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Commutativity and spectral propertles
of normal operators.

By PauL R. HALMOS in Chicago. -

1. The results of -this note grew out of a current investigation of spectral
properties of operators on Hilbert space. While the characterization of the
spectral manifolds of a normal operator (Theorem 1) appears to be new and
may be considered to be of independent interest, I present it here mainly
because it supplies an extremely easy proof of a theorem (Theorem 2) which
was unknown until a few weeks ago. ]. VON NEUMANN has asked whether
‘or not it is true that if an operator B commutes with' a normal operator A,
then B commutes with A® also. Well known and quite elementary consider-
ations show that in order to answer the question affirmatively it is sufficient
to prove that, under the stated hypotheses, B is reduced by all the spectral
manifolds of A. This has recently been proved by B. FUGLEDE — he com-
municated his proof to me at the Boulder meeting of the American Mathe-
matical Society at the end of August, 1949. The proof I present below is
sonmewhat different from his in spirit and in method. I should say also that
FUGLEDE’s proof is valid for not necessarily bounded transformations A and
that, similarly, only minor modifications are needed to adapt my proof to
" this more general case.

For the orientation of the reader I present here the trivial proof of the
theorem under discussion for the case in which A has pure point spectrum;
the proof of the general theorem below uses essentially the same idea and
-method. If 2 is a proper value of A and if § is the subspace of all corre-
sponding proper vectors, then the relations A(Bx)=B(Ax)=DB(4Ax)=41(Bx)
show that § is invariant under B. Since to say that A has pure point spectrum
means that the entire Hilbert space is spanned by orthogonal subspaces such
as §, it follows that the orthogonal complement of § is also invariant under
B, and this is exactly what was to be proved. '

2. Throughout this note 1 shall deal with a fixed complex Hilbert space $.
An operator is a bounded ‘linear transformation of $ into itself; an operator
A is normal if it commutes with its adjoint A*. If A is normal then
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lAx|[?=(Ax, Ax;==(A"A X, X) = = (AA*x, X) = (A", A“x)—HA‘xH for every
vector x; it is easy to see that the identity |!/Ax||=1]A*x}| is not only ne-
cessary but also sufficient for the normality of A. A subspace is a closed
‘linear manifold in &; a subspace Y& reduces an operator A if both 9 and
Wt (= the orthogonal complement of 9) are invariant under A, i. e. if
AM I and AM' < M*. There are two useful and elementary necessary and
sufficient conditions that a subspace 9 reduce an operator A; the first is
that 9% be invariant under both A and A", and the second is that A commute
with the projection on 2. '

Lemma 1.Y) If A is a normal operator and if §(A)= {x: |A"x||<||x]l,
n=12,...}, then F(A) is a subspace and §(A) is invariant under every
operator B which commutes with A.

Proof. Write @& for the set of all those vectors x for which the

.sequence {IA"xli:n=1,2,...} is bounded. Since [|A"(«X)|| = ||| A"x] and
A" (x+ P =||A"x|[+ A"y, it follows that & is a linear manifold; if an
operator B commutes with A, then the relation |[A"(Bx)jj=={|B(A"x)}|=

<||BJ|-]]A"x||-implies that ® is invariant under B. Clearly §(A) is a closed
set and F(A)c®; the proof of the lemma will be completed by showing
that §(A)=G. For this purpose it is sufficient to show that if x is a vector
such that, for some positive integer p, ||A" x|| > «||x||, « > 1, then the sequence
4J|A"x]}} cannot be bounded. Since «?||x]2< || A" x|]2= (Al’x APX)=(A"" A"x,x)<
|| A A x| x|| = |A* x||-|| x|, it follows that ||A ”A[|>re ||,\H Since an
inductive repetition of this ‘argument shows that {lA¥x)| > o2||x]|] for every
posmve integer :k, the proof is complete.

3. A spectral. measure is a function E from the class of all Borel subsets |
of the set < of all .complex numbers to projections on £, such that
(i) E(-H=1, (i) E(MMnN)=E(M)E(N) whenever M and N are Borel sets,

and (iii) E(M)=ZE(M,.) whenever {M;} is a disjoint sequence of Borel

J=1

sets whose union is M (the series being understood to converge in the strong
topology of operaturs).

‘ Lemma 2. If Eis a specz‘ral measure and if €(M)==1{x: E(M)x = x}
for every Borel set M, then C(M) is the subspace spanned by the class of -
all subspaces of the form €(N), where N is an arbitrary compact subset of M.

Proof. The assertion of the theorem is that, in a sense well known
in the theory of numerical measures, every spectral measure is regular. The
proof may be given along lines entirely similar to the numerical case, or it .

1) This lemma is proved for Hermitian operators by B. A. LEXGYEL and M. H. SToxE,
Elementary proof of the spectral theorem, Annals of Math., 37 (1936), pp. 853—864; cf.
in particular p. 858. The following proof is a slight simplification of their proof.
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may be reduced to that case as follows. All that it is necessary to prove is
that if x is a vector in (M) 'su_ch ‘that x is orthogonal to €&(N) for every
compact subset N of M, then x=0. Since, however, by the regularity of nu-
merical measures, ||x|?=||[E(M)x*= sup | E(N)x|?, it follows that there exists.

a countable class {N,} of compact subsets of M such that ||x||> =sup || E(N))x|]*,
and hence that indeed x=0. ’

I shall make use below of the spectral theorem for normal operators.
in the following form. If A is a normal operator, then there exists a unique
spectral measure £, cailed the spectral measure of A, such that (Ax,y)=

— {2 d(E(%)x,y) for every pair of vectors x and y.

4. In this final section I shall assume that A is a fixed normal operator.
with spectral measure E. For every complex number A and every positive -

: ; — ' -
real number ¢ 1 shall write §(4, &) for ‘5(%——), for every set M of comp’'ex

numbers and every positive real number & | shall write §(M,¢) for the
subspace spanned by all those ¥(4, ¢) for which A¢ M; and, for every set M
of complex numbers, 1 shall write F(M)= n%(M ). Let F(, ¢, F(M,e),

and F(M) be the projections on the subspace 0(7 e) F(M, €), and F(M),
respectively. -

Theorem 1. For every compact set M, F{M) = E(M).

Proof. For any positive number &, let {M;} be a disjoint sequence
of non. empty Borel sets of diameter not greater than & and such. that
UM M. If x€CM), x;}=E(M))x, and A€M, then |[(A—24)x,'P=

= || =2 )R d(E(7)x X;) = &2 x,])% so thét, for each j, x;€5(%;, &) =T (M, e).

© M
Since x=E(M)x=3,E(M))x=2X,x,, it follows that x¢§(M, ¢). The arbi-
trariness of & implies that x¢F(M), and the arbitrariness of x implies, con-

.'sequently, that (M) cF(M). Note that thns aroument did ‘not make .use of
compactness of M.

Suppose now that N is a compact subset of A— M and let 0 be the
distance between M and N. If 2,€M, if 0<e<d, and if x€F(, £), then
[(A—24y)" x||<£"||x|| if, on the other hand, x€E(N), then ]](A——7 »xjF=—=

—t|(7~/o)"i d(E@)x, x)=02"||x|l%. It follows that F(%, &) n €(N) = {0}.

Smce E(N) commutes with A, it follows from Lemma 1 that §(4,, ¢) is in-
variant under E(N) and hence, since E(N) is Hermitian, that E(N) commutes
with F(Z,,€). This in turn implies that F(4,, &) E(N) is the projection on
(%, ) NE(N), i.e. that F(4, &) E(N)==0, and it follows that F(4,, €) is
orthogonal to €(N). The validity of this assertion for every 2, in M shows
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that §(M, ¢) is- orthogonal to E(N) and therefore, a forlzorz that (M) -is
orthogonal to €(N).

The result of the preceding paragraph implies, in view of Lemma 2, that
3(M) is orthogonal to €(A—M). This means that F(M) c(E(A—-M)* =G (M),
and the proof of the theorem is complete. 1 remark that it is easy to construct,
examples to show that if M.is not - compact, then €(M) may be a proper
subset of F(M).

Theorem 2. If an operator B commutes with A, then €(M) reduces B.
for every Borel set M.

Proof. It follows from Lemma 1 that, for every complex number 4
_and every positive number &, F(4, ¢) is invariant under B, and hence that
F(M, &) and F(M) are invariant under B for every set M. Theorem 1 implies
“that €(M) is invariant under B whenever M is compact and hence, by
Lemma .2, that €(M) is invariant under B for every Borel set M. Since
(€M)= E(A4—M), it follows automatically that (Q(M))l is also invariant
under B and hence that €(M) reduces B. .
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