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The minimum of a binary cubic form1). 
By. L. J. MORDELL in Cambridge (England). 

1. Let-' . f (x, >•) • •••= ax3 -j- bx'-y-f- cxy- -i- dy3 

be .a. binary cubic form with real coefficients and of discriminant 

D — — 27a 2 d 2 - f \8abcd+b2c2—4ac3—4dbs.. • ' ; 

so. that f(x, y) has one or three real 'linear factors according as D <. 0 
or D>0. The problem is to find how small can be made for . 
integer values of x, y not both zero; i. e. the lower bound of- | / (x , y)| 
for these x, y. • • . • 

With such questions, it is not difficult nowadays to prove the 
existence of results that integers x, y not both, zero exist for which 

' ' [f&y^km11*, : 
where A" is a numerical constant, and these have been known for many 
years. Thus if D > 0, ARNDT in 1858 and HERMITE in 1859, .showed 

( 4-X" 
that the result holds with A: = L - ^ L - 2 ) IF D<0, HERMITE showed in 

J859 that we can take The best possible value oï k was 

neither known nor had any suggestions about its value been made 
until recently by myself when I proved the following 

Theorem.3) If D>0, integers x, y not both zero exist such that 
. . . ' ' - • 4 . " 

Lecture held in the Boiyai-ihsiiiute of the University . Szeged, December 
-16, 1948. 

2) CH. HERMITE, Oeuvres, II: (Paris, 1908», pp. 9 3 - 9 9 . 
3) L. J. MORDELX, On numbers represented by binary cubic forms, Proceedings' 

London Math. Society, (2) 48 (1943), pp. 198 - 228.. 
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This is a best possible result, and the equality sign is necessary when 
and only when 

Ï-
~ f { x , y)~x* + x*y-2xy*-y*; 

where the right hand side has discriminant 49. 
If D .< 0, integers x, y not both zero exist such that 

4 
W\ \f(X,y)\£ 23 

This is a best possible result, and the equality sign is necessary when 
and only when 

4 < 
23 •' 
0 j f ( x ' y)~x3-xy2—y\ 

where the right hand side-has discriminant —^23. 

The significance of the numbers 49, — 2 3 is clear. Thus 49 is 
the least positive discriminant of irreducible binary cubic forms with 

•integer coefficients, and so the constant 49 cannot be 1 improved for 
such forms, i. e. made larger, as then \f(x, y)\ < 1 and so would be 
zero. This occurs only when .x = ' y = 0. Similarly for —23. „ 

2. Some light may be thrown on the subject if we consider the 
•quadratic case when • '• 

g(x,y) = ax2 + bxy + cy2 • • 
of discriminant d — b%—4ac. It is well known from the work of LAGRANGE 

and GAUSS that the corresponding best possible results are when 

d< Q, ¿r(x,y)<L j / ® ; 

•equality arising only when 
r j -

^g(x,.y)r^x2 + xy+y2; 

•and from the work of MARKOFF4), KORKINE and ZOLOTAREFF6) that when 

d> 0, 

•equality arising only when 

d_ 
5 

-¿Six, y)~x2 + xy—y9-

4) A. MARKOFF, Sur les formes quadratiques binaires indéfinies, Math. Anna-
-len, 15 (1879), pp, 2 8 1 - 406; 17 (1880),. pp. 379^399 . 

5) A. KORKINE—G. ZOLOTAREEF, Sur les formes quadratiques,-Math. Annalen, 
>6 (1873), pp. 366 - 389. • . • ' 
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g(x, y) < 

If we consider the first of these, a result such as g(x, y)^ , 

. where" / is a numerical constant, has a simple, geometric interpretation. 
It means that a point P whose coordinates are integers x, y; i. e. 
a lattice point, lies in, ,i. e. inside or on the boundary of the ellipse 

L Ĵ-. A value of / is given by a fundamental theorem, of 

M I N K O W S K I in thegeometry of numbers, namely the theorem6): 
A two dimensional closed, convex- region, symmetrical about the 

origin O and of area ¿>.4 contains within it a lattice, point Qther than O. 
More generally, this theorem is still true if we define a lattice 

point to be one whose coordinafesax, y are of the form. 
* = aX+§Y, y =yX+S Y; 

where X, Y are integers and a, y, d are any real constants with de-. 
terminant. • 

' ¿I'—ad—jiy > 0 , 

if in the, theorem we replace 4 by Ad. We then call the aggregate of 
such points (x, y) a lattice, of determinant J, but here we need only 
consider lattices of determinant unity. 

An application o.f this result to .the ellipse. shows that a lattice 
point not "O lies in it .if 

2 71 
> r < 3 . 

2 

. ' ' • • Y\d[ 
• This is' worse, than the best possible value / = 3 M I N K O W S K I 7 ) 

has shown, however; that the best possible value can be deduced by 
• finding the- minimum value of the area of a parallelogram with one. 

vertex at O and the other three on the boundary of the ellipse. There 
is of course no number theory involved in solving the minimum pro-
blem. These problems are simple in theory but generally very, difficult 

• to solve. 

When i / > 0 , the region |£"(x,.y)| <: f-JL jg an infinite region boun-
ded by four hyperbolic arcs having for asymptotes the lines given by 
g(x, y)=0. There is no corresponding theorem for infinite regions,'but 
an estimate 1 = 4 may be found by inscribing in the reg'on a paralle-
logram. whose centre is at the origin with vertices on the asymptotes 

H. MINKOWSKI, Diophantische Approximationen ( L e i p z i g , 1907) , p . 29 . 
7) H, MINKOWSKI, . Ibidem, p p . 5 1 — 5 5 . 
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and choosing / so that its area is 4. Then the parallelogram will contain 
- A lattice point not O by MINKOWSKI'S theorem, and so also will the 

infinite region. There is also now. no method of finding the best possible 
result by inscribing minimum parallelograms as ' in the case of convex 
regions. In fact \g(x, y)\<L-YWl was the only simple'infinite region for 
which a fcfest "possible result was known for /. 

3. The problem of the minimum of a binary cubic can be reduced 
to_a question in the geometry of'.numbers. It is easily shown that any 
binary cubic f ( x , y) of discriminant D can be transformed by a linear 

• substitution with real coefficients and determinant unity ifito any other 
' binary cubic g(x, y) of discriminant D. On dividing by an appropriate 
. factor, we may assume, that £> = — 23 when D ' < 0 , or D = 49 when 

D > 0. We-write • 
g{x,y) = x3—xy2—y3 . of discriminant —23, 

and _ • ' - - . ' . • " 
h(x, y) = x* + x2y — 2xy2— y3' •-of discriminant 49. 

Hence for appropriate real y, 5 with ad — §y=\, we can write 
. f ( X , Y ) = g(aX+§Y,yX+dY) " if D < 0 , ' : 

f ( X , Y ) = h(aX+pY,yX+dY) • if £> > 0. 
Now the points .• ; 

' x^aX.+ pY, y^.yX+dY • , • 

describe a lattice-A, say, of determinant unity when X, Y run through 
all integer values. Our resylf takes the from: Every lattice A of deter-
minant unity has at. least one of its points other than the origin O in 
each of the regions 

• \g(x,y)\<:\, 
The constant, on the. right hand side is the best possible as is 

obvious from. the lattice x = X, y'= K . 
Let us consider the region y ) \ ^ 1, say R. This "is-an"infinite 

region bounded by the two curves -g(x, y) — + 1 which have a common 
asymptote.x — $y == 0- where & is the real root of t3 — t—1=0. The 
asymptote'is a-line of symmetry of the region. It is soon seen that the 
parallelogram, really the square, 1, |}>| < 1 is of special importance. 
The square has all its vertices and all the middle • points of its sides 
on the boundary B of R. Its sides'jc = + 1 are tangents to the -boundary 
at * = + ] , and further the square lies entirely in R except for'a small 
region /?i abutting the line y = .1. with 0 < x < 1, ~fand of course also 
for the image', of Rl in the origin 0 . This square, having its centre at O 

,and of area 4, contains a point. P other than O of every l a t t i c e d of 
determinant unity. If P is not an inner point of R ; and this we may 
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assume since otherwise the theorem is proved, it must be one of the 
vertices' or middle points of the sides of the square, • or lie in 7?,.' In 
the .first two cases, it is' easily shown that A has a point not O as an 
inner point of R except when A- is the critical lattice x = £, y — y. 
which obviously has points on the boundary of R. In the third case, 
a point P of A is contained in Rx and we include its boundary-in Rr 

since we wish to find points of A which are inner points of R. 
We can now apply the same argument to other parallelograms of 

area 4, e. g. one whose sides are x = + 1 and the tangents at (0*, + 1), 
and find that A has a point say Px in'a small curvilinear triangle-near 
the point (—1, 1). The question now suggests, itself whether it * is pos-
sible to-find points, which are linear combinations o f ' / V / ^ such as 
A + A etc., which are inner points of R. For this, however a new idea 
is required suggested at once by the symmetry of the region R about 
the asymptote. The binary .cubic is transformed into itself, and so also 
the region R, by a linear substitution with real coefficients and of de-
terminant unity.- Hence the parallelogram | x | < l i , | y | < ' l is changed 
into, another one with the same- characteristic "properties used in the 
preceding argument. On considering the vertices, and middle points of 
its sides, ,we are led to the further critical lattice 

(3 - l) x V - £ - (» 3) rh (3 - 1 ) y - - n, 

and it. is easily verified tha t ' 

and;-so | / (x , > 1 for integers r\ not both zero. . . 
The new two small regions, corresponding, to the original two 

.now lead to points P2, Ps of A not in R but near to R. These points 
may not be both different from the previous one, and in fact one of 
them say P3 can be proved to be identical .with the point Pv We have 
now far more possibilities in considering linear combinations of these 
points, and in doing so, we require a more detailed numerical know-
ledge of the region e .g . the minimum ordinate of the points'of the 
boundary lying in the square | x | < l ; | j>|<1, but this presents no-, 
•difficulty. After many efforts, I succeeded in finding smaller and smaller 
regions external- and near to R and containing points of A, and finally 
was able to show that a linear combination of these points led to a 
point not 0 of A, any lattice, not one of the two critical .lattices, which 
was .an inner point of R. 

I considered next the, corresponding problem for-the region S, 
|A(x,y)| = |x8+"x2y— 2xj>2— 

This, however, introduced fresh difficulties. For first, the boundary had 
three asymptotes complicating the-shape of the region. But a much more 
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important difficulty is the situation of the unit square M ^ ' l 
with respect to 5. The square is contained in S except for two small 
regions one abutting x = l w i t h y < 0 , and-the other y = — 1 with 
0 < x < 1, and of .course their images in 0. The square contains a point 
P. not O of every lattice A of determinant unity and so if P is not an 
inner point of S, it may lie in either of two small regions. I was able 
to show, however, that we could exclude the region .abutting x= 1.. 
Taking into account now that S was unchanged by three essentially 
distinct linear substitutions, I was able to proceed as before and finally 
succeeded in proving the theorem. 

Subsequently much simpler geometrical proofs were given by 
DAVENPORT8) who clothed his proof in arithmetical form, and by myself9). 
1 have also given a proof when D < 0 by considering the more sym-
metrical region |x s +)> s | ^ :1 , and have thus reduced the numerical details 
to a minimum10). • • 

4 . After these results were found, D A V E N P O R T discovered arithme-
tical proofs of' surprising simplicity based on ideas related to~ those 
used by H E R M I T E nearly ninety years ago. There is no loss of gener-
ality on dividing out by a factor in writing --

- f(x,y) = ax3-\-bx2y-s
rcxy2 + dy3, • 

and supposing that if D> 0, £> = 49, and if D<0, D = — 23. . 
Take first £>>0. Write the. Hessian or quadratic covariant of 

f(x,y) as 
• Ax2 + Bxy + Cy2 = (bx + cy)2 — (3ax + by)(cx + 3dy). 

This is a positive definite form of negative discriminant 
. B-—4AC — 3D; 

and so by the usual method of reduction, we. can transform the Hessian 
bv a unimoduiar substitution with integer coefficients into another with 
C2tA >B^>0: On applying the same substitution to the cubic, we 
may suppose that its ':Hessian is so reduced. Then he proved the 

Theorem11). Either | / (1 , 0 ) | ^ .1;'or | / (0, 1 ) | ^ 1 , or | / (1, 1 ) ^ 1 , 
o r | / 0 > — 01 S I ; on inequality sign holds except when 

+f(x,y) = x3 + x2y—2xy1—ys or x3 + 2x2y — xy2—ys. 
8) H. DAVENPORT, The minimum of a binary cubic form, Journal London 

Math. Society, 18 (1943), pp. 1 6 8 - 1 7 6 . . 
9J L. J. MORDELL, The minimum of a binary cubic form, Ibidem, 18 <1943), 

pp. 2 0 1 - 2 1 0 , 2 1 0 - 2 1 7 . 
LU) L. J. MORDELL, Lattice points' in the region + Ibidem, 19 

(1944), pp 9 2 - 9 9 . 
H. DAVENPORT, The reduction of a binary cubic form. 1., Ibidem, 20 (1945), 

pp. 14 - 2 2 . . 
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A similar result holds when D < 0, and so we can take D = — 23. 
The cubic f(x,y) has now one real linear factor and can be written as. 

f(x,_y)^(x + $yHPx* + Qxy + Rj/*), ' 
where P, Q, R are real. We may suppose that the quadratic form 
Px2 + Qxy + Ry* is positive definite on considering —f(x,y) if need 
be instead of f(x, y), and then that it is reduced, i. e. 

' . . " \Q\<P<R; 

and finally that Q > 0 by writing —y for j ; if need be. By a unimodular 
integral substitution on the cubic, we may suppose that f(x, y) is such 
that these conditions are satisfied for the quadratic. Then D A V E N P O R T 

proved, the - . • ~ 
\ • • 

Theorem12). Either | / ( 1 , 0 ) | ^ 1 , or | /(0, 1 ) | ^ 1 , o r | / (1, —1)|<1, 
or | / (1, 2 ) | ^ 1 . An'inequality sign holds except when . 

f(x;y) = x* + x2y-\-2xf-+y\ • 
which on. putting x = X, y = —X— Y becomes X3 — XY2 — Y3. 

5; A flood of. results followed from my method, for the application 
of. the geometry of^numbers to the minimum of a binary cubic meant 

.that corresponding questions for nonconvex regions were no. longer 
intractable. An obvious region to investigate was 

; • \x\"+:y\"<l. ' . . * 
which for /? > 1 is convex and had been studied by MINKOWSKI18). When 
p < 1, it is not convex and had not been previously considered by 
mathematicians. I found that my methods applied not only to this region 
but to the more general one 

/ ( 1 4 \y\)<-.\, 
where for x ^ Q . j /^O, f(x,y) is defined, is symmetrical in x,y 
and homogeneous, of dimension 1 say. We suppose that the region 
f(x,y)>f( 1, 1), x>.0, v > 0 is convex and terminates in the axes or 
has them as asymptotes. Then just as for the binary cubic, parallelo-. 
grams can be constructed whose vertices" and middle points of sides 
all lie on the boundary of the region. Their existence follows since 
it can be proved that unique numbers, a, b, c with a> b> c are defined 
by the equations 

f(a + b, a-b) = f(a,-b) = cf( 1,1), 
• .' . a2-\-b2 = 2. - . 

12) H. DAVENPORT, The reduction of a binary cubic form. II, Journal London 
. Math. Society, 20 (1945), pp.'139—157. - " -

IS) H. MINKOWSKI, 1. c. 6) , pp . 2 1 — 5 8 . 
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• By considering various regions in which lattice points must iie 
and utilising the ideas; developed for the binary cubic, I was then able1-4) 
to reduce the question to a minimym problem of the type considered 
by MINKOWSKI. Further there, existed many regions for which the mini-
mum problem could be solved. Thus for lattices of determinant 1., best 
possible results were found of the form |x|p +.\y\p ^2cp., 0 33 . . . <p < 1 ; 

4 ] x 4 — y * ' a l s o for a star shaped octagon, etc. 

Similar methods apply to the region 

. . n | > 4 . • -
1 conclude by saying that the-success of these methods led 

MAHLER to his''general and important theory of lattice points , in star, 
shaped regions, a fruitful'theory which lias recently added so much to. 
our knowledge of the geometry of numbers and has also been the 
starting point of many new results. 

(Received December. 16, 1948.) 

N o t e . In 1 9 4 5 , B . DELAUNAY published a paper entitled "Local-
methods in the geometry of numbers", Bulletin, AcadrSci. URSS, .Série 
.Math., 9 ( 1 9 4 5 ) , pp. 2 4 1 — 2 5 6 (in Russian). He finds a new and simple 
solution for the minimum of a binary cubic of positive .discriminant by an 
extension of MINKOWSKI'S method of continually diminishing the deter-
minant of a lattice which has no point other than the origin in a region. 

. ' . . ; . (Added June 20, 1949.) 

"). L. J. MORDELL, On the geometry of numbers in. some nonconvex regions. 
Proceedings London Math. Society, (2) 48 (1945), pp. 339 - 3 9 0 . 


