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Commutativity and spectral properties 
of normal operators. 

B y PAUL R . HALMOS in C h i c a g o . 

1. The results of this note grew out of a current investigation of spectral 
properties of operators on Hilbert space. While the characterization of the 
spectral manifolds of a normal operator (Theorem 1) appears to be new and 
may be considered to be of independent interest, I present it here mainly 
because it supplies an extremely easy proof of a theorem (Theorem 2) which 
was unknown until a few weeks ago. J. VON NEUMANN has asked whether 
or not it is true that if an operator B commutes with a normal operator A, 
then B commutes with A" also. Well known and quite elementary consider-
ations show that in order to answer the question affirmatively it is sufficient 
to prove that, under the stated hypotheses, B is reduced by all the spectral 
manifolds of A. This has recently been proved by B. F U Q L E D E — he com-
municated his proof to me at the Boulder meeting of the American Mathe-
matical Society at the end of August, 1949. The proof I present below is 
somewhat different from his in spirit and ih method. I should say also that 

, F U G L E D E ' S proof is valid for not necessarily bounded transformations A and 
that, similarly, only minor modifications are needed to adapt my proof to 
this more general case. 

For the orientation of the reader I present here the trivial proof of the 
theorem under discussion for the case in which A has pure point spectrum; 
the proof of the general theorem below uses essentially the same idea and 
method. If I is a proper value, of A and if g is the subspace of all corre-
sponding proper vectors, then the relations A{Bx) = B(Ax) = B(lx) = 'i(Bx) 
show that % is invariant under B. Since to say that A has pure point spectrum 
means that the entire Hilbert space is spanned by orthogonal subspaces such 
as g, it follows that the orthogonal complement of § is also invariant under 
B, and this is exactly what was to be proved. 

2. Throughout this note I shall deal with a fixed complex Hilbert space 
An operator is a bounded linear transformation of § into itself; an operator 
A is normal if it commutes with its adjoint ,4*. If A is normal, then 
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||>1x1,2 = (Ax, Ax; = (A*Ax, x) = (AA*x, x) = (A'x, A*x) = x||2 for every 
vector x; it is easy to see that the identity |!.4x|| = ||v4*x!| is not only ne-
cessary but also sufficient for the normality of A. A subspcice is a closed 
•linear manifold in ; a subspace iW reduces an operator A if both 5i)t and 

( = the orthogonal complement of iOi) are invariant under A, i. e. if 
A c s.Di and A Tl1 c -De1. There are two useful and elementary necessary and 
sufficient conditions that a subspace iUi reduce an operator A; the first is 
that •№ be invariant under both A and A*, and the second is that A commute 
with the projection on iDI. 

L e m m a l.1) If A is a normal operator and if %(A) — {x: ||>4nx|| | |x| | , 
n— 1 , 2 , . . . } , then §(./4) is a subspace and %(A) is invariant under every 
operator B whidi commutes with A. 

P r o o f . Write © for the set of all those vectors x for which the 
sequence {| |A"x| | : n = 1, 2 , . . .} is bounded. Since || A"(«*).ll = ¡«j- | |A'x | | and 

+ + it follows that © is a linear manifold; if an 
operator B commutes with A, then the relation ||A"(Bx)jj = | | B ( A " x ) | | ^ 
sg | |fi | | . | | j4"x| | implies that © is invariant under B. Clearly %(A) is a closed 
set and $ ( A ) c © ; the proof of the lemma will be completed by showing 
that 5(A) = ©. For this purpose it is sufficient to show that if x is a vector 
such that, for some positive integer p, | |A' 'x | | > «| |x | | , « > 1 , then the sequence 
•j ||i4"x||} cannot be bounded. Since « 2 | |x | , 2< | |A"x\ \ 2 =.(A"x , A"x)=(A*pAvx,x)^ 
^| | /4* ' ' i4 i 'x | | . | |x | | = ¡|i42j'x||-||.v||, ' it follows that ||-42j 'x|| > « 2 | |x | | . Since an 
inductive repetition of this argument shows that > «'-k||x|| for every 
positive i n t e g e r t h e proof is complete. 

3. A spectral, measure is a function E from the class of all Borel subsets' 
of the set A of all complex numbers to projections on such that 
(i) E(A) = 1, (ii) E(M n N) = E(M)E(N) whenever M and N are Borel sets, 

and (iii) E(M) = 2 E(Mj) whenever {Af,} is a disjoint sequence of Borel 
J = I 

sets whose union is M (the series being understood to converge in the strong 
topology of operaturs). 

Len t m a 2. If E is a spectral measure and if ( i ( M ) = {x: E(M)x = x\ 
for every Borel set M, then &(M) is the subspace spanned by the class of 
all subspaces of the form <&(N), where N is an arbitrary compact subset of M. 

P r o o f . The assertion of the th'eorem is that, in a sense well known 
in the theory of numerical measures, every spectral measure is regular. The 
proof may be given along lines entirely similar to the numerical case, or it 

') This lemma is proved for Hermitian operators by B . A. L E N G Y E L and M . H. S T O N E , 

Elementary proof of the spectral theorem, Annals of Math., 37 (1936), pp. 853—864; cf. 
in particular p. 858. The following proof is a slight simplification of their proof. 
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may be reduced to that case as follows. All that it is necessary to prove is 
that if x is a vector in ®(M) such that x is orthogonal to (S(/V) for every 
compact subset N of M, then x = 0. Since, however, by the regularity of nu-
merical measures, ||x|,2 = \\E(M)x'\2 = sup ||£"(N)x||2, it follows that there exists. 

x 

a countable class {N,} of compact subsets of M such that | | x | | 2 =sup | |E (N; )x | | 2 , . 
3 

and hence that indeed x = 0. 
. I shall make use below of the spectral theorem for normal operators-

in the following form. If A is a normal operator, then there exists a unique 
spectral measure E, called the spectral measure of A, such that {Ax, y) — 
= j I d(E(X)x, y) for every pair of vectors x and y. 

4. In this final section I shall assume that A is a fixed normal operator 
with spectral measure E. For every complex number A and every positive 

real number E, I shall w r i t e . e ) for % ^"j; for every set M of comp'ex 

numbers and every positive reál number e, I shall write %(M,E) for the 
subspace spanned by all those for which /. and, for every set M 
of complex numbers, I shall write %(M)= C\%(M, E). Let F ( l , E), F(M,E), 

ts>o 
and F(M) be the projections on the subspace E), %(M,E), and %(M)r 

respectively. 

T h e o r e m 1. For every compact set M, %{M) — Cs(Af). 

P r o o f . For any positive number £,• let {M,,} be a disjoint sequence 
of non. empty Borel sets of diameter not greater than E and such. that 
U Mj = M. If x(£(M), Xj = E(Mj)x, and then ||04 — ^)"x/\2=-

= - lj)"]2d{E{X)xit XJ) Á £ 2 " | | X , | | 2 , S O that, for each j, x ^ i , , E) E). 

a J 
Since X = E(M)X = 2JE(MJ)X = Z,XJ, it follows that X£%(M,E). The arbi-
trariness of E implies that x£%(M), and the arbitrariness of x implies, con-
sequently, that ©(A/) a%(M). Note that this argument did not make .use of 
compactness of M. 

Suppose- now that N is a compact subset of A—M, and let <f be the 
distance between M and N. If if 0 < E < d, and if x £ g ( / 0 , £ ) , then 
H04— A 0 ) -x | | á£" | | x | | ; if, on the other hand, x£($(N), then A„)"x||2 = 
= j ' | ( A - 2 0 ) ' f t / (£( ;0x,x)Srd 2" | |x | i2 . It follows that E) n ®(N) = {0}. 

N 

Since E(N) commutes with A, it follows from Lemma 1 that E) is in-
variant under E(N) and hence, since E(N) is Hermitian, that E(N) commutes 
with F(/.0,E). This in turn implies that F(A0, E)E(N) is the projection on 
S(*o ,e)n©(A0, i- e. that F ( l 0 , E)E(N) = Q, and it follows that E) is 
orthogonal to (&(N). The validity of this assertion for every ¿0 in M shows 
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that %(M, e) is orthogonal to ®(N) and therefore, a fortiori, that %{M) is 
•orthogonal to ©(/V). 

The result of the preceding paragraph implies, in view of Lemma 2, that 
•g(AT) is orthogonal to — M). This means that § ( M ) c(@(/l — M))i = Q(M), 
and the proof of the theorem is complete. 1 remark that it is easy to construct, 
examples to show that if M is not compact, then ©(A/) may be a proper 
subset of %(M). 

T h e o r e m 2. If an operator B commutes with A, then G(Af) reduces B 
for every Borel set M. 

P r o o f . It follows from Lemma 1 that, for every complex number I 
and every positive number s, e) is invariant under B, and hence that 
%(M, e) and are invariant under B for every set M. Theorem 1 implies 
that (S(7W) is invariant under B whenever M is compact and hence, by 
Lemma 2, that @(Af) is invariant under B for every Borel set M. Since 
{ © ( A f ) ) x = M), it follows automatically that (©(Af))1 is also invariant 
under B and hence that ®(M) reduces B. 
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