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Return to the self-adjoint transformation. 
By E. R. LORCH in New York. 

We return once more to the theory of the self-adjoint transformation 
in Hilbert space. This subject which was born shortly after the turn of the 
century, has since then attracted wide attention, — particularly so during the 
last twenty years. The central fact is the structure theorem which asserts the 
following: 

If H is a self-adjoint transformation in Hilbert space then there exists 
a resolution of the identity E{1) such that the structure of H is completely 
summarized by the formula 

00 

(1) H=]ldE().). 
- 00 

Many proofs have been given of this theorem.. Some are concerned 
with the bounded case. Others apply to the general situation. Still a third 
variety considers that the unbounded case is best treated by first carrying 
through a complete discussion for the bounded transformation. We shall not 
analyse the methods of these proofs, which are after all well known to those 
interested in this domain. 

In the pages which follow we set down a new proof of this funda-
mental theorem. Our approach is to attack the most general (unbounded) 
situation directly from the start and to assume no knowledge of transformation 
theory except the most trivial facts. We should like to believe that our method 
yields the final result considerably more rapidly than those heretofore ad-
vanced. We obtain formula (1) in the following form : 

Theorem. Let H be a self-adjoint transformation in Hilbert space 
Let {/.„} be a set of real numbers n == 0, +1, +2,..., such that 

a) for all n, b) lim ¿„ = oo; c) lim /.„ = —oe. 
n -*• c o t j - > - o o 

Then there exists in § a set of closed linear manifolds {.№„}, n = 0, 
+ 1, + 2 ; . . . , orthogonal in pairs, spanning S^, and such that H is defined on 
iOi„ and satisfies " 
(2) 
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It will be seen that this theorem gives formula (1) directly, in the first 
place the manifolds 9)1 „ define in an obvious way the projections E{1). 
Secondly, the inequality (2) coupled with elementary facts on orthogonality is 
precisely what makes it possible to define the integral of Riemann-Stieltjes 
type which is in (1). We remind the reader that H ^ l l means ( / / / , / ) > A( / , / ) -

Our methods are based on integrals around simple curves in the com-
plex plane. The general form of these integrals is 

These expressions are strongly reminiscent of the Cauchy integral formula, 
except that in the integrand we find instead of the usual (£—a)- 1 the operator 
(QI — H)'1. It is easy to show that since H is self-adjoint the above operator 
is bounded providing £ is not real. This means that our integrals are improper 
since the curve C cuts the real axis. The reason for this may be put another 
way. If the contour curve over which the integration is performed lies exclu-
sively in. the resolvent set of H we have an operator which was first consi-
dered briefly by F . R IESZ and subsequently was used by the author to study 
the reducibility of normed rings, to investigate the theory of their radical', 
and to define an operational calculus of operators in general vector spaces. 
In the present work,: the path of integration crosses the spectrum of H and 
hence the behavior of the integrand must be subject to a careful examina-
tion. The existence of our integrals rests on very special properties possessed 
by self-adjoint transformations. The fundamental functional equations satisfied 
by the integrals (3) are proved with the help of the Neumann expansion for 
the resolvent and, more important, the functional equation of the resolvent. 
All that is required to carry through the proofs is a little patience to deter-
mine that the operations on iterated integrals are legitimate. One further point 
may deserve mention: The ideas which underlie the procedure are quite 
transparent in spite on the fact that at times they may be slightly submerged 
under a technique and notation which are evoked by the present subject-
matter as well as our approach to it. The reader with experience in this 
subject will wish to omit the reading of sections I and II. 

I. Definitions. 

Let T be a linear transformation which is defined for every vector / 
belonging to some linear set A which is dense in Consider the set of all 
pairs £•*} such that (7 / , g) = ( f , g*) for all /£¿1. The relation g->g* defines 
a linear transformation T*, T*g = g*, called the adjoint of T. If the domain 
of T* is identical with that of T and if T= T* on this common domain, 
we say that T is selfradjoint. 
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A transformation T is said to be closed if it has the following property: 
Let {/„} be a sequence of vectors belonging to the domain /1 of T. Suppose 
that / „ + / and Tf„-*g. Then f£A and T/ = g. It is very easy to see that 
every adjoint, transformation T* is closed. In particular, all self-adjoint trans-
formations are closed. 

II. The resolvent. 

Let H be self-adjoint with a domain of definition A. Let £ be a; complex 
number, £ = a+ ¡ii, with /2=1=0. Then if we write (£I—H)g=f for any 
arbitrary g £ A we have . . 

hence l^ j < | / | / | ,# | . In particular, if £={=0, then /={=0, hence £ is not in the 
point spectrum of H. If the totality of elements / obtained by allowing g to 
vary over z! were not dense in H, t h e n £ = «.— /?/ would be in the point 
spectrum of H* = H. Finally, the elements / a c t u a l l y fill• For if {gn} is a 
sequence such that g„<zA and t h a t / , ^ / , then -{,§•„} is a convergent sequence 
since |/?| | i f , ,—gm \< |/„— /„,|. Since H is a closed transformation, the element 
g to which {¿-„} converges belongs to A and (Il—H)g=f. If we conso : 

lidate these facts we obtain the critically important result that if £ is not a 
real number, the transformation (CI—H)-1 exists and is a bounded linear 
transformation with a bound equal to or less than |/i'j_1 where ¡3 is the ima-
ginary part of 'Q. 

If £ is a fixed point in the complex plane which is not on the real 
axis and if £ is a point near £, then we have 

This expansion is valid for all £ such that | £ — £ | < 1/ | (£7—//) _ 1 | . The rela-
tion (4) implies that the bound of (£ /—H)~ l is a continuous function of £ 
for £ lying off the real axis. • 

The functional equation for the resolvent, valid for non-real 4.and is 
(5) ( , ; / _ / / ) - ! _ ( ; / - / / ) - ' = ( | 7 _ r ) ( c / _ / / ) - 1 {H-H)~\ 
This may be established by multiplying both sides by (£/— H) = (L—£) / + ( £ / — / / ) . 

III. The point spectrum. 

If for a pair { 2 , / } with /4=0, we have Hf—lf,- then I is said to be 
in the point spectrum of H. If the totality of such vectors / spans then 
H is said to have a pure point spectrum. Now due to the fact that charac-
teristic vectors / and / 2 which correspond to distinct characteristic values 

and ¿2 are orthogonal to each other, the fundamental formula (1) is .trivial 
for an H with pure point spectrum. In the methods which we employ in 
what follows the possible existence of the point spectrum causes annoyance. 
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For this reason, we shall remove it. If the space £> is separable, this is not 
necessary since the point spectrum contains at most a denumerable number 
of real numbers and in any neighborhood one may always cut the real axis 
at a point not a characteristic value of H. If § is not separable, the pro-
cedure described below makes it unnecessary later always to amend our 
statements. We shall prove the fol lowing: 

If H is a self-adjoint transformation in '£>, and if ill is the closed linear 
manifold spanned by the totality of characteristic vectors of H, then the 
orthogonal complement of &)i reduces H, and in the space iffi1, H is a self-
adjoint transformation and has no point spectrum. 

P r o o f : Let {q>a} be an orthonormal set which spans 9Ji and whose 
members are characteristic vectors of H. Let f be an arbitrary element in the 
domain of H. Suppose the expansion for / in terms of the set {rpa} is 
f r>u2a a (p a . Let / " —2att(pa- Then since H is defined for / and for each </?„ 
it is defined for /—2 'a a rp , c where denotes a sum containing only a finite 
number of terms. Since H-(Z'aarpa) is well defined and since 

(H(f-2'ancPa), H(Taa
(pa)) = (f-Taarpa, H * ( 2 ' a = 0, 

we have 
\Hf\2 = \ H ( f - T ancpa)f + \H{T aa,pa)\\ 

The sum 2a a(p„ contains at most denumerably many non-zero terms. To 
simplify notation we shall write -aaq>a = lim 2"aa<pa. The equation esta-

H ->• 00 

blished immediately above shows that the sequence {H(2" aa(pa)} converges. 
Since H is a closed transformation, f* and also f—f*=f—2aacpa belong to 
the domain'of H. Clearly f—J*£9JlL. 

Thus every element / in /1 is the sum in a unique way of an element 
g in S i and h in aj l1 where both g and h belong to A: f=g-\-h. Clearly, 
since Hg^Wl and since (g, Hh) = (Hg, h) = 0 we see that Hh£±Hi1. Since 
the set d of elements / is dense in the set of elements h is dense in 

It remains to show that in DJi1, H is self-adjoint. If there exists a pair 
{A:, A:*} in DJi1 such that for every h in ¿1 and in a « \ (Hh, k) = {h, k*), then 
for every / in /1, f=g+h, g£ Wi, and h^W1, we have (H(g + h), k) = 
= (Hh, k) = (h,k*) = (g+h,k'). S i n c e / / is self-adjoint, and Hk = k*. 
This shows that considered in the space aU"\ H is self adjoint. That H has 
no point spectrum in S i 1 is obvious. 

To establish (1) for the transformation H operating in it is sufficient 
to establish it for H in a)J and for H in s Jc \ Since the case H in ait is 
trivial, there remains only the case H in 9Jix. In consequence, from now on, 
by virtue of the preceding result, we shall assume that H has no point 
spectrum. 
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IV. On a class of improper integrals. 

We now introduce the integrals which are the key to the structure 
theorem. The path of integration is a curve C which lies in the complex 
plane. For the sake of convenience, C is assumed to be smooth except 
possibly for a few corners. The curve cuts the axis of reals at a non-zero 
angle at two point I and /i. In addition, we shall assume that C is symmetric 
in the axis of reals. The letters ni and n represent positive integers. The 
integral which concerns us is 

(6) = ( £ / - / / ) - d l . 
a 

The integral may be improper at L '=A or 'C — fi: We examine its be-
havior as follows. We alter C by eliminating from it two short segments 
which enclose these critical points. The resulting path of integration will be 
called D. Now the integral (6) over the path D is well defined and exists 
in the uniform topology of operators This is due to the fact that. — 
is a continuous function of £ (see equation (4) in section III). Now since 
m ^ 1 and since C cuts the axis of reals at a non-zero angle the operator 
(C—2)'"(QI—H)-1 is bounded near This type of argument proves that 
the' integral (6) converges in the uniform topology and hence represents a 
bounded operator. Since the path of integration is symmetric about the real 
axis and due to the special structure of the integrand, it is clear that A^„(m, n) 
is self-adjoint. Also by virtue of equation (4) in section II, it is clear that 
the value of the integral is not changed if the path is slightly deformed 
providing that the points "2 and ¡i remain fixed. We now list these and the 
other properties of this operator which are of importance to us. 

The improper integral K;,tt(m,n) converges in the uniform topology and 
represents a bounded self-adjoint transformation. The value of the integral is 
not altered if the path of integration C is deformed slightly providing that 
the points £ = / and 'C = ¡i remain on C. 

The transformation Kia(m, n) satisfies the further conditions: 
a) KZfl(m, n)-K;.a(m',n') = Kxa(m + m', n + n'). 
b) If the intervals (2, ¡i) and (I', ft') have no points in common (or at 

most one end-point in common), then 

Kifl(m,n).Kvtl.(m',h') = Q. 

c) The transformation H—II is defined for every element in the range 
of Kzfl(m, n) and furthermore 

(H—lI)-Kxfl(m,n) = Kx.^(m-1
r\,n). 

A similar statement may be made for the operator ¡.iI—H. 
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d) For the elements in the range of K;.r{m, n), H.'is a bounded self-
adjoint transformation which satisfies the inequalities / / < //< a I. 

We start by. proving a). We are concerned with the product of two 
integrals. We may assume that the associated paths of integration C and C ' 
are such that one lies entirely within the other except at the two points X 
and /(-. Then using the functional equation for the resolvent (section II, 
•equation (5)) we express the product of these integrals as an iterated integral. 
Making use of the Cauclty integral formula of ordinary function theory on 
the innermost integral we obtain a). 

. The proof of b) is similar to that of a). Since the two paths of inte-
gration lie each outside the other, the product of the two integrals yields zero. 

To prove c) we note that the operator H is obviously defined for any 
element ( £ / — H ) ~ ' f . Since ' H—lI= (H—CI) + (£ — *)/, the product of 
Kz„(m, n) by H—XI gives two integrals, one of which is A ^ „ ( m + 1 , / ; ) while 
the other is zero by the Cauchy theorem. Careful examination of this argu-
ment shows that use is made of the fact that H is a closed transformation. 
One may. see this as follows. The integral Kz t , (m,n) may be approximated 
by a finite Riemann sum which we designate by n). If we multiply 
- ' (m,n ) by H—X! we obtain essentially an approximating sum •£(//?-f 1,/2) 
for K;.„(m + 1, n). The result c) is obtained by taking limits in the sense- of 
integration and using the closure of H. 

To prove d), we note first that we may write the following relation for 
inner products in ; here / is an arbitrary vector in .v> : 

<7) ( ( H - X I ) Ki;,(m, n)f, K;.u(m, n ) f ) = (K,„(m + 1, n)f KXl,(m, n ) f ) = 
= (K;.„(m, n) K,;i{m + \ , n ) f , f ) = (K;_„(2m 1, 2 n ) f f ) . 

In writing this down, use has been made of relations a) and c). We shall 
show that there, exists a selfradjoint transformation L;.,,(2m + 1, 2 n ) such that 

(8) ¿ ' l„(2m -I- 1,2/;)== AO..,,(2m + 1, 2n). 

This will prove that the inner product in equation (7) is non-negative and 
hence that for g = Kx,l(m, 11)f H^-.XI.. 

Consider to this effect the integral 

The square root of (£—X)'". is understood to be that which is positive 
when \X is real and positive; that^ of (¿t—L')" is positive when- / i—£ is 
real and positive. By arguments similar to those used above, one may. prove 
that the integral Lzfl.(m,n) exists and represents a bounded self-adjoint 
transformation; furthermore one may also establish equation (8). The integral 
(9) introduces a new feature in case m— 1 ; for in that case ( t — / ) ' " / 2 ( £ / — H ) ~ l 
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may have an infinite bound at £ = Л . A routine argument disposes of this 
difficulty. 

This concludes the. proof of the fact that H>__ll. The steps which de-
monstrate that HfL til are similar. 

V. On the linear manifolds associated with Kz„(m,n). 

Associated with every transformation !<;.,,{tn, n) we consider two closed 
linear manifolds: the manifold of the zeros of the transformation and the 
manifold of the closure of the range of the transformation. It is an obvious 
fact that each is the orthogonal complement of the other. In this section we 
develop some properties of these manifolds. 

Let the closure of the range of K;.u{m,n) be denoted by ilVi;.,,(m,n). 
Let the set of its zeros be denoted by Ш;.,,(т, /г). We prove: 

a) 9)b.u(m,n) is independent of ni and n; that is, д)Ь.„(т;п) = Шя,1(пг',п'). 
This common manifold is denoted by хШ„. 

b) // I, u, v are real numbers subject to I < < v then . + = iDi,;,, 
where the operation is performed in the sense of addition of linear manifolds. 

To prove a ) , / c o n s i d e r 9!я,п(т,п). We have (#—7.1) K;.„(ni, n) = 
= Кх„{т-\-1, /г). Since H has no point spectrum, this means that 
iTc;.„(m, n) = 1, n). This type of reasoning yields a). 

Toward b) : By. a) we may 'assume that all integers m, n, etc. are equal 
to 1. Also since the point spectrum is absent we may without changing the 
character of assume that ' i t is defined by an integral operator whose 
integrand is (27ci)-1('C—7.) (£—,«)(£ — V){U—H)~\ The same is true of Ж,,,. 
and а.)Ъ.„. We denote the three operators by T;.„, T„.v, and. T;,„. Now it is 
clear that a possible path of integration which defines T;.v is the sum of 
the paths defining 7 \ „ and T)>*. Thus T;.v = T;.„ + 7,,,.. Also, we have 
Tii, •T„„ = 0. These facts , lead to the conclusion in b). 

VI. Conclusion of proof. 
We recall the method for proving our principal theorem. Let {/„} be a 

monotone increasing set of real numbers such that lim 7,n=co and Iim / „ = — oo. 
n -»• со n->- - со 

For every integer s and for some fixed m construct the transformation 
(ni,m). Determine the closure of its range 9Jls. The manifolds 9)ts are 

orthogonal in pairs (in virtue of b) in section IV) and on Щ8, 7.J<;H<i7.s+iI. 
To complete our proof it remains to show that the manifolds -Ж, span £>. 
This we proceed to do. 

In the first^pTace, the result b) in section V shows that instead of con-
sidering many manifolds, we need consider only one. Going beyond this 
it is clear that we need consider only the single manifold which corre-
sponds to the interval (— r, r). 
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If the manifolds 0 < r < o o , do not span there is a non-zero 
element / orthogonal to each We shall explicitly assume that / is ortho-
gonal to each ^ and subsequently prove that / = 0. Now is the closure 
of the range of K_ r r( 1, 1). Since the latter operator is self-adjoint, we have 
/C_,.,.( 1, 1 ) / = 0 for all values of r. Thus we have for all r 
( 1 0 ) 

a 
Here C is a circle with radius r and center the origin; the first term in the 
integrand yields / by Cauchy's theorem. Now a simple calculation shows 
that except for a constant factor the integrand in (10) is of the form, 
H ( r - — — H)~lf. If we remove the factor H from under the integral! 
sign and perform the integration we obtain an element which we may denote 
by gr. Hence equation (10) may be written in the form f=Hgr. Now, by 
using (3) and standard techniques of evaluation of integrals, it is an easy 
matter to show that | o - r | ^2 r~ 1 | / | . As r-^oo, g-r->0 while Hgr-+f. Since H 
is a closed transformation, / = = 0 . 
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