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On the geometfy of conformal mappipg.

‘By ALFRED RENYI in Budapest.

Introduction.

Let us denote by S the class of\ analytic functions
4)) f@)=z+az+.. . faz ...
which are regular and schlicht in the circle [2| <1. Let us denote by D(r)
the domain of the -w-plane onto which the circle |z|<r (r<1) is mapped
by the function w=f(z), and by C(r) the boundary of D(r). Let A(r) denote
the area of D(r) and. L(r) the ‘length of the curve C(r). We put-z=re'¢
and denote by s=s(r, ¢) the length along C(r) from the point w—-f(r) to
the point f(re‘®) in the positive direction. We have evidently ‘

@ . el

~ Let us put arg f'{ )—z and :/;——z-{—rp—i— 5 clearly v denotes the angle'

between the tangent to C(r) in the point f(re‘’?) and the real axis of the
w-plane. Let us denote by R— R(r, ¢) the radlus of curvature of C(r) in
the point f(re“f’) and let-us put y=y(r, )= RO ; it follows
2 (z)
ap 1R J

- : f(2).
3 —
) T=Tds rif’ ()

Here and in what follows we denote by R(() the real part and by /(%) the
imaginary part of the complex number {. We denote by S(f)—S(f(z)) the
invariant of SCHWARZ')

@ s 3(rof

f (2) f @)

1) The invariant of ScEwaRrz is the differential form of least order whlch remains
invariant with respect to every linear transformation effected on f@); cf H A SLHWARZ,
Gesammelte Muth. Abhandlungen. 1l (Berlm 1890), pp. 351—-355 ‘ :
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It is known, that for any f(z), belonging to S, C(r) is convex for
O<r<r,=2—1)3=026..., and star-like with respect to the point w=0
for r <r,=tanh %=0._65 ...%). In Part 1 we shall investigate in detail -the
form of C(r) for r<r,; it is evident that when r decreases, the form of
C(r) approaches more and more the form of a circle, our aim is to express
this fact in a precise manner. For this purpose we have to introduce some
quantity measuring the degree of dissemblance between C(r) and a circle;
for this quantity we choose the total variation of y along Cr), i.e. we put

27 i
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The following theorem will be proved:

4y
de

Theorem 1. For any function belonging to S we have

122r(1 1

© s <t

‘ As a consequence of Theorem 1 (Coroilary II) we shall prove that C(r)
is contained between two circles with radii r— O(r®) and r+ O(r®). This is
an improvement compared with the distortion theorem?), from which it follows
only that C(r) is contained between two circles with radii r==O(r?). (Here
and in what follows we denote by O(r%), O(r®) etc. quantities which are
bounded uniformly (i. e. independently of r as well as of f(2)) when divided
by r%, r3, etc.) To prove the mentioned result we need the followmg

Lemma 1. For any f(2). belongmg to S we have

@8 L(r)=27r+O(r).
élearly Lemma 1 can be expressed also by stating that
: daL ) .
(9) (_Err)rzﬁz 0.

2) The radius of convexity has been determined by R. Nevanvinxa, Uber die schlichte
Abbildungen des Einheitskreises, Oversigt av Finska Vet. Soc. Forhandlingen, 62 (1920),
pp. 1—14; the exact radius of starlikeness has been found, after long series of trials, by
H' GRUNSKY Zwei Bemerkungen -zur konformen Abbildung, jahresbencht der Deutschen
Math. Vereinigung, 5 (1933), pp. 140—143.

3) The use.of this quantity has been kindly suggested to me by Dr. Istvan FAry.
It must be added, that the quantity defined by (5) gives a measure of the dissemblance
of a curve from the circle only if the knowledge of the size of the curve (f. e. its length
is presupposed; an absolute measure of dissemblance is furnished by the product of (5
wnth the length of the curve.

4) The distortion theorem asserts that C(r) is contained between the two concentnc

ro

EE

cnrcles with centre at the origin having the radii
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It may be mentioned that (8) is by no means-evident, as from the distortion
theorem®) applied to the formula

27
(10). L(r>=rJ f @dg

it follows at the first sight only L(r)=2nr4-O(r?). - ‘

In Part II we investigate the form of C(r) for r, <r<r, We define
K(r), the set of those (interiof) points of. D(r), with respect-to which C(r)
is star-like; we shall call K(r) the star-kernel of ‘D(r)®). According to the
theorems mentioned above, and takinginto account that a convex domain is
star-like with respect to every of its interior points, it follows that K(r) = D(r)
for r<r, and K(r) not void for r<r,. The question arises’ what can be said
regarding the size of K(r) for r,<r<r, Theorem 2 is a first attempt to
answer this question. '

In the present paper we do not.consider the range of values r,<r< I,
we refer only to the interesting results obtained by GOLUSIN®). -

. PartL.
We shall need the following:

Lemma 2. For any function f(z)= 2+ a2 +a,2*+. .. belonging to S
we have |ai—a;|<1. This mequa ity is best possible as equalzty ‘stands for

f(2)=—‘__‘_z'z—)g

Using Lemma 2 we obtam the following estimation of the invariant of
SCHWARZ

. This lemma has beenproved by GoLusINT) and SCHIFFER )

Lemma 3. For any f(z) belonging fo S we have

e _s(ray. s
9 'f(f,)'lf'(z)‘.‘“z“(f:@) =(—ry

This is a “best possible” result as for f(z)=

2
(1—2)

- and z=r we have
- equality in (15). 4

* %) it is easy to see that K(r) is a convex domain. This has been mentioned first
by Thekla Lukacs; cf. G. PoLya and G SZEGO, Au]gaben und Lehrsdtze aus der Ana-
lysis. 1. (Berlin, 1925),p 277, -

, %) For the mentioned results.and for further literature we refer to the excellent
survey article of G. M. Gorusiy, Interior problems “of the theory of schlicht -functions,
Uspekhi Mat. Nauk, 6 (19:9), pp. 26—89. '

7) G. M. Gowrusix, Einige Koefﬁzrentenabschatzunoen fiir schhchte Funktronen Mat
Sbornik, 3 (19:8), pp. 321-330.

8) M. SCHIFFER, Sur un probleme d extremum de 1a representatlon conforme, Bulletm C

de la Société Math. de France, 66 (1938), pp: 48-55. .
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To prove Lemma 3 let us introduce the function

gl -7

1 +2z¢

(1o "O="rEa—"r
A simple calculation gives
a7 =S =H O — S (" O

As h(%) belongs evidently to S, putting (§) = {4 ¢,5*+-¢;834-... and applying
Lemma 2, we have (1—r%)2%|S(f)|="6]|c;—c}|<6 which proves Lemma 3.
Lemma 3 has been proved recently in another way (without using Lemma 1)
by NEHARI®).

Let us calculate now the variation of y along C(r). We have by some
calculations

' dy _ 1[22S())
18 —
(%) dg ~ 7 )]
Using the distortion theorem, accordmg to which
1— 14
19 =
( ) ) (l +r)., —-lf( )] ( r)S

and using Lemma 3, Theorem 1 follows immediately.

Before considering the consequences of Theorem l’we prove Lemma 1.
We start by the decomposition
. 27

2n 2z
@)  LO=r|f@erdp=r [ f@dp+r|ir—1)dp+
0 0

0

2.71.' ’
+r| (F @—D(er—1)dg.
0

Evidently
@n - ff (z)d(p—Zm‘-]— ﬂzz_)_d_z_ .2nr,
further
2_75 Q.n 2x )
(22) _rJ(e"""—l)dq)=—ir]xdrp+rj(e-iz——1+ix)d(p.
0 0 0 ’

As log f'(2) is regular in |2| <1, x=I(log f’(2)) is a harmonic function, and
27
thus [ xde=x(0)=0; using the elementary inequality |e-*+ ix—1]|=0(x%
. 0
and the rotation theorem:

9) Z. Neuari, The Schwarzian derivative and schiicht functions, Bulletin of the
American Math. Society, 55 (1949), pp.- 545—551_.
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1
(23) |2 <2log 10
we obtain ' ) .
(24) rf er—1)dp—0().

0 . ’ .
+ As regards the third term of (20), we have by (19) and (23)

- 2z 27
@ @ Eer—ndg|=r[lr @—1ll1dy—=00).
' 0 0 .

Thus,"using (20), (21), (24) and (25), it follows
(26) L(ry=2xmr-+ O(?)
which is Lemma 1.

As an immediate consequence of Lemma 1 we mention that the isoperi-
metric deficiency of C(r) is O(r!). As a matter of fact, we have by a well
known formula

A(ry=nr+ 2 ntla,|*r
n=2 .
from which, combined with (26) it follows

27 L*(—4nA(r) = O(r).

Now let us consider some consequences of Theorem 1. We start by

the formula
2a

(28) - L(r)=[Ray.

0
Let us denote by R, the mean value of R on C(r), i.e. we put

(29) Ry— zﬂJRda,b 20
For any value of R we have evndently

‘(30) —R— ‘sé(r)

and thus, for suffxcxently small r,

G  rRen SRR

According to (26) we have Ry,=r-4-O(r®) and by Theorem: 1 it follows
d(r)=0(r), thus we have from (31): S
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Corollary I. If R(r,q) denotes the radius of curvature of C(r) in the
point f(re'?) we have
(32) R(r,p)=r+ O(rs)
uniformly in ¢, r and f(z)<€S.

Let us denote by R,, and r, the maximal resp. minimal value of R on
C(r). According to a theorem of BLASCHKE!?), if the convex curves C, and
C, have a common tangent in one point and the radius of curvature of C,
exceeds the radius of curvature of C, in points with parallel directions, it
follows that C, is contained in C,. Thus C(r) contains a circle with radius
R, and is contained in a circle with radius R, ; if ¢, resp. ¢, denote the
radii of the least circumscribable resp. the greatest inscribable circle of C(r)
it follows R, <o, <oy <Ry, and thus, using (32) we obtain

Corollary 1L
(33) S ’ . erl—gm == O(r;;)' ' .

As remarked in the introduction, the distortion theorem gives only
0y —0,,= O(r?). (Of course the least circumscribable and the greatest inscri-

bable circle are generally not concentric.)
Finally we mention that R, dlways exceeds r. Thrs follows from the

fact, that R(r p) is a subharmonic functron As a matter of fact, it suffrces

to show that logﬂ is subharmomc As regards the latter functlon we have

R _ b oeF f”(Z))
(34) logT—R(logf (z))—logR(l + @)
The first term on the right of (34) is a harmonic function, and the second
— being the negatrve logarithm of a harmonic funclron — is subharmonic,

R - R .
and thus log — > and therefore also - itself are subharmomc as the
maximal value of a subharmonic function can not be taken in an interior

point and as $=1 for r=0, it follows R, >r.

Part 11.

Let r(2) (0<2<1) denote the least upper bound of those values of r for
which, forany f(2) € S, the star-kernel K(r) contains D(4r). According to the theo-
rems on' the radii of convexity and starlikeness, cited in the introduction, we have

r(1)=2—)3 and r(O)——tanh— Evidently r(4)is a continuous decreasing
function of . In what follows we shall prove the following estrmate for r(l)

10) W. BrascHKE, Kreis und Kugel (Lerpzrg, 1916), p. 115
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Theorem 2 We have for 0<i<Z e lzzgS
N erlz
Proof. It is easy to see that '
(2) k2
36 ar f
(39) S Fa—r@ | =
_for z=rei?, 0 < ¢ < 2m, is the necessary and sufficient condition for C(r)
being star-like with respect to the point w=f(a). Let us put '———_—2—“722— ;
. . C +4-z
it follows a= 1130

We need the following theorem, valid for any f(z)eS which has been
proved first by GRUNSKY :'%)

G7) arg 1) (z) = log }i:?l
Let us apply (37) to the functibn #({) defined by (16), we obtain
f@—f@ 118
t9) e (=T
and thus - . : .
2f'(2) ([ @—1@) 3 PPREL] ¢
O |28 7o) — @ |~ | e (3 LS —ig a'g( o

The circle |z|=r is mapped by glei% onto the circle with centre

2
—a_—_ll—r2r|a|2 and radius l( Jlallg) As |i|=|t} it follows that for |2|="r

and for any a with |a|==¢ we have [{[< ]Q_:_err . We have further for
|2[=r and [a|=9 '
a 1
7 °(’+ +)
arg ———— = g1 < arctg ~+arctggr—arctg T
Thus it follows that for |zl—r and |a|<ir (2>0)
) zf (2) 1+4r 14-4r A(rr41)
(40) arg —————f(z) —fa) =log 1—r+l° —y har g 757 -
-+x 2x

Using the elementary inequalities log T— ; = and arctg x<x we obtain

11) See H. GRUNSKY,.A L. c. 2).
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2f'(2) 1+r ' l(r+l) 14r l+r
(“1) AT —f@ Jf@)—fla) |~ = log —r T1=2r = log 1— + l—r"
Taking mto .account. that we, may suppose. r<tanh , we obtain
2f'(2) 14r Z
42 arg—————i<lo le?
“2 “ T —r@ | =T
2 - z
thus if r,_<=tanh(—4—— ); ), i.e. xf log:i’ <327;--7.e2, we have for
any a with:la]<ar
2f'(2) n
(43 arg ——— | < —
“3) 8 o —r@ | =2

which proves Theorem 2, :
We may deduce from (41) also the shghtly more precxse result

. x(4)—
{44) o r().)__ x(l)—l—l
where x(2) is the only positive root of the eguation
(45) B logx+7x=-’l

These estimations are not the best possible, nevertheless they give rather good .
approximation for small values of 4.

{Received August 6, 1949, revised November 10, 1949.)




