Commutativity and spectral properties of normal operators.

By PAUL R. HALMOS in Chicago.

1. The results of this note grew out of a current investigation of spectral properties of operators on Hilbert space. While the characterization of the spectral manifolds of a normal operator (Theorem 1) appears to be new and may be considered to be of independent interest, I present it here mainly because it supplies an extremely easy proof of a theorem (Theorem 2) which was unknown until a few weeks ago. J. VON NEUMANN has asked whether or not it is true that if an operator B commutes with a normal operator A, then B commutes with A^* also. Well known and quite elementary considerations show that in order to answer the question affirmatively it is sufficient to prove that, under the stated hypotheses, B is reduced by all the spectral manifolds of A. This has recently been proved by B. FUGLEDE — he communicated his proof to me at the Boulder meeting of the American Mathematical Society at the end of August, 1949. The proof I present below is somewhat different from his in spirit and in method. I should say also that FUGLEDE's proof is valid for not necessarily bounded transformations A and that, similarly, only minor modifications are needed to adapt my proof to this more general case.

For the orientation of the reader I present here the trivial proof of the theorem under discussion for the case in which A has pure point spectrum; the proof of the general theorem below uses essentially the same idea and method. If λ is a proper value of A and if \mathfrak{F} is the subspace of all corresponding proper vectors, then the relations $A(Bx) = B(Ax) = B(\lambda x) = \lambda(Bx)$ show that \mathfrak{F} is invariant under B. Since to say that A has pure point spectrum means that the entire Hilbert space is spanned by orthogonal subspaces such as \mathfrak{F} , it follows that the orthogonal complement of \mathfrak{F} is also invariant under B, and this is exactly what was to be proved.

2. Throughout this note I shall deal with a fixed complex Hilbert space \mathfrak{H} . An *operator* is a bounded linear transformation of \mathfrak{H} into itself; an operator A is *normal* if it commutes with its adjoint A^* . If A is normal, then

P. R. Halmos

 $||Ax||^2 = (Ax, Ax) = (A^*Ax, x) = (AA^*x, x) = (A^*x, A^*x) = ||A^*x||^2$ for every vector x; it is easy to see that the identity $||Ax|| = ||A^*x||$ is not only necessary but also sufficient for the normality of A. A subspace is a closed linear manifold in \mathfrak{H} ; a subspace \mathfrak{M} reduces an operator A if both \mathfrak{M} and \mathfrak{M}^\perp (= the orthogonal complement of \mathfrak{M}) are invariant under A, i. e. if $A\mathfrak{M} \subset \mathfrak{M}$ and $A\mathfrak{M}^\perp \subset \mathfrak{M}^\perp$. There are two useful and elementary necessary and sufficient conditions that a subspace \mathfrak{M} reduce an operator A; the first is that \mathfrak{M} be invariant under both A and A*, and the second is that A commute with the projection on \mathfrak{M} .

Lemma 1.1) If A is a normal operator and if $\mathfrak{F}(A) = \{x : ||A^n x|| \le ||x||, n = 1, 2, ...\}$, then $\mathfrak{F}(A)$ is a subspace and $\mathfrak{F}(A)$ is invariant under every operator B which commutes with A.

Proof. Write (5) for the set of all those vectors x for which the sequence $\{||A^nx||: n = 1, 2, ...\}$ is bounded. Since $||A^n(\alpha x)|| = |\alpha| \cdot ||A^nx||$ and $||A^n(x+y)|| \le ||A^nx|| + ||A^ny||$, it follows that (5) is a linear manifold; if an operator B commutes with A, then the relation $||A^n(Bx)|| = ||B(A^nx)|| \le \le ||B|| \cdot ||A^nx||$ implies that (5) is invariant under B. Clearly $\mathfrak{F}(A)$ is a closed set and $\mathfrak{F}(A) \subset \mathfrak{S}$; the proof of the lemma will be completed by showing that $\mathfrak{F}(A) = \mathfrak{S}$. For this purpose it is sufficient to show that if x is a vector such that, for some positive integer p, $||A^nx|| \ge \alpha ||x||, \alpha > 1$, then the sequence $\{||A^nx||\}$ cannot be bounded. Since $\alpha^2 ||x||^2 < ||A^nx||^2 = (A^nx, A^nx) = (A^{*p}A^nx, x) \le \le ||A^{*n}A^nx|| \cdot ||x|| = ||A^{2n}x|| \cdot ||x||$, it follows that $||A^{2n}x|| > \alpha^2 ||x||$. Since an inductive repetition of this argument shows that $||A^{2n}x|| > \alpha^{2n} ||x||$ for every positive integer k, the proof is complete.

3. A spectral measure is a function E from the class of all Borel subsets of the set A of all complex numbers to projections on \mathfrak{H} , such that (i) E(A) = 1, (ii) $E(M \cap N) = E(M)E(N)$ whenever M and N are Borel sets, and (iii) $E(M) = \sum_{j=1}^{\infty} E(M_j)$ whenever $\{M_j\}$ is a disjoint sequence of Borel sets whose union is M (the series being understood to converge in the strong topology of operators).

Lemma 2. If E is a spectral measure and if $\mathfrak{S}(M) = \{x : E(M)x = x\}$ for every Borel set M, then $\mathfrak{S}(M)$ is the subspace spanned by the class of all subspaces of the form $\mathfrak{S}(N)$, where N is an arbitrary compact subset of M.

Proof. The assertion of the theorem is that, in a sense well known in the theory of numerical measures, every spectral measure is regular. The proof may be given along lines entirely similar to the numerical case, or it

154

¹) This lemma is proved for Hermitian operators by B. A. LENGYEL and M. H. STONE, Elementary proof of the spectral theorem, *Annals of Math.*, **37** (1936), pp. 853-864; cf. in particular p. 858. The following proof is a slight simplification of their proof.

may be reduced to that case as follows. All that it is necessary to prove is that if x is a vector in $\mathfrak{E}(M)$ such that x is orthogonal to $\mathfrak{E}(N)$ for every compact subset N of M, then x=0. Since, however, by the regularity of numerical measures, $||x||^2 = ||E(M)x||^2 = \sup_N ||E(N)x||^2$, it follows that there exists a countable class $\{N_i\}$ of compact subsets of M such that $||x||^2 = \sup_j ||E(N_j)x||^2$, and hence that indeed x=0.

I shall make use below of the spectral theorem for normal operators in the following form. If A is a normal operator, then there exists a unique spectral measure E, called the spectral measure of A, such that (Ax, y) = $= \int \lambda d(E(\lambda)x, y)$ for every pair of vectors x and y.

4. In this final section I shall assume that A is a fixed normal operator with spectral measure E. For every complex number λ and every positive real number ε , I shall write $\mathfrak{F}(\lambda, \varepsilon)$ for $\mathfrak{F}\left(\frac{A-\lambda}{\varepsilon}\right)$; for every set M of complex numbers and every positive real number ε , I shall write $\mathfrak{F}(M, \varepsilon)$ for the subspace spanned by all those $\mathfrak{F}(\lambda, \varepsilon)$ for which $\lambda \in M$; and, for every set M of complex numbers, I shall write $\mathfrak{F}(M) = \bigcap_{\varepsilon > 0} \mathfrak{F}(M, \varepsilon)$. Let $F(\lambda, \varepsilon), F(M, \varepsilon)$, and F(M) be the projections on the subspace $\mathfrak{F}(\lambda, \varepsilon), \mathfrak{F}(M, \varepsilon)$, and $\mathfrak{F}(M)$, respectively.

Theorem 1. For every compact set M, $\mathfrak{F}(M) = \mathfrak{E}(M)$.

Proof. For any positive number ε , let $\{M_j\}$ be a disjoint sequence of non empty Borel sets of diameter not greater than ε and such that $\bigcup_j M_j = M$. If $x \in \mathfrak{C}(M)$, $x_j = E(M_j)x$, and $\lambda_j \in M_j$, then $||(A - \lambda_j)^n x_j||^2 =$ $= \iint_{M_j} |(\lambda - \lambda_j)^n|^2 d(E(\lambda)x_j, x_j) \le \varepsilon^{2n} ||x_j||^2$, so that, for each $j, x_j \in \mathfrak{F}(\lambda_j, \varepsilon) \subset \mathfrak{F}(M, \varepsilon)$. Since $x = E(M)x = \Sigma_j E(M_j)x = \Sigma_j x_j$, it follows that $x \in \mathfrak{F}(M, \varepsilon)$. The arbitrainess of ε implies that $x \in \mathfrak{F}(M)$, and the arbitrariness of x implies, consequently, that $\mathfrak{C}(M) \subset \mathfrak{F}(M)$. Note that this argument did not make use of compactness of M.

Suppose now that N is a compact subset of A - M, and let δ be the distance between M and N. If $\lambda_0 \in M$, if $0 < \varepsilon < \delta$, and if $x \in \mathfrak{F}(\lambda_0, \varepsilon)$, then $||(A - \lambda_0)^n x|| \le \varepsilon^n ||x||$; if, on the other hand, $x \in \mathfrak{E}(N)$, then $||(A - \lambda_0)^n x||^2 = \int_{N} |(\lambda - \lambda_0)^n|^2 d(E(\lambda)x, x) \ge \delta^{2n} ||x||^2$. It follows that $\mathfrak{F}(\lambda_0, \varepsilon) \cap \mathfrak{E}(N) = \{0\}$.

Since E(N) commutes with A, it follows from Lemma 1 that $\mathfrak{F}(\lambda_0, \varepsilon)$ is invariant under E(N) and hence, since E(N) is Hermitian, that E(N) commutes with $F(\lambda_0, \varepsilon)$. This in turn implies that $F(\lambda_0, \varepsilon)E(N)$ is the projection on $\mathfrak{F}(\lambda_0, \varepsilon) \cap \mathfrak{S}(N)$, i. e. that $F(\lambda_0, \varepsilon)E(N) = 0$, and it follows that $\mathfrak{F}(\lambda_0, \varepsilon)$ is orthogonal to $\mathfrak{S}(N)$. The validity of this assertion for every λ_0 in M shows

P. R. Halmos: Normal operators.

that $\mathfrak{F}(M, \varepsilon)$ is orthogonal to $\mathfrak{E}(N)$ and therefore, a fortiori, that $\mathfrak{F}(M)$ is orthogonal to $\mathfrak{E}(N)$.

The result of the preceding paragraph implies, in view of Lemma 2, that $\mathfrak{F}(M)$ is orthogonal to $\mathfrak{S}(A-M)$. This means that $\mathfrak{F}(M) \subset (\mathfrak{S}(A-M))^{\perp} = \mathfrak{S}(M)$, and the proof of the theorem is complete. I remark that it is easy to construct examples to show that if M is not compact, then $\mathfrak{S}(M)$ may be a proper subset of $\mathfrak{F}(M)$.

Theorem 2. If an operator B commutes with A, then $\mathfrak{S}(M)$ reduces B for every Borel set M.

Proof. It follows from Lemma 1 that, for every complex number λ and every positive number ε , $\mathfrak{F}(\lambda, \varepsilon)$ is invariant under B, and hence that $\mathfrak{F}(M, \varepsilon)$ and $\mathfrak{F}(M)$ are invariant under B for every set M. Theorem 1 implies that $\mathfrak{E}(M)$ is invariant under B whenever M is compact and hence, by Lemma 2, that $\mathfrak{E}(M)$ is invariant under B for every Borel set M. Since $(\mathfrak{E}(M))^{\perp} = \mathfrak{E}(\mathcal{A} - M)$, it follows automatically that $(\mathfrak{E}(M))^{\perp}$ is also invariant under B and hence that $\mathfrak{E}(M)$ reduces B.

UNIVERSITY OF CHICAGO.

(Received October 13, 1949.)