On the geometry of conformal mapping.

By Alfred Rényı in Budapest.

Introduction.

Let us denote by S the class of analytic functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots+a_{n} z^{\prime \prime}+\ldots \tag{1}
\end{equation*}
$$

which are regular and schlicht in the circle $|z|<1$. Let us denote by $D(r)$ the domain of the w-plane onto which the circle $|z|<r \quad(r<1)$ is mapped by the function $w=f(z)$, and by $C(r)$ the boundary of $D(r)$. Let $A(r)$ denote the area of $D(r)$ and $L(r)$ the length of the curve $C(r)$. We put $z=r e^{i \varphi}$ and denote by $s=s(r, \varphi)$ the length along $C(r)$ from the point $w=f(r)$ to the point $f\left(r e^{i \varphi}\right)$ in the positive direction. We have evidently

$$
\begin{equation*}
\frac{d s}{d \varphi}=r\left|f^{\prime}(z)\right| . \tag{2}
\end{equation*}
$$

Let us put $\arg f^{\prime}(z)=\chi$ and $\psi=\chi+\varphi+\frac{\pi}{2}$; clearly ψ denotes the angle between the tangent to $\mathcal{C}(r)$ in the point $f\left(r e^{i \varphi}\right)$ and the real axis of the w-plane. Let us denote by $R=R(r, \varphi)$ the radius of curvature of $C(r)$ in the point $f\left(r e^{i \varphi}\right)$ and let us put $\gamma=\gamma(r, \varphi)=\frac{1}{R(r, \varphi)}$; it follows

$$
\begin{equation*}
\gamma=\frac{d \psi}{d s}=\frac{\cdots+R\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)}{r\left|f^{\prime}(z)\right|} . \tag{3}
\end{equation*}
$$

Here and in what follows we denote by $R(\zeta)$ the real part, and by $I(\zeta)$ the imaginary part of the complex number ζ. We denote by $S(f)=S(f(z))$ the invariant of $\mathrm{Schwarz}^{1}$)

$$
\begin{equation*}
S(f)=\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}\right)^{2} \tag{4}
\end{equation*}
$$

[^0]It is known, that for any $f(z)$, belonging to $S, C(r)$ is convex for $0<r<r_{\mathrm{c}}=2-\sqrt{3}=0.26 \ldots$, and star-like with respect to the point $w=0$ for $r<r_{s}=\tanh \frac{\pi}{4}=0.65 \ldots{ }^{2}$). In Part I we shall investigate in detail the form of $C(r)$ for $r<r_{c}$; it is evident that when r decreases, the form of $C(r)$ approaches more and more the form of a circle, our aim is to express this fact in a precise manner. For this purpose we have to introduce some quantity measuring the degree of dissemblance between $C(r)$ and a circle; for this quantity we choose the total variation of γ along $C(r)$, i. e. we put

$$
\begin{equation*}
\left.\delta(r)=\int_{c(x)}|d \gamma|=\int_{: 0}^{2 \pi}\left|\frac{d \gamma}{d \varphi}\right| d \varphi .^{3}\right) \tag{5}
\end{equation*}
$$

The following theorem will be proved:
Theorem 1. For any function belonging to S we have

$$
\begin{equation*}
\delta(r)<\frac{12 \pi r(1+r)}{(1-r)^{3}} \tag{6}
\end{equation*}
$$

As a consequence of Theorem 1 (Corollary II) we shall prove that $C(r)$ is contained between two circles with radii $r-O\left(r^{3}\right)$ and $r+O\left(r^{3}\right)$. This is an improvement compared with the distortion theorem ${ }^{4}$), from which it follows only that $C(r)$ is contained between two circles with radii $r \pm O\left(r^{2}\right)$. (Here and in what follows we denote by $O\left(r^{2}\right), O\left(r^{3}\right)$ etc. quantities which are bounded uniformly (i. e. independently of r as well as of $f(z)$) when divided by r^{2}, r^{8}, etc.) To prove the mentioned result we need the following

Lemma 1 . For any $f(z)$ belonging to S we have

$$
\begin{equation*}
L(r)=2 \pi r+O\left(r^{3}\right) . \tag{8}
\end{equation*}
$$

Clearly Lemma 1 can be expressed also by stating that

$$
\begin{equation*}
\left(\frac{d^{2} L}{d r^{2}}\right)_{r=0}=0 \tag{9}
\end{equation*}
$$

[^1]It may be mentioned that (8) is by no means evident, as from the distortion theorem ${ }^{6}$) applied to the formula

$$
\begin{equation*}
L(r)=r \int_{0}^{2 \pi}\left|f^{\prime}(z)\right| d \varphi \tag{10}
\end{equation*}
$$

it follows at the first sight only $L(r)=2 \pi r+O\left(r^{2}\right)$.
In Part II we investigate the form of $C(r)$ for $r_{c}<r<r_{s}$. We define $K(r)$, the set of those (interior) points of $D(r)$, with respect to which $C(r)$ is star-like; we shall call $K(r)$ the star-kernel of $\left.D(r)^{5}\right)$. According to the theorems mentioned above, and taking into account that a convex domain is star-like with respect to every of its interior points, it follows that $K(r)=D(r)$ for $r \leqq r_{c}$ and $K(r)$ not void for $r \leqq r_{s}$. The question arises what can be said regarding the size of $K(r)$ for $r_{c}<r<r_{s}$. Theorem 2 is a first attempt to answer this question.

In the present paper we do not consider the range of values $r_{s}<r<f^{\prime}$, we refer only to the interesting results obtained by Golusin ${ }^{6}$).

Part 1.

We shall need the following
Lemma 2. For any function $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ belonging to S we have $\left|a_{2}^{2}-a_{3}\right| \leqq 1$. This inequaity is best possible as equality stands for $f(z)=\frac{z}{(1-z)^{2}}$. This lemma has been proved by Golusin ${ }^{7}$) and SCHIFFER ${ }^{8}$).

Using Lemma 2 we obtain the following estimation of the invariant of Schwarz:

Lemma 3. For any $f(z)$ belonging to S we have

$$
\begin{equation*}
|S(f)|=\left|\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}\right| \leqq \frac{6}{\left(1-r^{2}\right)^{2}} . \tag{15}
\end{equation*}
$$

This is a "best possible" result as for $f(z)=\frac{z}{(1-z)^{2}}$ and $z=r$ we have equality in (15).

[^2]To prove Lemma 3 let us introduce the function

$$
\begin{equation*}
h(\zeta)=\frac{f\left(\frac{\zeta+z}{1+\bar{z} \zeta}\right)-f(z)}{f^{\prime}(z)\left(1-r^{2}\right)} \tag{16}
\end{equation*}
$$

A simple calculation gives

$$
\begin{equation*}
\left(1-r^{2}\right)^{2} S(f)=h^{\prime \prime \prime}(0)-\frac{3}{2}\left(h^{\prime \prime}(0)\right)^{2} \tag{17}
\end{equation*}
$$

As $h(\zeta)$ belongs evidently to S, putting $(\zeta)=\zeta+c_{2} \zeta^{2}+c_{3} \zeta^{3}+\ldots$ and applying Lemma 2, we have $\left(1-r^{2}\right)^{2}|S(f)|=6\left|c_{3}-c_{2}^{2}\right| \leqq 6$ which proves Lemma 3. Lemma 3 has been proved recently in another way (without using Lemma 1) by Nehari ${ }^{9}$).

Let us calculate now the variation of γ along $C(r)$. We have by some calculations

$$
\begin{equation*}
\frac{d \gamma}{d \varphi}=\frac{I\left[z^{2} S(f)\right]}{r\left|f^{\prime}(z)\right|} . \tag{18}
\end{equation*}
$$

Using the distortion theorem, according to which

$$
\begin{equation*}
\frac{1-r}{(1+r)^{3}} \leqq\left|f^{\prime}(z)\right| \leqq \frac{1+r}{(1-r)^{3}} \tag{19}
\end{equation*}
$$

and using Lemma 3, Theorem 1 follows immediately.
Before considering the consequences of Theorem 1 we prove Lemma 1. We start by the decomposition

$$
\begin{align*}
L(r)=r \int_{0}^{2 \pi} f^{\prime}(z) e^{-i x} d \varphi= & r \int_{0}^{2 . \pi} f^{\prime}(z) d \varphi+ \tag{20}
\end{align*} \quad r \int_{0}^{2 \pi}\left(e^{-i x}-1\right) d \varphi+\quad .
$$

Evidently

$$
\begin{equation*}
r \int_{0}^{2: \pi} f^{\prime}(z) d \varphi=2 \pi r \cdot \frac{1}{2 \pi i} \int \frac{f^{\prime}(z) d z}{z}=2 \pi r, \tag{21}
\end{equation*}
$$

further

$$
\begin{equation*}
r \int_{0}^{2 \pi}\left(e^{-i x}-1\right) d \varphi=-i r \int_{0}^{2 \pi} x d \varphi+r \int_{0}^{2 \pi}\left(e^{-i x}-1+i \chi\right) d \varphi . \tag{22}
\end{equation*}
$$

As $\log f^{\prime}(z)$ is regular in $|z|<1, \chi=I\left(\log f^{\prime}(z)\right)$ is a harmonic function, and thus $\int_{0}^{2 \pi} \chi d \varphi=\chi(0)=0$; using the elementary inequality $\left|e^{-i x}+i x-1\right|=O\left(x^{2}\right)$ and the rotation theorem :

[^3]\[

$$
\begin{equation*}
|x| \leqq 2 \log \frac{1+r}{1-r} \tag{23}
\end{equation*}
$$

\]

we obtain

$$
\begin{equation*}
r \int_{0}^{2 \pi}\left(e^{-i \chi}-1\right) d \varphi=O\left(r^{3}\right) \tag{24}
\end{equation*}
$$

As regards the third term of (20), we have by (19) and (23)

$$
\begin{equation*}
r\left|\int_{0}^{2 \pi}\left(f^{\prime}(z)-1\right)\left(e^{-i x}-1\right) d \varphi\right| \leqq r \int_{0}^{2 \pi}\left|f^{\prime}(z)-1 \| x\right| d \varphi=O\left(r^{3}\right) \tag{25}
\end{equation*}
$$

Thus, using (20), (21), (24) and (25), it follows

$$
\begin{equation*}
L(r)=2 \pi r+O\left(r^{3}\right) \tag{26}
\end{equation*}
$$

which is Lemma 1.
As an immediate consequence of Lemma 1 we mention that the isoperimetric deficiency of $C(r)$ is $O\left(r^{4}\right)$. As a matter of fact, we have by a well known formula

$$
A(r)=\pi r^{2}+\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n}
$$

from which, combined with (26) it follows

$$
\begin{equation*}
L^{2}(r)-4 \pi A(r)=O\left(r^{r}\right) \tag{27}
\end{equation*}
$$

Now let us consider some consequences of Theorem 1. We start by the formula

$$
\begin{equation*}
L(r)=\int_{0}^{2 \pi} R d \psi . \tag{28}
\end{equation*}
$$

Let us denote by R_{0} the mean value of R on $C(r)$, i. e. we put

$$
\begin{equation*}
R_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} R d \psi=\frac{L(r)}{2 \pi} \tag{29}
\end{equation*}
$$

For any value of R we have evidently

$$
\begin{equation*}
\left|\frac{1}{R}-\frac{1}{R_{0}}\right| \leqq \delta(r) \tag{30}
\end{equation*}
$$

and thus, for sufficiently small r,

$$
\begin{equation*}
\frac{R_{0}}{1+R_{0} \delta(r)} \leqq R \leqq \frac{R_{0}}{1-R_{0} \delta(r)} . \tag{31}
\end{equation*}
$$

According to (26) we have $R_{0}=r+O\left(r^{3}\right)$ and by Theorem 1 it follows $\delta(r)=O(r)$, thus we have from (31):

Corollary I. If $R(r, r)$ denotes the radius of curvature of $C(r)$ in the point $f\left(r e^{i \varphi}\right)$ we have

$$
\begin{equation*}
R(r, \varphi)=r+O\left(r^{3}\right) \tag{32}
\end{equation*}
$$

uniformly in φ, r and $f(z) \in S$.
Let us denote by R_{A} and r_{m} the maximal resp. minimal value of R on $C(r)$. According to a theorem of Blaschke ${ }^{10}$), if the convex curves C_{1} and C_{2} have a common tangent in one point and the radius of curvature of C_{1} exceeds the radius of curvature of C_{2} in points with parallel directions, it follows that C_{2} is contained in C_{1}. Thus $C(r)$ contains a circle with radius R_{m} and is contained in a circle with radius R_{M}; if ϱ_{M} resp. ϱ_{m} denote the radii of the least circumscribable resp. the greatest inscribable circle of $C(r)$ it follows $R_{m} \leqq \varrho_{m}<\varrho_{M} \leqq R_{M}$, and thus, using (32) we obtain

Corollary II.

$$
\begin{equation*}
\varrho_{\mu}-\varrho_{m}=O\left(r^{n}\right) \tag{33}
\end{equation*}
$$

As remarked in the introduction, the distortion theorem gives only $e_{H}-\varrho_{m}=O\left(r^{2}\right)$. (Of course the least circumscribable and the greatest inscribable circle are generally not concentric.)

Finally we mention that R_{M} always exceeds r. This follows from the fact, that $\frac{R(r, \varphi)}{r}$ is a subharmonic function. As a matter of fact, it suffices to show that $\log \frac{R}{r}$ is subharmonic. As regards the latter function, we have

$$
\begin{equation*}
\log \frac{R}{r}=R\left(\log f^{\prime}(z)\right)-\log R\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \tag{34}
\end{equation*}
$$

The first term on the right of (34) is a harmonic function, and the second - being the negative logarithm of a harmonic function - is subharmonic, and thus $\log \frac{R}{r}$, and therefore also $\frac{R}{r}$.itself are subharmonic; as the maximal value of a subharmonic function can not be taken in an interior point and as $\frac{R}{r}=1$ for $r=0$, it follows $R_{\text {it }}>r$.

Part II.

Let $r(\lambda) \quad(0 \leqq \lambda \leqq 1)$ denote the least upper bound of those values of r for which, for any $f(z) \in S$, the star-kernel $K(r)$ contains $D(\lambda r)$. According to the theorems on' the radii of convexity and starlikeness, cited in the introduction, we have $r(1)=2-\sqrt{3}$ and $r(0)=\tanh \frac{\pi}{4}$. Evidently $r(\lambda)$ is a continuous decreasing function of λ. In what follows we shall prove the following estimate for $r(\lambda)$:

[^4]Theorem 2. We have for $0<\lambda<\frac{\pi-\log 3}{2 e^{\pi / 2}}$

$$
\begin{equation*}
r(\lambda)>\tanh \left(\frac{\pi}{4}-\frac{e^{\pi / 2}}{2} \lambda\right) \tag{35}
\end{equation*}
$$

Proof. It is easy to see that

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)-f(a)}\right| \leqq \frac{\pi}{2} \tag{36}
\end{equation*}
$$

for $z=r e^{i \varphi}, 0 \leqq \varphi<2 \pi$, is the necessary and sufficient condition for $C(r)$ being star-like with respect to the point $w=f(a)$. Let us put $\zeta=\frac{a-z}{1-\bar{z}}$; it follows $a=\frac{\zeta+z}{1+\bar{z} \zeta}$.

We need the following theorem, valid for any $f(z) \in S$, which has been proved first by Grunsky : ${ }^{11}$)

$$
\begin{equation*}
\left|\arg \frac{f(z)}{z}\right| \leqq \log \frac{1+|z|}{1-|z|} \tag{37}
\end{equation*}
$$

Let us apply (37) to the function $h(\zeta)$ defined by (16), we obtain

$$
\begin{equation*}
\left|\arg \frac{f(a)-f(z)}{f^{\prime}(z) \zeta}\right| \leqq \log \frac{1+|\zeta|}{1-|\zeta|} \tag{38}
\end{equation*}
$$

and thus
(39) $\left|\arg \frac{z f^{\prime}(z)}{f(z)-f(a)}\right|=\left|\arg \left(\frac{f(a)-f(z)}{f^{\prime}(z) \zeta}\right) \cdot\left(-\frac{\zeta}{z}\right)\right| \leq \log \frac{1+|\zeta|}{1-|\zeta|}+\left|\arg \left(-\frac{\zeta}{z}\right)\right|$.

The circle $|z|=r$ is mapped by $\zeta_{1}=\frac{z-a}{1-\bar{a} z}$ onto the circle with centre $-a \frac{1-r^{2}}{1-r^{2}|a|^{2}}$ and radius $\frac{r\left(1-|a|^{2}\right)}{1-r^{2}|a|^{2}}$. As $\left|\breve{\zeta}_{1}\right|=|\zeta|$ it follows that for $|z|=r$ and for any a with $|a|=\rho$ we have $|\zeta| \leqq \frac{\rho+r}{1+\varrho r}$. We have further for $|z|=r$ and $|a|=\varrho$

$$
\left|\arg \left(-\frac{\zeta}{z}\right)\right|=\left\lvert\, \arg \frac{1-\frac{a}{z}}{1-a \bar{z}} \leqq \operatorname{arctg} \frac{\varrho}{r}+\operatorname{arctg} \varrho r=\operatorname{arctg} \frac{\varrho\left(r+\frac{1}{r}\right)}{1-\varrho^{2}} .\right.
$$

Thus it follows that for $|z|=r$ and $|a| \leqq \lambda r \quad(\lambda>0)$
(40) $\left|\arg \frac{z f^{\prime}(z)}{f(z)-f(a)}\right| \leqq \log \frac{1+r}{1-r}+\log \frac{1+\lambda r}{1-\lambda r}+\operatorname{arctg} \frac{\lambda\left(r^{2}+1\right)}{1-\lambda^{2} r^{2}}$.

Using the elementary inequalities $\log \frac{1+x}{1-x} \leqq \frac{2 x}{1-x^{2}}$ and $\operatorname{arctg} x \leqq x$ we obtain ${ }^{11}$) See H. Grunsky, 1. c. ${ }^{2}$).

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)-f(a)}\right| \leqq \log \frac{1+r}{1-r}+\frac{\lambda(r+1)^{2}}{1-\lambda^{2} r^{2}} \leqq \log \frac{1+r}{1-r}+\lambda \frac{1+r}{1-r} \tag{41}
\end{equation*}
$$

Taking into account that $w e_{0}$ may suppose. $r<\tanh \frac{\pi}{4}$, we obtain

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)-f(a)}\right| \leqq \log \frac{1+r}{1-r}+\lambda e^{\frac{\pi}{2}} \tag{42}
\end{equation*}
$$

thus if $r \leqq \tanh \left(\frac{\pi}{4}-\frac{\lambda e^{\frac{\pi}{2}}}{2}\right)$, i. e. if $\log \frac{1+r}{1-r} \leqq \frac{\pi}{2}-\lambda e^{\frac{\pi}{2}}$, we have for any a with $:|a| \leqq 2 r$

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)-f(a)}\right| \leqq \frac{\pi}{2} \tag{43}
\end{equation*}
$$

which proves Theorem 2.
We may deduce from (41) also the slightly more precise result

$$
\begin{equation*}
r(\lambda) \geq \frac{x(\lambda)-1}{x(\lambda)+1} \tag{44}
\end{equation*}
$$

where $x(2)$ is the only positive root of the equation

$$
\begin{equation*}
\log x+\lambda x=\frac{\pi}{2} \tag{45}
\end{equation*}
$$

These estimations are not the best possible, nevertheless they give rather good approximation for small values of 2 .
(Received August 6, 1949, revised November 10, 1949.)

[^0]: ${ }^{1)}$ The invariant of Schwarz is the differential form of least order which remains invariant with respect to every linear transformation effected on $f(z)$; cf. H. A. Schwarz, Gesammelte Muth. Abhandiungen. II (Berlin; 1890), pp. 351-355.

[^1]: ${ }^{\text {2 }}$) The radius of convexity has been determined by R. Nevanlinna, Über die schlichte Abbildungen des Einheitskreises, Oversıgt av Finska Vet. Soc. Forhandlingen, 62 (1920), pp. 1-14; the exact radius of starlikeness has been found, after long series of trials, by H. Grunsky, Zwei Bemerkungen zur konformen Abbildung, Jahresbericht der Deutschen Math. Vereinigung, 5 (1933), pp. 140-143.
 ${ }^{3}$) The use of this quantity has been kindly . suggested to me by Dr. István Fairy. It must be added, that the quantity defined by (5) gives a measure of the dissemblance of a curve from the circle only if the knowledge of the size of the curve (f. e. its length is presupposed; an absolute measure of dissemblance is furnished by the product of (5) with the length of the curve.
 ${ }^{4}$) The distortion theorem asserts that $C(r)$ is contained between the two concentric circles with centre at the origin having the radii $\frac{r}{(1+r)^{2}}$ and $\frac{r}{(1-r)^{2}}$.

[^2]: - i) It is easy to see that $K(r)$ is a convex domain. This has been mentioned firṣt by Thekla Lukícs; cf. G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis. I. (Berlin, 1925), p. 277.
 . i ${ }^{6}$) For the mentioned results and for further literature we refer to the excellent survey article of G. M. Golusin, Interior problems of the theory of schlicht functions, Uspekhi Mat. Nauk, 6 (19:9), pp. 26-89.
 ${ }^{7}$) G. M. Golusin, Einige Koeffizientenabschätzungen für schlichte Funktionen, Mat. Sbornik, 3 (19:8), pp. 321 - 330.

 8) M. Schipfer, Sur un problème d'extremum de la représentation conforme, Bulletin de la Socièté Math. de France, 66 (1938), pp.: 48-55.
[^3]: ${ }^{9}$) Z. Nehari, The Schwarzian derivative and schlicht functions, Bulletin of the American Math. Society, 55 (1949), pp. 545-551.

[^4]: $\left.{ }^{10}\right)$ W. Blaschke, Kreis und Kugel (Leipzig, 1916), p. 115.

