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On the geometry of conformal mapping. 
B y A L F R É D R É N Y I i n . B u d a p e s t . 

Introduction. 

Let us denote by 5 the class of analytic functions 

(1) f{z)=z + a,zi + . . . + a„z» + ..:- ' 

which are regular and schlicht in the circle \z\ < 1. Let us denote by D(r) 
the domain of the iv-plane onto which the circle \z\<r (r < 1) is mapped 
by the function w = / ( z ) , and by C(r) the boundary of D(r). Let A(r) denote 
the area of D(r) and L(r) the length of the curve C(r). We put z=-re^ 
and denote by s = s(r,(p) the length along C(r) from the point w=-f(r) to 
the point f i j e*? ) in the positive direction. We have evidently 

(2) . : " ^ T — 

71 '' 
Let us put a r g f ' ( z ) = % and •</> = z + f jP-f -^- ; clearly tp denotes the angle 

between the tangent to C(r) in the point f i r é f ) and the real axis of the 
w-plane. Let us denote by R = R(r,<p) the radius of curvature of C(r) in 

the point / ( r e ' > ) and let us put y = y(r, = R(r q>) ' ^ f ° " o w s 

(3) y - d * . V l R { Z № 
ds r \j'(z)\ 

Here and in what follows we denote by /?(£) the real part, and by the 
imaginary part of the complex number f. We denote by S ( / ) = S ( f ( z ) ) the 
invariant of S C H W A R Z 1 ) 

f'"(z) 3 C / '"(2)f 
( 4 ) 5 ( / ) 2 l / ' ( , , 

The invariant of SCHWARZ is the differential form of least order which remains 
invariant with respect to every linear transformation effected on f (z ) ; cf. H . A. SCHWARZ, 
Gesammelte Math. Abhandlungen. II (Berlin, 1890), pp. 351-355. 
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It is known, that for any / (z) , belonging to S, C(r) is convex for 
0 < r < rc — 2— f 3 = 0.26 . . . , and star-like with respect to the point w = 0 

for r < r,= tanh -^- = 0.65 . . .2). In Part I we shall investigate in detail the 

form of C(r) for r < rc\ it is evident that when r decreases, the form of 
C(r) approaches more and more the form of a circle, our aim is to express 
this fact in a precise manner. For this purpose we have to introduce some 
quantity measuring the degree of dissemblance between C(r) and a circle; 
for this quantity we choose the total variation of y along C(r), i. e. we put 

dy 
dcp 

dep.*) (5) x d(r) = 

The following theorem will be proved: 

Theorem 1. For any function belonging to S we have 

W * . o{r)-< ( i _ r ) « • 

As a consequence of Theorem 1 (Corollary II) we shall prove that C(r) 
is contained between two circles with radii r—0(r3) and r+0(r3). This is 
an improvement compared with the distortion theorem4), from which it follows 
only that C(r) is contained between two circles with radii r+0(r-). (Here 
and in what follows we denote by 0 ( r 2 ) , 0 ( r 3 ) etc. quantities which are 
bounded uniformly (i. e. independently of r as well as of / ( z ) ) when divided 
by r2, r8, etc.) To prove the mentioned result we need the following 

L e m m a 1. For any f ( z ) belonging to S we have 
(8) L{r) = 2Tcr+0(rs). 

' Clearly Lemma 1 can be expressed also by stating that 

The radius of convexity has been determined by R. NEVANLINNA, Über die schlichte 
Abbildungen des Einheitskreises, Oversigt av Fmska Vet. Soc. Forhandlingen, 62 (1920), 
pp. 1 — 14;, the exact radius of starlikeness has been found, after long series of trials, by 
H.' GRUNSKY, Zwei Bemerkungeri zur konformen Abbildung, Jahresbericht der Deutscheii 
Math. Vereinigung, 5 (1933), pp. 140-143. 

3) The use of this quantity has been kindly , suggested to me by Dr. István FÁRY. 
It must be added, that the quantity defined by (5) gives a measure of the dissemblance 
of a curve from the circle only if ' the knowledge of the size of the curve (f. e. its length 
is presupposed; an absolute measure of dissemblance is furnished by the product of (5) 
with the length of the curve. 

' 4) The distortion theorem asserts that C(r) is contained between the two concentric 

circles with centre at the origin having the radii -—•——- and 
(1 + ' ) - 0 - ' ) 2 
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It may be mentioned that (8) is by no means evident, as from the distortion 
theorem6) applied to the formula 

2 71 

<10) L(r) = r\ \f (2)I dtp 

it follows at the first sight only L(r) = 2nr + 0(r-). 
In Part II we investigate the form of C(r) for rc<r<rs. We define 

K(r), the set of those (interior) points o f D ( r ) , with respect to which C(r) 
is star-like; we shall call K(r) the star-kernel of D(r)b). According to the 
theorems mentioned above, and taking into account that a convex domain is 
star-like with respect to every of its interior points, it follows that K(r) — D{r) 
for r<Lr'e and K(r) not void for ' /"¿Jr . . The question arises what can be said 
regarding the size of K(r) for rc<r<r,. Theorem 2 is a first attempt to 
answer this question. 

In the present paper we do not consider the range of values r,<r < 1, 
we refer only to the interesting .results obtained by G O L U S I N 0 ) . \ ; ; ; 

i Part I. 1 

We shall need the following . 
L e m m a 2. For any function f ( z ) = 2 + a.2z- + a;r +... belonging to S 

we have \ a \ — T h i s inequality is best possible as equality stands for 

f ( z ) = Z
 2 . This lemma has been 'proved by G O L U S I N 7 ) and S C H I F F E R 8 ) . 

V' Z) ' 
Using Lemma 2 we obtain the following estimation of the invariant of 

SCHWARZ : 

L e m m a 3. For any f ( z ) belonging to S we have , . . 

<15) \S(f)\ f"(z) 3 f r ( z ) 
2 V / f W 

This is a "best possible" result as for f ( z ) 

equality in (15). 

2 
(1 ~zf 

f-y; 

and z-- •• r we have 

'") It is easy to see that K{r) is a convex domain. This has been mentioned first 
by Thekla LUKÁCS; cf. G . PÓLYA and G . SZEGŐ, Aujgaben und Lehrsätze aus der Ana-
lysis. I. (Berlin, 1925),"p. 277. -

, v °) For the mentioned .results. and for further literature we refer to the excellent 
survey article of G. M. GOLUSIN, Interior problems of the theory of schlicht -functions, 
Uspekhi Mat. Nauk, 6 (19^9), pp. 2 6 - 8 9 . 

') G M. GOLUSIN, Einige Koeffizientenabschätzungen für schlichte Funktionen, Mat. 
Sbornik, 3 (19:8), pp. 321-330. 

8) M. SCHIFFER, Sur un problème d'extrenium de la représentation coníorme, Butletin 
de la Société Math, de France, 66 (1938),-pp.- 48—55. > 
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To prove Lemma 3 let us introduce the function 

0 6 ) m - v ; / ^ . ) • 

A simple calculation gives 

(17) ( l - / - 2 ) 2 S ( / ) = / / " ' ( 0 ) - - | ( / i " ( 0 ) ) 2 . 

As /i(£) belongs evidently to S, putting (D = £ + c 2 £ 2 + c s £ 3 + - • • and applying 
Lemma 2, we have (1 — r 2 ) 2 \ S ( f ) \ = 6 | c 3 — w h i c h proves Lemma 3. 
Lemma 3 has been proved recently in another way (without using Lemma 1) 
b y N E H A R I 9 ) . 

Let us calculate now the variation of y along C(r). We have by some 
calculations 
n r o 7[z2S(/)] 
{ ' dcp - r | / ' ( z ) | • 
Using the distortion theorem, according to which 

1 - r 1+r < (19) 

and using Lemma 3, Theorem 1 follows immediately. 
Before considering the consequences of Theorem 1 we prove Lemma 1. 

We start by the decomposition 
2it 2-T 2ji 

(20) L(r) = r\f'(z)ri*d(p = r\f'{z)dq> + r\{eri* — \)dtp+ 
0 0 u 

2n 
+ r\(f'(z)-\)(e-i*-\)dcp. 

Evidently 
In 

(21) = = 
O. 

further 
2 n. 2:c 2 ;c 

(22) r j (e~i* — \)d(p = — i r \ + r —1 + ix)dtp. 
0 0 0 

As l og / ' ( z ) is regular in | z | < 1, x = / ( l o g / ' ( z ) ) is a harmonic function, and 
2it 

thus $%d(p = x(0) = 0 ; using the elementary inequality \e-ix+ix—\\ = 0(x!) 
o 

and the rotation theorem: 

9) Z. NEHARI, The Schwarzian derivative and schlicht functions, Bulletin of the 
American Math. Society, 55 (1949), pp. 545-551. 
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(23) 

we obtain 
'¿71 . . . 

(24) r jV'*— \)drp = 0(r). 
o 

; As regards the third term of (20), we have by (19) and (23) 
2it 2 it 

(25) r | ) ' ( / ' ( z ) - 1) ( g - ' z - \ ) d c p \ ^ r \ \ f ' ( z ) - \ Md<p = 0(?). 
0 0 

Thus, using (20), (21), (24) and (25), it follows 

(26) L(r) = 2nr+0(r') 

which is Lemma 1. 
As an immediate consequence of Lemma 1 we mention that the isoperi-

metric deficiency of C(r) is 0(r*). As a matter of fact, we have by a well 
known formula 

' A(n = nr2+Z n2\a„\-r2" 
n—2 • . 

from which, combined with (26) it follows ' 

(27) L2(r)—4Tr>l(/-) = 0(r4) . 

Now let us consider some consequences of Theorem 1. We start by 
the formula 

2 ?t 
(28) L(r)=\Rdtb. 

o 
Let us denote by Ra the mean value of R on C(r), i. e. we put 

2.i 

(29) = 
o 

For any value of R we have evidently 

(30) ^à(r) J 1_ 
R R0 

and thus, for sufficiently small r, -

( 3 1 ) 1 + & ( / • ) = * = i - w r . . 

According to (26) we have R0 = r+O(rs) and by Theorem 1 it follows 
d(r) = 0(r), thus we have from (31): 
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C o r o l l a r y l . If R(r, rp) denotes the radius of curvature of C(r) in the 
point fire'r) we have 
(32) R{r,<p) = r + 0(r») 
uniformly in cp, r and f(z) 6 5. 

Let us denote by RM and rm the maximal resp. minimal value of R on 
C(R). According to a theorem of BLASCHKE10), if the convex curves CX and 
C2 have a common tangent in one point and the radius of curvature of Cx 

exceeds the radius of curvature of C2 in points with parallel directions, it 
follows that C2 is contained in C,. Thus C(r) contains a circle with radius 
Rm and is contained in a circle with radius RM\ if Qm resp. Q,„ denote the 
radii of the least circumscribable resp. the greatest inscribable circle of C(r) 
it follows R m ^ e „ , < QM^RM , and thus, using (32) we obtain 

C o r o 11 a ry II. 
(33) ' ; " • t > M - Q m = = 0 ( r ) . 

As remarked in the introduction, the distortion theorem g ives 'on ly 
— Qm—0(r2). (Of course the least circumscribable and the greatest inscri-

bable circle are generally not concentric.) 
Finally we mention that RM always exceeds r. This follows from the 

fact, that ^ is a subharmonic function.. As a matter of fact, it suffices r 
R to show that l o g — is subharmonic. As regards the latter function, we have 

(34) i o g ^ = /?( log/ ' (2r)) —Iog /? [ l 

The first term on the right of (34) is a harmonic function, and the second 
— being the negative logarithm of a harmonic function — is subharmonic, 

R " R and thus log — , and therefore also — . itself are subharmonic; as the r r ' 
maximal value of a subharmonic function can not be taken in an interior 

R point and as — = 1 for r = 0, it follows Rk>r. 

Part II. 

Let r(l) 1) denote the least upper bound of those values of r for 
which, for any f ( z ) 6 S, the star-kernel K(r) contains D(lr). According to the theo-
rems on' the radii of convexity and starlikeness, cited in the'introduction, we have 

r( 1) = 2 —J/3 and r(0) = t a n h - ^ - . Evidently r(l) is a continuous decreasing 

function of I. In what follows we shall prove the following estimate for r(l): 

1 0 ) W . BLASCHKE, Kreis und Kugel (Leipzig, 1 9 1 6 ) , p. 115 . 
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n — log3 

221 

T h e o r e m 2. We have for 0 <l< 

( 3 5 ) 

(36) 

7t e< 
r { l ) > t a n h j ^ - — 

2e"12 

en!2 

P r o o f . It is easy to see that 

arg-
z f ' ( z ) < 71 

\№-№ 
for z =/•£»>, 0<L(p < 2n, is the necessary and sufficient condition for C(r) 

a — z 
being star-like with respect to the point w = f ( a ) . Let us put l'—.-^ _ a ^ > 

it follows a = • 

W e need the following theorem, valid for any f ( z ) £ S, which has been 
proved first by G R U N S K Y : 1 1 ) 

(37) arg № < log 1 + 1*1 
l - \ z \ 

Let us apply (37) to the function h(Z) defined by (16), we obtain 

(38) 

and thus 

arg 
f ( a ) - f ( z ) 

(39) arg-
zf'iz) 

rm 

arg| f ' № 

S l o g I + I A 

i - i e i 

The circle \z\ = r is mapped by £ 

S l o g i + m 
i - i a 

arg -

z—a 

1 —âz 
onto the circle with centre 

—a 
1 

1— r2\a\ 
and radius rQ-\a?) 

1 — r 2 | a | 3 . As |C,| = |£ | it follows that for \z\ = r 

9 + r 
and for any a with \a\ = Q we have • W e h a v e f u r t h e r f o r 

| z | = r and [a | = Q 

arg 
1 - -

arê \—az = arctg r + arctg9r = arCtg 
^ r + l ) 

l - i > 2 

Thus it follows that for \z\ = r and | a | < A r (A > 0) 

(40) - z f ' i z ) 
a r g № - № 

â l o g - P Y + l o g ^ + a r c t g 1 

1 —lr 1 — AV 

1 - f x 
Using the elementary inequalities log j — 

2x 
\—x T and arctg x ^ x we obtain 

» ) S e e H. GRUNSKY, 1. c. 2). 
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<41) 

<42) 

zf'(z) 
arg ,, . ^ ' o g T ^ + l o g 7 = 7 + * 7 = 7 

n 
Taking into .account that we0may suppose, r < t a n h - j - , we obtain 

zf'(z) a r g T 

thus if r < t a n h 
31 

m - m 
71 

l e 2 

1 A-r -
M g ^ - ^ + l e 2 

1 —r 

4 , i. e. if log < 7T. 

any a w i t h ; | a | ^ r 

(43) arg - 7 -

zf'(z) 

1 + / " 
1— r = 2 

= T 

•¿e 2 , we have for 

m - m 
which proves Theorem 2. 

We may deduce from (41) also the slightly more precise result 
x(X)-\ <44) 
x ( A ) + l 

where x(A) is the only positive root of the equation 

<45) " \ogx + k x = ^ . 

These estimations are not the best possible, nevertheless they give rather good 
approximation for small values of I. 

(Received August 6, 1949, revised November 10, 1949.) 


