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A new proof of.the general ergodic theorem.

By YAEL NaiMm DOWKER in Princeton, N. |.

The purpose of this note is to give a short and elementary proof of
Hurewicz’s ergodic theorem [5] (the ergodic theorem without invariant
measure). Our proof i§ a modification of a proof of BIRKHOFF's ergodic
theorem [1] given by 'R. SALEM in his course at M. 1. T. SALEM’s proof, as
well as a proof given by E. HoPF [4], is in turn a nredification of one given
by H. R. Pitr. [8]. All the above mentioned proofs are closely related to
RiEsz's proof [9] of BIRKHOFF's ergodic theorem. With the aid of the same
method we shall also prove a generalization of HUREwICZ's theorem for
transformations which are single valued but not necessarily one to one.

Let (S, ¥, m) be a measure space where S is a set of elements cailed
points and denoted by x,y,..., 8 a Borel field of subsets of S and m a
countably additive non-negative set function defined for the sets belonging
to B.. The sets belonging to AU are called measurable sets and the set
function m is called a measure. We assume that S€3 and that S is a union
of a countable number of measurable sets of finite measure.

Let 7 be a.one-to-one point transformation of S onto itself. We shall
say that T is measurable if both T and T~' transform measurable sets into
measurable sets. Thus if 7 is measurable so is 7" for n =0, 4+, +2,....
We shali say that 7 is positively (negatively) non-singulur it T (T™').frans-
forms sets of measure zero into sets of measure zero. Thus if T is positively
non-singular, so is 7" for n=2, 3,.

Consider now the set functxons m, defmed by m,(A)=m(T"A), where
A€Bandn=0,1,2,.... If Tis measurable and one-to-one, m, is a countably
additive non-negative set function defined for all sets A belonging to .
If, moreover T"is positively non-singular, m, is absolutely continuous with
respect to m for n==0,1,2,.... It follows then by the Radon—Nikodym
theorem that there exists a measurable function w,(x) such that for every

AcQ we have m,,(A)-— ’ w,,(x) dm, n=0,1, 2,.... By considering approxim-
ating sums to the mtedrals in question one can show that

) _[f(x) dm=Jf(7"x) w,(xydm

for n=0,1, 2, . .' ., for any measurable set A and for any measurable function
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f(x) such that either its positive or negative part is integrable. For any A¢3
consider m,.+j(A)=m(T"+fA): [W;,L,(x) dm. Also
A

m(T# A) = m(T/A) = | w,(x) dm = j w(Tix)w (x) dm.
It follows that i _
@ . W, (x) =w,(TYX) tvj(x) almost ‘everywhere on S,
and it can be assumed with no loss of generality that the equality in (2)
_holds everywhere on S, for any i, /=0, 1, 2,....

Consider now any integrable real-valued function g(x) and let

cn— 1

q"(x) =q () wo(x) + (TR W, (x) ... +g(T" ' x)w, 1(X)—4. g(Tx) w(x).

We shall now st(ate and prove HUREWICZ's ergodic theorem in a form given
to it by HaLmos [2]. - (For the relation between HUREWiCZ’s theorem and
Theorem 1, see [7].) :

Theorem . If T is a measurable, positively non-singular, one-to-one
transformation of S onto itself, if f(x) is intefrruble and if h(x) is non-negative
and such that lim h"(x)=cc almost everywhere then f"(x)/h"(x) converges
almost everywhere to a finite limit.

Remark. Our proof of theorem . like that of HaLmOS [2] and the
corresponding proofs of HUREWICZ [5], KHINTCHINE [6] and HOPF [3], depends
essentially on the following inequality :

Lemma 1. Let q(x) be arty measurable function such tlzal ezthel tts
positive or negative part is integrable. Let E be the set of points x such th_at

q"(x) =0 for some n. Then ‘ q(x) dm =0

In fact, the dnfference between our proof and those mentioned above

lies essentially only in the proof of the inequality. We shall therefore restrict
ourselves to the proof of Lemma 1. : -

Lemma 2. Let uy, u,.... be an znfzmte sequence of real numbers and
N a fxxed positive mteoer Suppose that !
n-1
max 2, u,,=0  for all j=0.
1:En5N =0 : .
Then ,
- v+§;) :
2 D (w)yr=0 - for all v=1,

=u =
where (u.)" = max (u,, 0). .
Proof of the Lemma 2. By assumption, there exists an increasing
‘sequence of integers n,=0, n,, n,,.... such that 0<nk——nk_léN Uy,
+...4 ,1=0, k=1,2,.... For any v, let p be such that n,_,<»=n,.
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Then n,<v-}N and consequent]y
vi-\ 1 1., v4+N-1 N -1

2?“ + 2 @ Z ot 2 )2 3 bl ) (@),

i=np 1=y

Proof of Lemma 1. Let g(x) be any measurable function such that
either its positive or negative part is integrable. Fix a positive integer N,
and let E, be the set of points x where ¢*(x)=0 for some n. 1=<n<N.
Since it is clear that Ey cEy,, and that the union of all the sets Ey (N=1,2,...)
is equal to E, it suffices to prove that ‘

Jq(x) dm=0.
Ey '

Let us put g(x) =g(x) if x€Ey and g(x)=0 if x¢S—E,. We first
notice that fg(x) dm= jq(x) dm. Thus it suffices to show that [g(x)dm>0

Ly s
Next we notxce that . g(x) =q(x) for all x€S. This is clear if x€E,, and
O(x)—-0> Max q"(x)>q (x)~q(x) if x¢S—Ey. From this follows that

\M;l

n-1

@3) - Max > g(T* x)w(x)_ Max cr"(x)>0 for all x¢S.
150N =0
ln fact, Max g"(x)> Max q"(x)\() xfxEEV and Max g"(x)>g )= g(x)-—
1=n=N =n<N
if xES Ev

If we replace x by T/(x) in (3) and multiply both sides by w;(x), we
obtam from (3) and (2) that

n-1

Max ZU(T'+Jx)w,+,(x)>O for all x¢S and all j=0.

. 1Sn=N =0 :
We can thus apply the lemma to the sequence u,=— g(7%x)w;(x) and obtain -
24 N-1
G(x)= z gTxw )+ 2 (T w(x)=0
| for all x¢€S8 and all »=1. Hence jG (x)dm=0. But from (1) we see that

‘G x)dm=w» [a(x) dm—}—NJ (g(x))Tdm:. Hence

Jg(x) dm+—;J (g(x))*dm=0.

Now if (g(x))tis mtegrable we see by letting » tend to co that Jo(x) dm=0.

If (g(x))* is not integrable, then (g(x))‘——Max( g(x), 0) is mtegrable
and fg(x) dm~oo>0 (NOthC that while in the course of the proof we



_ General ergodic theorem. 165

have used the fact that 7 is only positively non- sihcular it is true that the
assumption that 7 is so together with the assumption that lim A" (x)_~
almost everywhere implies that 7 is also negatively non-singular.)

We turn our attention now to transformations- which are single-valued
but not necessarily one-to-one. We will state and prove a 0enerahzatlon of
Theorem 1. Let (S, B, m) be a measure space and let 7 be a single-valued
transformation of S onto itself. We assume that 7 is measurable, 1. e that
both TA and T7'A are measurable if A is measurable. We also assume that
T is positively non-singular, i. e. that m(7™'A)=0 implies that m(A)=0.
Consider the set functions m,(A)=m(T"A) for n=1,2,... and for every
measurable A. We see immediately that m,(A) is not necessarily additive and
hence is not a measure on (S, B). Thus the procedure for defining the weight
functions w,(x) cannot be followed here as previously and has to be modified.
In this modification we are governed by the fact that our proposed theorem
must reduce to the known special cases, i.e. to Theorem I in case T is
one-to-one and to BIRKHOFFS theorem in case 7 is measure preserving in
-the sense that m(f A)——m(A) (Cf. F. Riesz [9].) In fact let B, be the
collection of all sets which are full inverse images of sets belonging to 3.
It is quite easy to see that 3, is a Borel field of sets. It is also quite easy
to see that m,(A)==m(T A) is a completely additive set function on ¥, and
thus both m and m, are measures defined on (S, ,). Moreover m, is abso-
lutely continuous with respect to m on (S, ¥,). Thus by using the RaDON—
Nikopym theorem we see that there exists a ¥V,-measurable point funchon
wy(x) such that

m, (A) = f w,(x) dm,

for any A€3,. w(x) is positive aimost everywhere and without loss of ge-
nerality we can assume that w;(x)is positive everywhere.

. Let us now define w,,(x)—w(TNI w(Tx)w(x), n=2,3,.... By
con51dermg approximating sums to the mtegrals in question one can see that

j fxydm— s ATx)w(x)dm

for every measurable functlon f(x) such that either its posmve or negative
part is integrable. It follows-that .

(1) ' ff(x)dm=jf(T~”x)w,,(x)dm

for n=0,1,2,... and for every f(x) which is described above. By definition .
we have

2) Wi ; () =w,(T"x)w,(x) for {j=0,1,....

With w,(x) as weight functions we form for every ¥-measurable function

g(x) the sum v : ‘

g(x)=q(x)+¢ (-TX) w (@) 4. AT W, ().
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Theorem Il. If T is a single valued measurable and non-singular point
transformation of (S, B, m) onto itself, if f(x) is integrable and if h(x) is
non-negative and such that h"(x)-oco almost everywlzere then f"(x)/h"(x).
converges almost everywhere to a finite limit. '

The proof of Theorem I follows exactly the same lines as that of
Theorem | and we shail therefore omit it here.

The question now arises as to when is it true that ik (x) -+ oo almost
everywhere if, for instance, h(x) is positive almost everywhere. In case T is
one-to-one it was shown by Haimos [2] (p. 157) that for h(x) >0 almost
everywhere, h"(x)-co almost everywhere if there are no wandering sets of
positive measure with respect to 7, i. e. TPAnA=0 for i=-41,+2,
implies m(A) ==0. Thus the condition that h"(x)->co can, at least for the
case of a one-to-one transformation, be replaced by a condition which reflects
directly on the nature of the transformation. In the more general case of a
single valued transformation which is not one-to-one we have not been able
to replace the condition h"(x)-oo by one directly bearing on the nature of 7.
We have been able to show that if there exists a measure w on (§, 3) which
is invariant under T (‘lt(T—lA)=‘1L(A))‘ and if 7 admits no wandering sets
of positive measure then if i(x) >0 almost everywhere, we have h"(x)-co.-
But in general the question of whether the condition that there are no
wandering sets of positive measure under 7 (or some similar condition)
yields h"(x) oo for h(x) >0 almost everywhere is still open.
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