Commutativity and spectral properties of normal operators.

By Paul R. Halmos in Chicago.

1. The results of this note grew out of a current investigation of spectral properties of operators on Hilbert space. While the characterization of the spectral manifolds of a normal operator (Theorem 1) appears to be new and may be considered to be of independent interest, I present it here mainly because it supplies an extremely easy proof of a theorem (Theorem 2) which was unknown until a few weeks ago. J. von Neumann has asked whether or not it is true that if an operator B commutes with a normal operator A, then B commutes with A^{*} also. Well known and quite elementary considerations show that in order to answer the question affirmatively it is sufficient to prove that, under the stated hypotheses, B is reduced by all the spectral manifolds of A. This has recently been proved by B. Fuglede - he communicated his proof to me at the Boulder meeting of the American Mathematical Society at the end of August, 1949. The proof I present below is somewhat different from his in spirit and in method. I should say also that Fuglede's proof is valid for not necessarily bounded transformations A and that, similarly, only minor modifications are needed to adapt my proof to this more general case.

For the orientation of the reader I present here the trivial proof of the theorem under discussion for the case in which A has pure point spectrum: the proof of the general theorem below uses essentially the same idea and method. If λ is a proper value of A and if \mathscr{F} is the subspace of all corresponding proper vectors, then the relations $A(B x)=B(A x)=B(\lambda x)=\lambda(B x)$ show that \mathfrak{F} is invariant under B. Since to say that A has pure point spectrum means that the entire Hilbert space is spanned by orthogonal subspaces such as \mathfrak{F}, it follows that the orthogonal complement of \mathscr{F} is also invariant under B, and this is exactly what was to be proved.
2. Throughout this note I shall deal with a fixed complex Hilbert space \mathfrak{W}. An operator is a bounded linear transformation of $\mathfrak{6}$ into itself; an operator A is normal if it commutes with its adjoint A^{*}. If A is normal, then
$\|A x\|^{2}=\left(A x, A x_{i}=\left(A^{*} A x, x\right)=\left(A A^{*} x, x\right)=\left(A^{*} x, A^{*} x\right)=\left\|A^{*} x\right\|^{2}\right.$ for every vector x; it is easy to see that the identity $\|A x\|=\left\|A^{*} x\right\|$ is not only necessary but also sufficient for the normality of A. A subspace is a closed linear manifold in \mathfrak{F}; a subspace m reduces an operator A if both $\$$ and M^{\perp} (= the orthogonal complement of $M i$) are invariant under A, i. e. if $A M \subset W$ and $A M^{\perp} \subset W^{\perp}$. There are two useful and elementary necessary and sufficient conditions that a subspace $9: 1$ reduce an operator A; the first is that $9: 1$ be invariant under both A and A^{*}, and the second is that A commute with the projection on $\$ x$.

Lemma.1) If A is a normal operator and if $\mathcal{F}(A)=\left\{x:\left\|A^{n} x\right\| \leq\|x\|\right.$, $n=1,2, \ldots\}$, then $\mathscr{F}(A)$ is a subspace and $\mathfrak{F}(A)$ is invariant under every operator B which commutes with A.

Proof. Write (5) for the set of all those vectors x for which the sequence $\left\{\left\|A^{n} x\right\|: n=1,2, \ldots\right\}$ is bounded. Since $\left\|A^{n}(\alpha x)\right\|=|\alpha| \cdot\left\|A^{n} x\right\|$ and $\left\|A^{n}(x+y)\right\| \leqslant A^{n} x\|+\| A^{n} y \|$, it follows that (5) is a linear manifold; if an operator B commutes with A, then the relation $\left\|A^{n}(B x)\right\|=\left\|B\left(A^{n} x\right)\right\| \leqq$ $\leqq\|B\| \cdot\left\|A^{n} x\right\|$ implies that (6) is invariant under B. Clearly $\mathcal{F}(A)$ is a closed set and $\mathfrak{F}(A) \subset(5 ;$ the proof of the lemma will be completed by showing that $\mathfrak{F}(A)=(\mathbb{F}$. For this purpose it is sufficient to show that if x is a vector such that, for some positive integer $p,\left\|A^{\prime \prime} x\right\|>a\|x\|, a>1$, then the sequence $\left\{\left\|A^{n} x\right\|\right\}$ cannot be bounded. Since $\alpha^{2}\left\|\left.x\right|_{i} ^{2}<\right\| A^{p} x \|^{2}=\left(A^{p} x, A^{p} x\right)=\left(A^{* p} A^{p} x, x\right) \leqq$ $\leqq\left\|A^{* \prime \prime} A^{p} x\right\| \cdot\|x\|=\left\|A^{2 p} x\right\| \cdot\|x\|$, it follows that $\left\|A^{2 p} x\right\|>a^{2}\|x\|$. Since an inductive repetition of this argument shows that $\left\|A^{2^{k}} x\right\|>\alpha^{2^{2}}\|x\|$ for every positive integer k, the proof is complete.
3. A spectral. measure is a function E from the class of all Borel subsets' of the set A of all complex numbers to projections on \mathfrak{G}, such that (i) $E(-I)=1$, (ii) $E(M \cap N)=E(M) E(N)$ whenever M and N are Borel sets, and (iii) $E(M)=\sum_{j=1}^{\infty} E\left(M_{j}\right)$ whenever $\left\{M_{j}\right\}$ is a disjoint sequence of Borel sets whose union is M (the series being understood to converge in the strong topology of operaturs).

Lemma 2. If E is a spectral measure and if $\mathcal{E}(M)=\{x: E(M) x=x\}$ for every Borel set M, then $\mathfrak{E}(M)$ is the subspace spanned by the class of all subspaces of the form $\mathbb{E}(N)$, where N is an arbitrary compact subset of M.

Proof. The assertion of the theorem is that, in a sense well known in the theory of numerical measures, every spectral measure is regular. The proof may be given along lines entirely similar to the numerical case, or it

[^0]may be reduced to that case as follows. All that it is necessary to prove is that if x is a vector in $\mathbb{E}(M)$ such that x is orthogonal to $\mathscr{E}(N)$ for every compact subset N of M, then $x=0$. Since, however, by the regularity of numerical measures, $\|x\|^{2}=\left\|\left.E(M) x_{i}^{\prime}\right|^{2}=\sup _{\underset{y}{ }}\right\| E(N) x \|^{2}$, it follows that there exists. a countable class $\left\{N_{j}\right\}$ of compact subsets of M such that $\|x\|^{2}=\sup \left\|E\left(N_{j}\right) x\right\|^{2}$, and hence that indeed $x=0$.

I shall make use below of the spectral theorem for normal operators in the following form. If A is a normal operator, then there exists a unique spectral measure E, called the spectral measure of A, such that $(A x, y)=$ $=\int 2 d(E(\lambda) x, y)$ for every pair of vectors x and y.
4. In this final section I shall assume that A is a fixed normal operator with spectral measure E. For every complex number λ and every positive real number ε, I shall write. $\mathscr{F}(\lambda, \varepsilon)$ for $\mathcal{F}\left(\frac{A-\lambda}{\varepsilon}\right)$; for every set M of comp'ex numbers and every positive real number ε, I shall write $\mathcal{F}(M, \varepsilon)$ for the subspace spanned by all those $\tilde{\delta}(\lambda, \varepsilon)$ for which $\lambda \in M$; and, for every set M of complex numbers, I sliall write $\mathscr{F}(M)=\bigcap_{\varepsilon>0} \mathfrak{F}(M, \varepsilon)$. Let $F(\lambda, \varepsilon), F(M, \varepsilon)$, and $F(M)$ be the projections on the subspace $\mathfrak{F}(\lambda, \varepsilon), \mathscr{F}(M, \varepsilon)$, and $\mathscr{F}(M)$, respectively.

Theorem 1. For every compact set $M, \mathcal{F}(M)=\mathbb{C}(M)$.
Proof. For any positive number ε, let $\left\{M_{j}\right\}$ be a disjoint sequence of non empty Borel sets of diameter not greater than ε and such that $\cup M_{j}=M$. If $x \in \mathscr{E}(M), x_{j}=E\left(M_{j}\right) x$, and $\lambda_{j} \in M_{j}$, then $\left\|\left(A-\lambda_{j}\right)^{\prime \prime} x_{j}^{\prime}\right\|^{2}=$ $=\int_{\lambda_{j}}\left\|\left(\lambda_{i}-\lambda_{j}\right)^{n} \cdot{ }^{2} d\left(E\left(\lambda_{j}\right) x_{j}, x_{j}\right) \leqq \varepsilon^{2 n}\right\| x_{j} \|^{2}$, so that, for each $j, x_{j} \in \mathscr{F}\left(\lambda_{j}, \varepsilon\right) \subset \mathscr{F}(M, \varepsilon)$. Since $x=E(M) x=\Sigma_{j} E\left(M_{j}\right) x=\Sigma_{j} x_{j}$, it follows that $x \in \mathscr{F}(M, \varepsilon)$. The arbitrariness of ε implies that $x \in \mathscr{S}(M)$, and the arbitrariness of x implies, consequently, that $\mathbb{E}(M) \subset \mathfrak{F}(M)$. Note that this argument did not make use of compactness of M.

Suppose now that N is a compact subset of $\Lambda-M$, and let δ be the distance between M and N. If $\lambda_{11} \in M$, if $0<\varepsilon<\delta$, and if $x \in \mathscr{F}\left(\lambda_{0}, \varepsilon\right)$, then $\left\|\left(A-\lambda_{0}\right)^{n} x\right\| \leqq \varepsilon^{n}\|x\|$; if, on the other hand, $x \in \mathbb{C}(N)$, then $\left\|\left(A-\lambda_{0}\right)^{n} x\right\|^{2}=$ $=\int_{X} \mid\left(\lambda-\lambda_{0}\right)^{n}\left\|^{2} d(E(\lambda) x, x) \geqq \delta^{2 n}\right\| x \|^{2}$. It follows that $\Im\left(\lambda_{0}, \varepsilon\right) \cap \mathbb{E}(N)=\{0\}$.
Since $E(N)$ commutes with A, it follows from Lemma 1 that $\mathscr{F}\left(\lambda_{0}, \varepsilon\right)$ is invariant under $E(N)$ and hence, since $E(N)$ is Hermitian, that $E(N)$ commutes with $F\left(\lambda_{0}, \varepsilon\right)$. This in turn implies that $F\left(\lambda_{0}, \varepsilon\right) E(N)$ is the projection on $\mathfrak{F}\left(\lambda_{0}, \varepsilon\right) \cap \mathbb{E}(N)$, i. e. that $F\left(\lambda_{0}, \varepsilon\right) E(N)=0$, and it follows that $\mathfrak{F}\left(\lambda_{0}, \varepsilon\right)$ is orthogonal to $\mathscr{E}(N)$. The validity of this assertion for every λ_{0} in M shows
that $\mathfrak{F}(M, \varepsilon)$ is orthogonal to $\mathscr{C}(N)$ and therefore, a fortiori, that $\mathfrak{F}(M)$ is orthogonal to © (N).

The result of the preceding paragraph implies, in view of Lemma 2, that $\mathfrak{F}(M)$ is orthogonal to $\mathfrak{C}(\Lambda-M)$. This means that $\mathfrak{F}(M) \subset(\mathscr{C}(\Lambda-M))^{\perp}=\mathfrak{C}(M)$, and the proof of the theorem is complete. I remark that it is easy to construct examples to show that if M is not compact, then $\mathbb{C}(M)$ may be a proper subset of $\mathfrak{F}(M)$.

Theorem 2. If an operator B commutes with A, then $\mathbb{C}(M)$ reduces B for every Borel set M.

Proof. It follows from Lemma 1 that, for every complex number λ and every positive number $\varepsilon, \mathscr{F}(\lambda, \varepsilon)$ is invariant under B, and hence that $\mathfrak{F}(M, \varepsilon)$ and $\mathscr{F}(M)$ are invariant under B for every set M. Theorem 1 implies that $\mathbb{C}(M)$ is invariant under B whenever M is compact and hence, by Lemma 2, that $\mathbb{C}(M)$ is invariant under B for every Borel set M. Since $(\mathbb{C}(M))^{i}=\mathbb{C}(A-M)$, it follows automatically that $(\mathbb{C}(M))^{\perp}$ is also invariant under B and hence that $\mathcal{C}(M)$ reduces B.

Universtity or Chicago.

[^0]: ${ }^{1}$) This lemma is proved for Hermitian operators by B. A. Lengyel and M. H. Stone, Elementary proof of the spectral theorem, Annals of Math., 37 (1936), pp. 853-864; cf. in particular p. 858. The following proof is a slight simplification of their proof.

