. :

The ‘proof depends on the following lemma which is a partlcular case
of a result of GAL and KOKSMA‘*) ‘We give here a proof somewhat different -
- from the ongmal one,

Lemma: Let { f (x)}, »=1,2,... be a sequence of functiohs all be-
longing ‘to L* (p>1) in the mterval (O 1). Let n(N) be positive monotontc

 decreasing suc/z that D) 122 77( ) < oo, Suppose ihat for all M=0, N=1

J

where 4> 1. Then, for almost all x,

Jim G A =0

II[+Z\. e
> f

v=M+1

dxs C(M—}—N)p *N 7(N)

Proof of the lemma. Let n be a positive integer. By AP '(h='1,2,.'..,2k)
we denote any of the intervals (open on the left, closed on the rlght) obtained
by the subdivision of the interval (0;2") in 2* equal parts, By S" we de-
note the sum XIf, where » takes all integral values contained in A”' '

Denoting by j any fixed integer such that 1<;=<2", and writing j in
the dyadic system, we find that the interval (0,/) is the sum of certain.
intervals 4% where k takes at most once each value 0, 1, 2,..., n, and each
h depends on the correspondmg k. According to this '

va_‘eos(h‘))‘*' .+, S,Sh n)
where =0 or I.
4 I. S. GAu and J. F. Koksma, Sur Vordre de grandeur des fonctions sommables,

'Comptes Rendus Acad. Sci. Paris, 227 (1949), pp. 1321-1323 The complete proof of the |
general theorem will appear elsewhere. . ’
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Let 6 be a positive number larger than 1, to be fixed Iater on, one
has, using 'HOLDER’S inequality,

fv _( n lSlfhk)‘) (i 01])}]{ )p—] ( j Bpk‘S’Shk)lp),
I:=0

u k=U k=0

where ?+?=L Hence, for all j (1 =/=2") and all x
éBZk Op)’S(h) P
Tk
e

. X :
where B = ( Z‘ W) , and -the double summation is extended to k=0,

k=0
1,2,...,n and for each k to all values of h (h=1,2,...,2". Now, by
hypothe51s .

7
> fo

v=]
-

Il

1 ‘ .
[1SM)7 ax < c2nratbiy (ry
0 .

Hence

1
jlx)

f 2 fo

where we can suppose that the mteger j(x) is any measurable function of x.
Supposing now 2" ‘<j(x)£2 one has

P

deBZ Opk 2kC2n(p 1)2(n Kk} A (271 k)

J_x)
I Zf a’x=O 3 2 grrok 2"(p A oln-i (2n ;)s
(x) co P k=0
| _1}1 01')k n-k
=0 3 ,% z(iv-l)k 7(2 )2 .
Now fix @ such that 1 <6 <2 ? (which is possible since 4> 1), and put
. o _
= <1
one has ‘
N n-k [\?—l S nfe nf2
2 Q) =2 2 = 0 ((2"))+ 0 (@™,

[z]
and, remarking that the condition Z 77( ) < oo 1mp11es Z 7 (2"") < oo, one

has, writing
= |p

2
A Jf(lx)

<

dx @< jx)=2Y,
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that X7, < oo. In other words,

. J P
“wl
21

ZJ max |Z=. | dx<oo,
. ' = 2" 1/;,<2" . j
which implies ‘
v .
> fo=0(N)
for almost all x. '
Proof of Theorem IL Wr1t1ng
M+N
M v—j (x+“n) dx
| n= M+1 . (

one -has, using the hypotheses of _the theorem:

TM,N=2ztck12‘|S(M, N, =
: £2/122 [c, 2 kz"Nz”(M—l—N)Z’-f—ZNZ 2 (c <

2 .
é/_ll[ 29N20'(M+N)21+ N ],.

(logh)*|”
A" being a constant. Fix now-an g, posmve such that -
@2 " 20e4+2042v<2

as is clearly possxble since o7 < 1, and take for h the 1ntegral part of N
' Then

2
20&+20 2t N
w‘VSC[N (M+N) +(lOgN)a],

C being a constant. ‘Writing

. 2t p2-21 2
T’t{, N éc [ (M]\'j;_lzlz)_zgi\jzg + (lOIgVN)“j‘ ’
one has by (2) - — . e
- (M_l_N)Zzszzz
: (logN)= T
D being a constant Since ©<1/2, @ > 1, an apphcatxon of the lemma (with

p=2) gives : :

hm ~[f(x+111)+f(x+u2)+ A fx A uy)]=0

for almost all X.

Tyy=D
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3. Applications. ‘We  propose now to give examples of sequences
{u,} uniformly distributed (mod 1) for which the relation

[S(M, N, k)| < AK°N° (M-l-N) (647<1, T<1/2)
is satisfied. '

First Example. Let 6 denote an irrational number of the type l :
that is to say that.for some constant n> 2, the inequality

Jo-z]<t
q

has only a finite number of solutions in integers p and g, (¢>1). We can
take, for instance, for 6 any algebraic number; or any irrational number with
bounded partial quotients. By a well known theorem the numbers which are
not of the type I form a null set (BOREL).

Let now, r being an integer =2,

: u=0n"4+aon'4...4+c,
where @,,..., e, are. arbitrary real constants. We shall prove that for the

sequence. {u,} using the notations .of theorem II, one has
3 ' |S(M, N, k)| = 4KN° . (o< 1)

so that theorem Il is applicable to such a sequence.

In fact, this can be deduced from theorems of WEYL, VINOGRADOFF and
others. As we do not need the modern results in their sharpest form, we
make use, instead, of the following special case of a theorem of KOKSMA®),
which has the advantage that the wanted inequality (3) follows from it
immediately :- - '

~ Let r denote a. positive integer; put P=2"; 0 is an irrational number
of the type |, described above, so that a number L= L(0) exists such that
for all integers q > 1, o ’

Lo L
[smanI > (]’7__‘

Then if @(n) denotes the polynomial ku,, we have®).
1

RS (k”"(ﬂ)’?“) @-2) (-1+ 2
_ 228 (n) | << RN 2
Nz ‘ O —In 4

From this, (3) follows with p=n—1 and o< 1. '

5) J. F. Kogsma, Over stelsels Diophantische Ongelijkheden, Dissertation Groningen,
1930, Theorem (Stelling) 10, p. 61.
%) For the convenience of the reader, this. result is obtainéd by taking the one-
dimensional case in Koksma’s theorem (see 5)) with
O=0, f=9p=ku,, g=r'kb, t=1,d=n—1, h=kr!

and R=4"f- g=0.
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Second example. Leét f(f) be a p-times differentiable " function
(p=2) for t=1, such that f”(t) has the same sign for all £, and that.

C . '
=" Ml=55  (0<ry<1,0<e<0),
where ¢, C and y are independent of . Then for the sequence u,== f(n) one has
@ . |S(M, N, k)|<Ak9N (M+N)

with 64+7<1, #<1/2, so that theorem Il is applicable to the sequence {u,}.
The proof of (4) is based on the following lemma of VAN DER CORPUT):

Lemma. Let M=0 N=1, p=2 be all integers, pul'P=§” and let

g(t) be a real function for M<t< M-+ N which admits a derivative of order

p, say g®(t) and suppose that g (t)y=r for'all t, or g (t)< —r for all t,
where ris zndependent of t. Writing . .

R——Ig“’ Y(M+N)—gt 1’(M)I

one has .
o MiN . . 'TDL rN ‘%
o |Eemlzan(g) Trov ()]

Now apply the lemma to the function g(t)—kf(t) where f(t) satisfies
the conditions of our example, and put
M+N

ck
- __ R— kfP(t) dt
M+ N7 U 770 \
so that
| " Ckdt Ck ck 1
1
RS_N—J\ ly __‘jv t')’ dt:—-}:—- —[V—l'y—'.

(1}
We have now, ¢, ¢,, etc. being constants: -

L

1y 2(-y)
2

I N -
(7\,7] SaIEMENTINT T2,

2 2 2(i-p) 2p
(er) F<ok P(M+N)Y P N P,

2

_ P 2(ly) 2 -
(—I%N)'gcs(MJrN) NP‘”’

7) See e. g. J.I G. van pEr Corpur, Neue zahlentheoretische Abschitzungen, II,
Math. Zeitschrift, 29 (1929), pp. 397 426. : :
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Hence, by (5) o
20y 20-p
gckP-‘(M—}—N) TFONTTE

M4+N

Z‘ e2aikf(n)

n==J{

the ineq'uality being obtained by remarking that, since 0 <y <1, p=2, P= 4,
one has

2=y 1=y
| =p_3
and
2(0—=n_22—») _2p
P2 " pF <P
-'Writing now g=—]— o1 20=n 2(1—7), we remarkthat

| p=2 = '~ p—2 P
since P=4, 0<y< 1, one has t< 1/2 and ‘

o+T= 1.——-.21()]___—_;/).—{— 2(1;7) <1

so that A
MAN

Z e2rikf(n)

n=2uM

with e4+7< 1, 7< 1/2. We conclude that, under the conditions stated for
f(t), Theorem 1l is applicable to the sequence u,==f(n).

<, k"N M+ NY

4, In view of Theorem II the question arises, whether by imposing to
the sequence u,, u,, ... sufficiently strong conditions, e. g. with respect to
its discrepancy®) D(N), one could avoid any sert of condition on the Fourier
coefficients of f(x) and have the relation (1) by merely supposing that the
periodic function f belongs to L®, The answer to this question is negative,
as foilows from an interesting counterexample due to P. ERDOS who commu-
nicated it to us verbally: For every given positive number e <1 and every
decreaszng sequence of posztwe numbers {90,} for which

(6) : Va <e

n—l

a function f(x) on ©, 1) can be constructed, which takes the values 0 and |

only, for which [ f(x) dx <e, whereas the following assertion holds: If

Uy, Ug,y ... IS any sequence on. (O 1), then it can be replaced by a sequence
u;, iy, ... such that - o
lu:\_unl < dn (n = ])

8) For the definition of discrepancy see e. g. . F. Koksma, Diophantische Approxi-
.mationen, Ergebnisse der Math. und ihrer Grenzgeblete IV. 4 (Berlin, 1936), Kap. VIII §2,
p. 90.
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whereas for all x

lim sup — N éf(u,, —|—x)-—1

N> w n=1 .
Now it is obvious that, if the sequence i, U, . .. is un_iformly: distri-
buted (mod 1) with the discrepancy D(N), we can choose 6;, 0, ... SO
rapidly decreasing that the sequence ui, uy, ... is also uniformly distributed

and has the discrepancy =4D(N). Therefore:

No matter how fast the positive decreasing function ¢(N) may turn to
zero as N—oo, if there are sequences -u, u,, ... for which D(NY=q¢(N), there
exist a function f(x) € L* and certain sequences u,, uj,. satisfying D(N Y=4¢(N),
such that we have . '

1

[f(x)dx< 1/2_and lim sup 5 g Zf(u +x)—1

n=]

jor every x on (0, 1).
' We give a complete sketch of the proof. Put without loss of generahty
6”:——w(ln) , where w(l), w(2),... denotes.an increasing sequence of positive
integers. Put M,=1, M=K +Kk+ ... +®M_ (k=2) and"
Ny=w M, +M,+...+ M)+ 1. (Other sequences M;, M,,...and N, N,, ...
would do as well, but it is essential that M;, M,,... increase rapidly and N;, N, ...
still more). Now for k=1 consider in (0, 1) the set 7, consisting of - NV,
e ' . ] i 1 : :
equidistant small segments OL—(ch N, — Nkw(k)) =0,1, N'.—l_
Let f.(x) denote the characteristic function of 7, whereas f(x) denotes the
charactenstlc function of 7,4+ Ty+.. Then

o 10 A 0)+A00 +
s a function €L*" and [fdx<s by (6).
¢

We now ftranslate the numbers u, In the first step we ‘move the first
M, elements of i, s, ... In the second step the followmg M, elements etc.;
hence after the k-th step M,.. —I—Mk elements have been moved. In the
first step we move u, over a distance 0. Now let the (k—-l)th step be carried
out. Then we carry out the k-th step in substeps. In the first substep we.
_remove the first KM, , elements (1=M,+...+M_+1,..., M+...+
+ M M, 1) In the second step the foHowmg KM, elements etc In

the first substep we replace each u, by an u, in such a way that u;, —i—

’(k)

falls in the lefthand endpomt of a ¢/ which is nearest to u, + ](k) (mod I).




96 J. F. Koksma and R. Salem: Uniform Distribution and Lebesgue Integration.

In the h-th substep (denoted by (k, h)) we replace u, by an «, in such a

way that u, + falls in the lefthand endpoint of a ¢ which is nearest

_r
N.w (k)
‘ h ' _ . ; .
to u,,—}—m (mod 1). Note that (mod 1) each u, now is moved over a

distance < ngdk. Now let x denote an arbitrary real 'humber in (0, 1).
k

Then x for each k=2 lies exactly in one of the N,w(k) equal parts of length

1 . . L. : .
_—__Nkw(k) in which we can d1v1de the segment (Of 1), say in the part
h’ : N +1 , )

Now there is an umquely defmed integer h—h(k) (0sh<w(k)) such that
h=Hr (mod w(k)).

Consider the elements u,, which have been moved by the substep (k, h).
It is easily proved that the.fractional part of the corresponding numbers
u, +x will belong to one of the segments ¢. Hence f(u;,+x)=1. Denoting:
the total number of elements which have been moved after finishing the
substep (k, ) by A(k, h) we clearly find

1 Ak, h)

Mk—l .
AGT 7 Zf(u +x)2 A(k e koo
by the definitions of.M,,_1 and 'A'(k, h). Q. e. d.

(Received July 9, 1949.)




