On the Gibbs' phenomenon for Euler means.

By O. SzÁsz in Cincinnati.

1. Introduction.

Consider a Fourier sine series

$$
\begin{equation*}
f(t) \sim \sum_{1}^{\infty} b_{n} \sin n t, \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t \tag{1.1}
\end{equation*}
$$

and its partial sums $s_{n}(t)(n=1,2,3, \ldots)$. Fejer proved $\left.{ }^{1}\right)$ that if $f(t)$ is of bounded variation, and if $n t_{n} \rightarrow \tau$ as $t_{n} \rightarrow+0$, then

$$
s_{n}\left(t_{n}\right) \rightarrow \frac{2}{\pi} f(+0) \int_{0}^{\tau} \frac{\sin t}{t} d t \equiv \frac{2}{\pi} f(+0) J(\dot{\tau}), \quad 0 \leqq \tau \leqq+\infty .
$$

For $\tau=\pi \quad J(\tau)$ attains its maximal value, and

$$
\lim _{n t_{n} \rightarrow \pi} s_{n}\left(t_{n}\right)=\frac{2}{\pi} f(+0) \int_{0}^{\pi} \frac{\sin t}{t} d t=f(+0) \times 1,1789797 \ldots
$$

Thus the limit-points of the partial sums as $t_{n} \rightarrow 0$ cover an interval which extends beyond $f(+0)$, if $f(+0) \neq 0$. This is called GibBs' phenomenon, relative to the partial sums.

Our aim is to establish the corresponding phenomenon for Euler means.
For Cesàro means Gibbs' phenomenon was discussed by H. Cramér and T. H. Gronwall.

2. Euler means of the series $\Sigma \frac{\sin n t}{n}$.

The general Euler means of a sequence $\left\{s_{n}\right\}$ depend on a parameter r, and are defined by the triangular transform

$$
\sigma_{n}(r)=\sigma_{n}=\sum_{\nu=0}^{n}\binom{n}{v} r^{v}(1-r)^{n-v} s_{\nu} ; \quad n=0,1,2, \ldots
$$

We assume $0<r \leqq 1$, in which case the summation method is regular. ${ }^{2}$)

[^0]Nevertheless the Euler means of a Fourier series may be divergent at a point of continuity of the function. Thus we may expect a Gibbs' phenomenon. We first consider the standard series $\sum_{1}^{\infty} \frac{\sin n t}{n}=\frac{1}{2}(j-t)$, and assume $0<t<\pi$; now

$$
s_{0}=0, s_{n}=\sum_{1}^{n} \frac{\sin \nu t}{\nu}=\int_{0}^{t}\left(\sum_{1}^{n} \cos \nu x\right) d x=-\frac{t}{2}+\int_{0}^{t} \frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{1}{2} x} d x
$$

and

$$
\sigma_{n}=-\frac{t}{2}+\int_{0}^{t} \frac{1}{2 \sin \frac{1}{2} x} \sum_{0}^{n}\binom{n}{\nu} r^{v}(1-r)^{n-\nu} \sin \left(\nu+\frac{1}{2}\right) x d x
$$

The formula

$$
\sum_{0}^{n}\binom{n}{v} r^{v}(1-r)^{n-v} e^{i v x}=\left(1-r+r e^{i x}\right)^{n}
$$

ñow yields

$$
\sigma_{n}+\frac{t}{2}=\frac{1}{2} \int_{0}^{t} \frac{1}{\sin \frac{1}{2} x}\left(1-r+r e^{i x,}, e^{i x / 2} d x^{3}\right)
$$

Let $1-r+r e^{i x}=\rho e^{i x}$, then

$$
\begin{equation*}
\varrho \cos \alpha=1-r+r \cos x, \quad \varrho \sin \alpha=r \sin x \tag{2.1}
\end{equation*}
$$

(2.2) $\varrho^{2}=(1-r)^{2}+r^{2}+2 r(1-r) \cos x=1-2 r(1-r)(1-\cos x) \leqq 1$.

We assume $0<x \leqq t \leqq \frac{\pi}{2}$; now
$\sigma_{n}+\frac{t}{2}=\frac{1}{2} \int_{0}^{t} \frac{1}{\sin \cdot \frac{1}{2} x} \varrho^{n} \sin \left(n \alpha+\frac{x}{2}\right) d x=\frac{1}{2} \int_{0}^{t} \cot \frac{x}{2} \varrho^{n} \sin n \alpha d x+\frac{1}{2} \int_{0}^{t} \varrho^{n} \cos n \alpha d x$. Here

$$
\left|\int_{0}^{t} \rho^{n} \cos n c d x\right|<t
$$

hence

$$
\int_{0}^{1} \rho^{n} \cos n \alpha d x=\eta t, \quad \mid \eta^{\prime}<1
$$

$$
\begin{equation*}
\sigma_{n}+\frac{1-\eta}{2} t=\frac{1}{2} \int_{0}^{t} \varrho^{n} \cot \frac{x}{2} \sin n \alpha d x \tag{2.3}
\end{equation*}
$$

We now assume that
(2.4)

$$
\begin{equation*}
t=t_{n}, \quad n t_{n} \rightarrow \tau, \quad 0 \leqq \tau \leqq \infty, \quad n t_{n}^{2} \rightarrow 0 \tag{2.4}
\end{equation*}
$$

We have

$$
0<1-\varrho^{n}=(1-\varrho) \sum_{0}^{n-1} \rho^{v}<n(1-\varrho)
$$

${ }^{\text {a }}$) I means the imaginary part.
and from (2.2)

$$
1-o^{2}=4 r(1-r) \sin ^{2} x / 2<r(1-r) x^{2}
$$

so that

$$
\begin{equation*}
1-\varrho<r(1-r) x^{2} \leqq x^{2} / 4 \tag{2.5}
\end{equation*}
$$

It follows that $1-\rho^{n}<\pi x^{2} / 4$, or $\quad 1-o^{n}=\lambda n x^{2}, \quad 0<\lambda<1 / 4$, and

$$
\int_{0}^{t} \varphi^{n} \cot \frac{1}{2} x \sin n \alpha d x=\int_{0}^{t} \cot \frac{1}{2} x \sin n \alpha d x-n \int_{0}^{t} \lambda x^{2} \cot \frac{1}{2} x \sin n \alpha d x
$$

Now

$$
n\left|\int_{0}^{t} \lambda x^{2} \cot \frac{1}{2} x \sin n \alpha d x\right|<n \int_{0}^{t} x^{2} \cot \frac{1}{2} x d x<\frac{1}{3} \pi n t^{2}=o(1), \text { as } n \rightarrow \infty
$$

in view of (2.4). Thus

$$
\begin{equation*}
\int_{0}^{t} \varrho^{n} \cot \frac{1}{2} x \sin n a d x=\int_{0}^{t} \cot \frac{1}{2} x \sin n \alpha d x+o(1) \tag{2.6}
\end{equation*}
$$

Next, from (2.2) $\varrho^{2} \geqq(1-r)^{2}+r^{2} \geqq r^{2}, \quad \varrho \geqq r$, and now from (2.1) $r \sin x=$ $=\rho \sin \alpha \geqq r \sin \alpha$, hence $\alpha<x$. It is well known that $0<x-\sin x<x^{3}$; now, from (2.1) $\varrho \alpha-r x=\rho(\alpha-\sin \alpha)-r(x-\sin x)$. hence $|\rho \alpha-r x|<$ $<\alpha^{3}+x^{3}<2 x^{3}$, and

$$
|\alpha-r x| \leqq|\varrho \alpha-r x|+(1-\varrho) \alpha<2 x^{3}+x^{3}=3 x^{3}
$$

or $\alpha=r x+\mu x^{3}, \quad|\mu|<3$. We now have

$$
\begin{equation*}
\int_{0}^{t} \cot \frac{1}{2} x \sin n \alpha d x=\int_{0}^{t} \cot \frac{1}{2} x \sin n r x \cos n \mu x^{3} d x+ \tag{2.7}
\end{equation*}
$$

$$
+\int_{0}^{b} \cot \frac{1}{2} x \cos n r x \sin n \mu x^{3} d x=I_{1}+I_{2}
$$

and

$$
\begin{equation*}
\left|I_{2}\right|<3 n \cdot \int_{U}^{t} x^{3} \cot \frac{1}{2} x \cdot d x=O\left(n t^{3}\right)=o(1) \tag{2:8}
\end{equation*}
$$

Finally
(2.9) $I_{1}=\int_{0}^{t} \frac{\sin n r x}{x} d x-\int_{0}^{t} \sin n r x\left\{\frac{2}{x}-\frac{\cos \frac{1}{2} x \cos n \mu x^{3}}{\sin \frac{1}{2} x}\right\} d x=T_{1}(n)+T_{2}(n)$, say, where
$2 \sin \frac{1}{2} x-x \cos \frac{1}{2} x \cos n \mu x^{3}=2 \sin \frac{1}{2} x-x \cos \frac{1}{2} x+x \cos \frac{1}{2} x\left(1-\cos n \mu x^{3}\right)$.
From the mean value theorem $0 \leqq 2 \sin \frac{1}{2} x-x \cos \frac{1}{2} x<\frac{1}{4} x^{3}$ and

$$
\int_{0}^{t} \sin n r x \frac{2 \sin \frac{1}{2} x-x \cos \frac{1}{2} x}{x \sin \frac{1}{2} x} d x=o\left(\int_{0}^{t} x d x\right)=\varphi(1)
$$

Furthermore

$$
\int_{0}^{t} \sin n r x \cot \frac{1}{2} x\left(1-\cos n \mu x^{3}\right) d x=O\left(\int_{0}^{t} n^{2} x^{5} d x\right)=O\left(n^{2} t^{6}\right)=o(1)
$$

so that $T_{2}(n) \rightarrow 0$.
Collecting (2.3), (2.6), (2.7), (2.8) and (2.9), we find

$$
2 \sigma_{n}+(1-\eta) t_{n}=2 \int_{0}^{t_{n}} \frac{\sin \pi r x}{x} d x+o(1)=2 \int_{0}^{n r t_{n}} \frac{\sin y}{y} d y+o(1)
$$

or

$$
\sigma_{n} \rightarrow \int_{0}^{r \tau} \frac{\sin y}{y} d y, \text { as } n t_{n} \rightarrow \tau, \quad 0 \leqq \tau \leqq \infty, \quad \text { and } n t_{n}^{2} \rightarrow 0
$$

The complete discussion of the case $\lim \sup n t_{n}^{2}>0$ is more complicated, but we can prove in any case that $\lim \sup \sigma_{n}\left(t_{n}\right) \leqq \int_{0}^{\pi} \frac{\sin t}{t} d t$. This follows from $\lim \sup \sigma_{n}\left(t_{n}\right) \leqq \lim \sup s_{n}\left(t_{n}\right) \sum_{0}^{n}\binom{n}{\nu} r^{\nu}(1-r)^{n-\nu}=\int_{0}^{\pi} \frac{\sin t}{t} d t$.
Summarizing, we have proved the following theorem:
Theorem 1. For the Euler means of the series $\sum_{1}^{\infty} \frac{\sin n t}{n}$ we have
and always

$$
\lim \sigma_{n}\left(t_{n}\right)=\int_{0}^{r \tau} \frac{\sin y}{y} d y \text { as } n t_{n} \rightarrow \tau, n t^{2} \rightarrow 0
$$

$$
\lim \sup \sigma_{n}\left(t_{n}\right) \leqq \int_{0}^{\pi} \frac{\sin t}{t} d t
$$

3. Gibbs' phenomenon of Euler means for a class of Fourier series.

Suppose that the series (1.1) has a simple discontinuity at the point 0 : $f(+0)=\pi A / 2>0$, and let
(3.1) $\varphi(t)=f(t)-A(\pi-t) / 2 \sim \Sigma\left(b_{n}-A n^{-1}\right) \sin n t \equiv \Sigma \beta_{n} \sin n t$,
so that $\varphi(t)$ is continuous at $t=0$. Suppose further that the series (3.1) is uniformly summable by Euler means at $t=0$. The behaviour of $\sigma_{n}\left\{f, t_{n}\right\}$ is then the same as for the series $A \sum \frac{\sin n t}{n}$. In particular, if the series (3.1) is uniformly convergent at $t=0$, then its Euler means present the Gibbs'
phenomenon exhibited in Theorem 1. A case in point is, when ${ }^{4}$)

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \limsup _{n \rightarrow \infty} \cdot \sum_{n}^{\lambda n}\left(\left|b_{v}\right|-b_{\nu}\right)=0 \tag{32}
\end{equation*}
$$

Thus we have the theorem:
Theorem 2. If (3.2) holds, and if $f(t)$ has a simple discontinuity at $t=0$, then the Euler means of the series (1.1) present the same Gibbs' phenomenon as in Theorem'l.

Finalremark. We can discuss in a similar manner the Gibbs' phenomenon for certain Hausdorff means and for Borel summability.

University of Cincinnati,
National Bureau of Standards.
(Received August 13, 1949.)

[^1]
[^0]: ${ }^{1}$) For references see A. Zygmund, Trigonometrical series (Warszawa, 1935); in particular pp. 179-181.
 ${ }^{2}$) For $r={ }_{2}^{\frac{1}{2}}$ it is essentially Euler's series transform; its regularity was first proved by L. D. Ames in 1901. Subsequent results are due to E. Jacobsthal, K. Knopp and R. P. Agnew.

[^1]: ${ }^{4}$) O. Szász, On uniform convergence of Fourier series; Bulletin American Math. Society, 50 (1949), pp. 587-595; in particular Theorem 2.

