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The asymptotic behaviour of the coefficients 
of certain power series. 

' By G : SZEKERES in Adelaide (Australia). 

1. The purpose of this paper is to derive an asymptotic expansion (as 
k-»x) for the' coefficient' Ak = A,. (K, a) in 

(1) = = K= — k + T, 
,«=o t1

 •
 a 

where a, % are real constants, a > 0 , and f ( z ) is analytic at e = = 0 . 
Under certain assumptions on f ( z ) one can easily obtain a principal 

term for A,, by a method introduced by . P. DEBYE1), called the method of 
steepest descent'(Sattelpunktmethode). Using the theorem of residues we have 

k\ 2JIIJ z . 

taken 
over a small circle* surrounding the origin. By CAUCHY'S theorem- we 

can displace the contour so that it shall pass through the "saddle point" z<> 
at which — / ( a 2 ' ) ) — & 2 ' ) = 0 or> z ^ o + a Z v f (ccZq). It can be shown 

that if the contour passes through zQ in a suitable direction end f ( z ) behaves 
appropriately on the rest of the path of integration, thyn the chief contri-
bution to the integral is furnished by the neighbourhood of z0 and has the 
form . ' 

(2) (¿nek) ' 

for a certain constant c which depends . on the particular conditions of the 
problem. The difficulty of the method lies in the proper choice of the path 
Of integration which has to be determined individually for each function f(z). 
If we cannot make sure that the contribution due to the complementary part 
of the path is negligible then the method has a rather heuristic value. 

In the present paper I shall .obtain a full asymptotic expansion for ^ 
by an entirely different method which avoids complex integration altogether. 

' ) See e. g. G. SZEGŐ, Orthogonal polynomials (New York, 1939), p. 215 ff. ( am 
indebted to P . TÚRÁN for having called my attention to this method. 
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.'The method has a more or less formal elementary character and does not 
require a knowledge of the functiontheoretical properties of f ( z ) except that 
it has a power series at z = 0. in fact, I shall prove the following 

00 j 

T h e o r e m 1. Let f ( z ) = \£—cvzv be an arbitrary power series with 

positive radius of convergence and constant term zero2); Ak shall be defined 

us above. Let u = u(t) = ^ dvtv+l, d0 = a, denote the inverse function of v=U 

<3) «= 'K IH 
go 

and let v = v(t) = 2 D„tv+\ D„=a be defined by 
i > = 0 

(4) ' . « = ' ( * + Z V v ] . 

Then 

<5) = ( L + i y ' - M ^ O i k -
. o '' 

for every m 0 and certain functions tpfl(a), analytic in \a\<o,.„yvhere q de-
notes the radius of convergence of v(t). The~expansion- (b) is-uniformly valid 
for\a\^Qn<q. 

The constant in 0(k'M'x) depends, of course, on p0 and on m and a 

« r 1 . J i M-similar remark pertains to all O-notations injthe paper. J and u 

denote the principal branches of the functions, which have the value 1 at 
« 

a = 0. No ambiguity is involved in . j — ^ — d t for complex values of a since 
o 

the integrand is obviously regular for | / '<L|a | . 
The range of validity of (5) is not necessarily confined to the circle with 

radius Q. In fact, it might be possible to "continue" the expansion into new 
regions of the complex plane by varying the coefficient c,. It is quite possible 
that (5) always holds in the interior of the circle of convergence of u(t). 

Using S T I R L I N G ' S formula, we obtain from ( 5 ) for . the coefficients of 
the power series (1) 

(6) „ 

X exp j i L Z - f i . r f / j (l + Zk~!'^,(a) + 0(k-m-1) 

s) Obviously this last assumption can be made without loss of generality. 
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where the ¿„(a) are analytic for | a | < p . The principal term in (6) is identical, 

with (2) if we put z0 = — , c — 1 — a 2 4 / " ( « z 0 ) since 
a 

P u(t) — ot u (a) , , U(a) 
— — f(u(a)) — fflog '- — o: 

J t - a w ° a a 
ü 

To have a simple application put T=^> f(z) — ^ 

«( / ) •=• « = ( c o s h y ) - \ Obviously A = 

x==(2Ar+ l ) 2 cosh<p, where H,.(x) is the k-Vn Hérmite polynomial. We hav& 

u 

= y (<P + y e - 2 ^ - l o g (2 cosh r/.)), 

u ' ( « ) . = (1 - f a - 2 (1 — a2)" Y = J ^ coth % 

hence from (5) 

AK~(2K+ l ) i ' ( 2 s i n h 9 ) ) " T ( 2 c o s h 9 ) ) - / ' e x p j^f t + y j ^ r l - y e _ 2 < i 0 ) J x 

X (1 + A:-1 I P ^ R L & K - ^ ^ P ) + . . . ) , 

e~ Hk(x) — 2 ^ ( s i n h q>). T exp j ^ + y j [ y - y sinh 2 ^ X 

x f i + l ^ f r W + o r 1 - 1 ) ) 
_ L - ' • 

for x — (2k +1)2 cosh (p, (p>e> 0. This is a well known result due t<>r 

PLANCHEREL and ROTACH3), who obtained it for real values of cp. The above 
proof is valid for any complex tp with |cosh</?|^£. The corresponding result: 

_L 
for the "oscillating region" x = ( 2 « + l ) 2 cos cp, s^ip^n — s cannot be ob-
tained by our method. 

There is another important application of Theorem 1 to which I intend: 
to come back in another paper, namely, the problem of the asymptotic eva-
luation of certain partition functions such as the number of partitions of an 
integer n into exactly k parts. They depend on. asymptotic developments of 
the same type as discussed in the present paper. 

3) M.. PLANCHEREL—W. ROTACH, Sur les valeurs. asymptotiques des polynomes-
d'Hermite, Commentarii Math. Helvetici, 1 (1929), pp. 227—254. These authors use the 
method of steepest descent in their work. Regarding above form of the formula (with. 
m = 0) see G. SZEGŐ, 1. c., p. 195. 
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2. P r o o f .of t he t h e o r e m . We have from (1), 

' g ' ( z ) = K\\ — 2 cvavzv-x W z ) 

hence 

( 7 ) • • V . • 

w = 2 

W e assume that Ap^=0 for p = 1, . . A : 4 ) and write ' 

(8) r/>Ä = s for s > 0, .y, = 0 for s ^ O . 
Pis ' 

Then 

- ' = J 

and by (7) and (8) 
00 

(10) g>„ = P + 2 . . . for p > 0. 

7; 

From (9), — log = — log /c! -J- log r^ , hence 
i>=i . . . 

The right hand side of (11) can be expressed in a very simple manner by 
<pk{aX in consequence of the following differential — difference equation: 

The formula is obviously true for p—l, since <jp0(/) = 0, cp1(t) = -^F.(\—cxt)~\ 
• K 

hence we may assume its validity for 1 <Li<p. Summing.(12) for i=\,...,r 
we obtain <r 
<13) ~£t<PTx<P\ = K(p—r for r<p. 

i=l -
r-1 

Let us write nv= II (pp_t. Then from (10) 
•isl 

t(P7*(f,.= 2 vcvtvnv+ cvtvnv 2 tcp~lt<p'p_: v~l v=l Ï—U 
P P P ' 

= 2 VCvtVnv 4 - ¿£cvtv nvUp-^p'v + \£cvtv nv(K(<pp_x — (pp_v)-(v-\)) 

by the induction hypothesis, hence 

4) This assumption in convenient but not really essential .for the proof. We can 
always enforce the condition by slightly changing the value of the parameter a . 
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Cvtvnv t c p = 2 . . C,tv71 v{K{(p],_x-rpp_v) + .1) = 

= y^c„tvnv(K((Pp-cpl,_„)-f<(cpp-cpp^)+ 1) = 

. p' . 
KCvtv:(9P<PP-i • ••• 9,-v+i—T/.-1 • • • 9p~p) — •£c»tvJtv(K(rpJI-cpp.1)-\) = l'=l 

i = / r 
Î' 

— cvf' 7lv{K{(Pp— — 1) = 
1 > = 1 

l - i c . r ^ K ^ , , . - - ^ ) - ! ) 

whence our assertion follows |since (1 — ¿ c v t v T i v ) = ^ + Oj. Hence (13) 

is valid for r = p, ^ L f o r = 1, 2,... and d^ 
da l o g ^ . ( a ) 

= ~ | y , ( a ) — A | by (11). Integrating and noting that, by (9), = ^ 

and j4i(0) = K':, we obtain 

<14) = K" exp j — K,| ^ 9k(t) - | t-'dt | : 

This relation reduces the problem to the asymptotic evaluation of rpk(t). 
03 ' n ' 

Write cpp(t) = %dp(v) f where d„(v) = 0 for p < 0, dp(0) = ^ r f o r p > 0, and 
v—0 

<15) dp(\)t + d„(2)t" + . . . = Z c J r n [ Z ( W for p >0. 
r=l r=l Vi=0 

The idea naturally suggests itself to compare <pp{t) with the function 

= defined by the equation <p = + 2 c„tv cpv . Generally let 

<16) <p(lt) = 2 - d { l v ) t \ d(t 0) = H 
p=o . • 

be defined for £ > 0 by 

(17) c p ( l t ) = i + Z c J v < p ' \ l t ) = l + t c p ( i , t ) f ( t c p ( l t ) ) . 

From (16) we have 

(18) d(l \)t+-d(l2)t*- + . . . = icvtv[£ + d{l \)t + d(i,2)t* + ...]v 
v.=l 

whence dg, L ) = C ^ , d& 2 ) = C2£2 + CI£, .. 

(19) d(l,v)= 2 Hr,]:..,^) cri . . . cr-lv'M for v > 0 
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where the b{rlt..., r<) are positive absolute constants and the summation 
runs over the (unrestricted) partitions of v. 

Comparing (17) and (3) we see that 

(20) u{t) = UP{o, t), dv = d{<J, v)= Z , . . ., r ;) cr, . . . cn &>-*' 
r ,+. .' -rl'l — V 

and \dr\St-1E b{r-i,---,ri)\cri...cr.]o>'-i* = Dv. This shows that \d(i,v)\^Dv 

if '¿¿<7 and v ) j < Dv if S><J. Hence, if «(§) denotes the radius 

of convergence of (16), then if l ^ a and if ? > a. In. 

particular 

^ H i ^ K ' - ^ K 1 - ^ ) * • 
and (p[j(>t) ' s certainly convergent for sufficiently large k if 

(We only have to take k>—-—o\t\.). It follows that y y-, a is convergent: 
o — q0 \K > 

for every p<±k. Comparing' the coefficients d„(v) and f o r p < £ , . 

v = 0, ],... we find from (15) and (18) ¿„(0) = </(-£., o ) = , 

— + j for every fixed v. This shows that the error 

commited by taking <p (J^r, tj instead of rpk(t) is small; in fact, <pr(a) = 

— (p a) -}- O (^r) provided that h(v) is not increasing too.rapidly wi thy. . 

In order to have an estimate for h(v) we introduce .the following notation ^ 

For r > 0, /;> 0 write 

(1 _ ix) (1 _ (/ 1) X)... (1 _ (/ + r _ 1) X) = 2 (-1 )" S(i, r; v) x", 
v = 0 

where S(i, r ; 0 ) = = l , and denote by Pp(i,r), p > i an arbitrary expression 
00 

(21) P„( ' , r ) = Z ( - l ) v < * » p - v 

i>=0 
where a„ = .l and the coefficients av satisfy for v > 0 
(22) 0 ^ a v < ^ S ( i , r \ v ) 
(hence «„ = 0 for v > r ) , and • ' 

00 

(23) Z (— 1 ) " « « + . < f o r s = 0, 1 , . . . . , r. . 
v=U 



Asymptotic behaviour- of certain power series. .193 

The second condition clearly implies 
00 

(24) 1 ya s + v p- s - "<cc s p-> for s = 0 , . . . , r . 
f=0 

]f Oi > 0, a2 > 0 then 

(25) a1Pp(i,r) + a2Pp(i,r) = (a1 + a2)P„(i,r). 

In this formula (like in others which follow) each Pp(i, r) may. denote a 
different expression of the form (21). The formula is to be read from the 
left to r ight: if > 0, flo>0 and both expressions P„(i,r) on the left satisfy 
(22) and (23) then the Pp(i, r) on the right (which is uniquely determined 
by the left hand side) also satisfies these conditions. The proof is obvious 

The following formula is less trivial: 

(26) Pp(i,r)PP(j,s) = Pp(i,r + s) if j ^ i + r. 

Write PP(i,r) = 2 (-\yavp->-, P;(j, s) = ( - l)»pvp-~ and 

Pp(i, r) Pp(j, s) = 2J (— 1 Yrvp-V where = «0 A, + . . . + avfJ(). , 

Comparing (1 - ix)... (1 — (/' + r — 1 )x) (1 — j x ) . . . (1 — ( / + s — I)*) with 
v 

(1 —ix)... (1 —(/+/"+-s—1) x) we see that ^ S(i, r; fi) S(j, s; v—fi)< 
f<-=o • 

¿S(i, r + s;v) if j < L / - f r hence yv = a0Pv + • • • + a „ / i 0 ^ 5 ( / , r + s; v) which 
proves condition (22). Condition (23) is a consequence of the following 

• L e m m a . Let {a0, au ...}, {b0, blt.. .} be non-negative sequences with 
finite sums. Let us form the alternating series Z (— \ )vav, )vbv and 
suppose that the remainders of the two series themselves form an alternating 

sequence, i. e. av—av+1 + av+2 — . . . 0, bv — bv+1 + bv+2 — . . . ^ 0 for v ;> 0" 
Then the remainders of the Cauchy product cv = a0bv +.. . + avb0 also form 
an alternating sequence: cv — cv+\ + c„+2— . . .¿j O. 

The lemma is notably true if both {a„}. a r ) d {bv} are finite. 

P r o o f . ¿ ( - l ) r c ^ = ( Z ( - l ) , a r ] ( Z ( - l ) r 6 w ] + -r=0 Vr= 0 J Vr=U ) 
CO OS CO 

+ bv. 1 z (-1)" fli+r + bv~2 Z (—1 Yai+r + • • • + ¿0 Z ( - 1 )r<w^ 0 
r=0 r—0 . . '—0 

since each term is ^ 0 . 
. Applying the lemma to av=avp~v, bv = ftvp-v, a, = yvp-v, we imme-. 

diately obtain condition (23) for the right hand side of (26). A repeated 
application of the lemma also shows that 

i1 - i) • • • (1 - ijtrr1)=5 1 )vp'v S{i> r>v)=p>(i>r)• 
l E 13 
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We shall now show that for p>i^>0, v>0 

(27) dp_M = 2 b(rlt :.., O c , , . . . 1+1 P„(/, *) 

summed for the partitions rx + . . . + '"; = ' v . For the expression on the right 

we use the shorthand notation d{~, v j x P„(i, v), the symbol x reminding us 

of the fact that is a sum of terms ( l9) each term being; multiplied 

by a Pp(i, v). 

Writing p — i instead of p in (15), we obtain by comparing the coeffi-

cients of = l) Pp(i, 1) for. i<p 

which proves (27) for v= L. We note that dp_i(0) = £ j ^ - = d\£, o)/>„(/, 1), 

hence assuming thé induction hypothesis, 

(28) drUr) = d { ^ , / j X P„(i, /--1-1) for ,i<p, 0<Lr < v.5) 

Equating the coefficients of tv in (15) and writing again p — i in the place 
of p, we obtain 

(29) dp.;(v) = Zcu . Z dp_i(s1)dp-l_1(sï)...dp.H»l(slt), 

the summation extending over every composition of v—fi with su ..., su^0. 
Since $! + . . . -)-s/e < v, we have by (28) for every non-zero term of the sum 

(30) dp_i(si). . . dp-i-^i(sa) — • 

s , ) . sJ ()X P„(/,1 )P„(z+1, s2+1 ) • • •P„(/-f/t-1,S/«+1 ) = 

since 
P,M> Si+ 1) Pp(i+ 1, s 2 + 1 ) . . . Pp(i+fi- 1, + 1) = 

= Pp(i,s1 + sa+2)Pp(i+2,sB+ 1 ) . . . />,(/-1-^-1, S/,+ i ) = 
= ... = Pp(/, S, + S 2 - I - . . . + S„ + p) =-- Pp(/» ' 

by a repeated application of (26). The same is true if /? —z — 1 <:0, that 
is, the left hand side of (30) is zero, since then p < i + (i i + v and ob-
viously 0 = Pp(i,v) if i<p<i-\-v. Now from (18) we have for £ = p/K 

(3 , ) ' 

where the summation is to be taken for the same compositions as. in (29). 

5) Here we'have used the obvious-equation Pp(/,/) = Pp(i, /•-}- 1). which should be 
read from the left to the right. 
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This shows that to each term T = C u d ^ , S j ) . . : . fy] in (31) there is 

a corresponding term 7* in .(29) with T*=TxPp(i,v) by (30). The precise, 

meaning of this relation is that if we substitute (19) |with H = for each' 

d j j r , s.) in T and carry out term-by-term' multiplication then each of these 

terms appears in T* multiplied by a Pp(i,v). Collecting terms belonging to 
the same cr,...cri we have by (25), since the multiplying constants 

b(rj,..., r ;) are positive, dp„i(v) = d{~, x Pp(i, v), i. e. (27). In particular, 

0 ,*) and dk(v) = d{k
R,v)xPk(Q,v). Therefore 

c o c o r , \ -

9*(t) = 2 P„{ o, V) t'= 
(32) V'ft J • ' . 

(kY~i+i 

= Z Z 6 ( / - 1 J . . . , / - i ) c , , . . . c J 4 O-k-'pir,,..,,^ 1) + v=0 rl+...+ ri=v J • 

+ . . . -F- C— 1 R A : - / ? ^ . . . . • 
where 
(33) 0^fi(r1,...,ri;J)^S(Q,v;j)<1fl',. 

(34) O S 1 - r 1 / ? ( r l f . . . , r ;; 1) + . : : + ( - \ ) v k ~ v l S ( r 1 , v ) < 1. 

This shows first, that the radius of <pk(t) is not less than — j. p, 

hence <pk(a) is convergent if k is sufficiently large. Secondly, 

(35) <Pk(t)=<P[^, f) + 

m oo f ( k ; ) 

+ Z ( - l T k - ! l Z \ 2 b{rl,...,ri)Crl...Cri £ Pfa,...,ri;ft))t" + 
/ 1 = 1 r = H + + ) • , — ! ' V * W J 

00 [ / yr \ V - 4+1 f V ' 

+ Z Z b(r1}..., r-) Cri./.Cr\-jy\ z (-l)"^"/?^,...,/-^) v=m+l ' ri+...+ri = v V** J \/(=m+l /) 
for For, each of the series . 

Z\Zb(ri> --->ri)cri--rcn\j<) /?(r,, ...,/-,; M ) j V , / t = 1, ...,m, 

is absolutely convergent for by (33), and also the remainder since 

z ( - ' y m , - ^ ^ ) i /(=»t+1 
by (24). Hence the remainder term in (35) can be written in the form 
k~m~lt%(t), where %(t) is absolutely convergent for 

k ( k •) 
Finally we replace by a, by rp(o, t) in (35) by putting 

: r " - 1 ^ , • • 1 ) < r " - V 2 r a + 2 



196 G. Szekeres 

III ij-Ul . /t"1+1 \ 
+ 1)"' ^ + ( - Om+1 - 1 and 

K 1yt + r V At 7 ; r v 7 

collecting terms belonging to equal powers of k. As a result we obtain the 
asymptotic development 

(36) /-' (.-mo- 4 ) =t~\<p(°, t)-a)+ ¿ > - ' > ; e ( o + o ( r - ' ) 

valid for hence for f = = a . 
(14), (36) and (20) give 

(37) Ak = / f f c e x p dt-±-$y\{t)dt-
' 0 i O 0 

M-l ce r , \ j 
- Z i ^ + (k~m ) . 

/1=1 o V a J ) 
It remains to determine the explicit expression for We have from 

(36), if we pu t .u ( f ) = f9>(ff,0 and y>.(t) = — t^*1(t)+.<fix, 
^ , " ( 0 , * ./.x " ( 0 1 

where ~ indicates that the difference of the left and right hand sides is 0(k'2). 
Using equation (12) we obtain 

1 /« I » I " 1 . A ¿u' 

<Pk-1 ==% — (1 + ~ — ~k ,p~~k ~u' 
1 /i i * - i ' \ " 1 , 2ff u ' ft-! = + i f t - 1 J - X J ( 7 ' 

generally — — T ^ z T ' c a n P u t t h e s e e x P r e s s ' o n s > purely 

formally, into (10) since we know that the asymptotic expansion (36) is valid 

i . k . ^ ^..r-Uu l " 1 . * . v ivrr 11 1 , i f f , « 

~<T c„zzv— - , - 2 , vcju^ip — — Z U\cvfuv-2ur 

« v=i fc v=i k w 
whence 

From (3), u ^ Y + t Z v C v i i ^ u ' , 1 - Z vcvtuv~ l = - ~ t 

2 ( 5 ) C J ' U - ^ _ J L - , + £ hence + , , 

Theorem 1 follows from this and (37). 
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It would be possible to obtain, in a similar manner, the next term 
but the general term i/>*t(f) could hardly be obtained in that way 

explici t ly. The method of steepest descent gives heuristically, in the case 
o = 1, t — I, the following expressions for i / v ( a ) i n 

Put Ь Л а ^ ^ ^ ^ У + ^ Г ' М а ) ) , 

exp 2 bv+2{a)n= 2 ЛД1, «)£", ha(e, «) = 2 a,lv(a) Г , . 
[1=0 v=0 

then 
2n Г III + V + i ) 

•ФЛ«)=2 - ^ т — (2 ц ' ( « ) Г " . 

3. The following additional remarks might widen the field of applica-
bility of Theorem 1. Throughout the previous proof, a was considered a fixed 
parameter. Now it is clear that nothing will change in the proof if we assume 
that a is not fixed but depends on k, of course subject to the condition 

In particular, Theorem 1 remains true if a tends to 0 as k-+oo. 
For example, the formula of PLANCHEREL and ROTACH for Hermite polyno-
mials holds uniformly if r/i->oo as k-+<x>. 

If we are interested in the asymptotic behaviour of Ak when к tends 
less rapidly to oo than K, we have to assume that a is not a constant but 

к tends to 0 as к »?. In that case it is preferable to put т = 0, a = a ( k ) — - ^ 
К 

so that u(t) — u(o, t) depends on k. Again, Theorem 1 remains true, with 
the additional remark that the ^ ( a ) now depend on к and tend to 0 as 

к k + oo. As a matter of fact, we can always put ' yfl(a) = — %u(a) as readily к 
seen from (35). 

Finally let us consider a particular case when the function f ( z ) itself 
depends on k. We assume that the coefficients cv have an asymptotic de-
velopment of the form0) 

(38) cv = Cv[ 1 + 2 X V ) E ' ' K ~ l l + 6 ^ ( I ' ) И 1 + Й 1 

where Cfl,Efl,a^>0 are constants (not depending on k), and |cF„| < I_ 

Let m be fixed and put M = maxflE«! ' ' ) , ( i = \ , . . m , so that 

6) This case is important from the point of view of partitions to which I have 
referred above. 
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^ + £,„ Mil = the coefficient of K i n (l . Then if 

rt + .. , + r{ = v, 

(39) c c,,^C,,...Cr:U(l ^ / ^ — [ l +£)"') 

/t=i 
where | < 1 and 

( 4 0 ) . . | = 

Let us write U(t), V(t) for the u, ^-functions belonging to F(z) = 

= Z — Cvzv and o for the radius of 1/(0, then g ^ o 1 by (19), 
v = l V \ K ) 

(39) and (40), hence q>(a,t) is convergent for if k is large. Also 
the expansion (36) remains valid as seen by put t ing. (39) into (35) and 
noticing that the power series belonging to a fixed Af'", ¿ t = l , . . . , m, is ab-
solutely convergent by (40). 

T h e o r e m 2. If in Theorem 1, the coefficients cv have, an asymptotic 
00 . r nJ \ 

development (38) and we put F(z) = Z ~C"zV> u = t + Z CvU" , 
v=l v ^ . V—1 J 

V=t^a^rX\Cv\Vv^ then 

log /1, = k log A"—kJ di~rX + O (k"n-1) r" U(t)-ot 
0 t f t=o 

uniformly for |a|<L(>0<(> if Q is the radius of V{t). Also 

Vo(«) = ( « , * _ ! ) log ( - 1 U'(a) 

•if. £! = 0 in (38). 
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