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The mlmmum of a bmary cubrc form‘)

By L J MORDELL in Cambrldge (England)

1. Let’ » ‘. f’(x-,' )_)).——éax3+bx2y+cxy2—vl—dy3- L |
.be-a. binary cbic form’ with' real coefficlents and of discriminant -
) D= ,—27::1 d®+ lSahcd—!—ch2 4ac3——4atb3
'so that f(x, ) -has one or three real linear factors accordmg as D<O
or D>0. The problem is to-find how small |f(x, y)|. can be made for.

_integer values' of X, y not both zero; i. e. the lower bound of lf(x M)

for these x, y.. .
With- such- questlons it is not dlfflcult nowadays to prove the -

_exrstence of° results that integers x,y- not both. zero exrst for whrch

£ <KDY,
'where kis a numerlcal constant and these have been known for many '
years. Thus if D>0, ARNDT in 1858 and HERMITE in 1859 showed

'

1y - .
that the result holds- w1th k=(2i,’) 2) If D<0 HERMITE showed m' '
" 1859 that we can take k="%. The best possxble' value of k was__’

nerther known nor had anv sugoestlons "about 1ts value been made
until recently by myself when 1 proved the followmg

T heorem.3) If D > 0 zntegers x, y not bath zero exzst sudz that .
4

lf(x y)l_ =
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ThlS is a best posszble result and the equal:ty sign is necessary when -
and only when .

—f(x y)~x3+xy -2xy? y*

where the rzght hand side has dtscnmmant 49.
' If D <0 mtegers x, y not both zero exist sudz that

1 y)l_Vm

Thls is a best possible result, “and the equaltty sign is necessaly when
and only when | .

[ 23 N 87 g s
| D) ® Ny =y
where the right hand side- has dzscrtmmant ——23

The significance of the numbers 49, —23 is clear Thus 49 is. .
the least positive discriminant of irreducible binary cubic forms with
- integer coefficients, and so the constant 49 cannot be'improved for
such forms, i. e. made larger, as then [f(x,y)]<1 and so would be
zero. This occurs only when x—y 0. Similarly for —23.

°

- 2. Some light may be thrown on the sub;ect if we. con51der the
-quadratlc ‘case when :
g )= ax2+bxy+cy“" ~
of discriminant d =b2—4ac. lti is well known from the work of LAGRANGE:.
and Gauss that the correspondmg "best possible results are when
d< 0, g(x y) |§|
N -equahty ansmg only when :

' ‘/ g y)~x2+xy+y ;

" and from the work of MaRKOFF*), KORKINE and ZOLOTAREFFF’) that when .

d>0, g(x y) V‘

equahty arising only when E I

V—g(x y)~x2+xy —

4) A. MAREOFF, Sur les formes quadratiques bmalres indéfinies, Math Anna-
den, 15 (1879), pp, 281 - 406; 17 (1880),. pp. 379—399.
%) A, KorINE—Q. ZGLOTAREFF, Sur’ les formes quadrathues. Math Annalen,
=6 (1873), pp. 366 389
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f we consrder the frrst of these a result such as g(x y)<Vl

N where [ is d numerrcal constant, has a srmple geometric interpretation.”
‘It means .that a point P whose ‘coordinates are integers x,y; i. e..
a lattrce point, lres in, i. e inside or on -the - boundary ot the ellipse

- gx, M= |/ I%I A value- of l is .given by a fundameptal theorem of

MlNKOWSKl in the geometry of numbers namely the theoremﬁ)
A two dzmensronal closed convex- region, Symmetrical about the
origin O and of area >.4 containg within it a lattice .point: other than O.
More generally, -this theorém is- strll true if we defire a lattice -
point to ‘be one whose.coordmatesox y are of the form

x=aX-+gY, y__yX-l—éY'

where X, Y’ are mtegers and a, 8,7, 6 are’ any ‘real constants wrth de-'_

: terminant. _
'_ad ﬂy>0

if in the, theorem we replace 4 by 44. We then call the aggregate of»’ :

"such points (x, y) a lattice of determinant 4, but here we need only
consider lattices of determinant unity.- S :
' An applrcatron of this result to the elllpse shows that a lattrce
" point. not O lies in it_if ’ ‘

ldl (%) <s”
V__ 4 _ < 2)<3.-~

- This"is: worse. than the best pos<1ble value =3 MlNKOWSKl7)

has shown, however, that the best possible value can be deduced by " -

N fmdmg the. minimum value of the area of a parallelogram with one -
vertex at O and the other three on.the. boundary of the ellipse. There .
is of course no number theory involved in solving the ‘minimum pro-
" blem.” These problems are srmple in theory but generally very. drffrcult
- to-solve. : .

When d>O the regron lg(x BHIES V—— isan mfmrte regron boun-

ded by four hyperbohc arcs havmg for asymptotes the lines” grven by
g(%, y)=0. There is no corresponding theorem for infinite regions, but
an estimate /=4 may be found by inscribing in the region a paralle-
logr am whose eentrc is at the origin wnh vertrces on the asymptutes_

' . 6) H. MrNxowsKI Dzophanttsche Approxrmatronen (Leipzig, 1907), p. 29.
7) H. MINKOWSKI,. Ibrdem, pp. 51—55. :
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-and chooéing [ so that its area is4. Then the parallelogram will contain
-a lattice point not O by MINKOWSKI's -theorem, and so also will the

infinite region. There is also now. o metliod of fmdmg the best possible -

resuft by inscribing minimum parallelograms as’in the case of convex

_ regions. In fact [g(x, y)|<Vd/l was the only simple’ mhmte region for
which a best poss:ble result was known for /.

‘3. The problem’ of the minimum of a bmary cublc can be reduced
to_a question in the geometry of’ numbers. It is easily shown that any
binary cubic f(x, y) of discriminant D can be transformed by a linear

-substitution with real coefficients and determinant unity ifto any other -
“binary cubic g(x, y) of discriminant D. On dividing by an approptiate -

. factor, we may assume_ that D=—23 when D<0 or D—49 when
D >0. We -write : .
g(x y)==x3—xy2—-y3 o of discriminant — 23,
and L -
' h(x, y)—x"—{—x y 2xy-—~y . of discriminant. 49.

__Hence for appropriate real o, 8,7, 0 with aé—ﬁy—l we can wnte
fX, V) =gtaX+BY,7X+dY) " if D<O, '
X, Y)—h(aX—}—ﬁY yX+6Y) : 1fD>'0
Now the pomts .
x—-aX—I—ﬂY y—yX—i—dY

- describe a lattice- 4, say, of determinant umty when X, Y run through
all integer: values Our resylt takes the from: Every lattice A of deter-
‘minant unity. has at. least one of its pomt> other ihan the - orlgm O in

, ‘ each of the regions

g (x, y)|<t |G =1

The' constant. 6n the right hand side is the best possxble as is

obvious from the lattice x=X, y=Y.

Let us consider the region |g(x, ML, say R. This is- an infinite |
region bounded by the two curves g(x, y) =1 which have a common -

asymptote. x — 3y =10- where .¢ is the real root of ##—f—1=0. The
- asymptote’is-a- line of symmetry of the .region. It is soon seen that the

parallelogram, really the square, |x|<1; !)’l%} is of special importance.

The square has all its verfices and all the middie - points of its sides

on the boundary B of R. Its sides x=+1 are tangents to the-boundary -

at x=r1, and further the square lies enhrelv in R except fora small
region R, abutting the line y=1 with 0<x<1,*and of course also
for the image’ of R, in the origin O. This square, having its centre' at O

.and of area 4, contains a point-P other than -O of every lattice™4 of

' determinant unity. If Pis not an-inner point of R, and this we may

~
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assume since otherwrse the theorem is- proved (it must be ‘one of ‘the’
vertices or middle pomts of the sides .of the square, or lie in R: In
the first two cases, it is easily shown that 4 has a point not O as an
inner point of R except wheén - is the critical lattice x=§, Y= .
.- which obviously has points on the boundary of R. In the third case, -
a point ‘P of 4 is contained in R, and we include its boundary - in R,
since we wish to find points of 4 whichare inner points of R.

~We can now apply the same argument to other paral]elograms of
aréa 4 e. g. one whosé srdes are x=-+1 and the tangents at (0, + 1),
-"and find that 4 has a pomt say P, in‘a small curvilinear trrangle near .
. the point (—1, 1). The questlon now suggests. itself whether it is pos-‘
~ sible to-find points. which are linear combinations of 'P,, P,, such as

P, +P, efc., which are’ inner points of R, For this, however a new idea .

is required suggested at-once by the symmetry of the region R about

the asymptote. The binary cubic is transformed into itself, and so also
- the region R, by a linear substitution with real coefficients and of de-
terminant unity. ‘Hence the parallelogram ]x]<1 I[y|=1 is changed
info another one with the same- characteristic ‘properties used in the .
preceding argurient. On considering the vertices, -and middle points’ of
its srdes .we are led to the-further critical lattice ' :

_ (39°—l)x——§—(3+3) n, (39°—1)y —_3&§+1_7;
and it-is- easrly verrfred that -

. 1f(x, y)!—f(E 17)
and-so lf(x y)[>l for integers & # not both zero.
.-~ The new two small - regions. correspondmg to the orrgmal two'
1ow lead to points P, P; of 4 not in R but near to R. These points

" may not be both " different from the previous ‘one, and in fact one of

" - them say P, can be proved to be identical'with the point P,. We have

now far more possibilities in consrdermg linear ‘comibinations of these
points, and in doing so, we require a more detailed - numerical know- )
ledge of the region e.g. the minimum ordinate of the poinis of the
boundary lying in the square [x[<1; [y[<1, but this presents no:
difficulty. After many efforts, I succeeded in fmdmg smaller and smaller
“regions_external and near to R and- containing points of 4, and finally

was able to show that a linear combinafron of these -points led to a
point not O of 4, any lattice. not one of the two cr1t1cal lattices, whrch

was .an inner poirit of. R. :
I considered riext the corresoondmg oroblem for the reglon S,
, _ [h(x, )| =[x ixty— 2xy* =<1 ,
- This, however, mtroduced fresh difficulties. For first, the boundary had
three asymptotes complicating the. shapeof the region. But a much more . -
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important difficulty is the situation of the unit square |x|<1, ly|<1
with respect to S. The square is-contained in S except for two small
regions one abutting x=1 with y <0, and the other y=—1 with
0<x< 1, and of,course their ihages in O. The square contains a point
P not O’ of every lattice 4 of determinant unity and so if P is.not an
inner pomt of S, it may lie in either of two small regions. 1 was able
to show, however, that we could exclude the region  abutting x==1..
Taking "into account now that S was unchanged by three essentially
distinct linear substitutions, I was able to proceed as before and finally
- succeeded in proving the theorem. .

Subsequently much simpler geometncal proofs were glven by
DAvENPORT®) who clothed his proof in arithmetical form, and by myself®).
I have also given a proof when D <0 by considering the more sym-
metrical region [x3--y3 |< 1 and have thus reduced the numerical details
~to a mmlmuml") -

4. After these results were found, DAVENPORT discovered arlthme-
tical proofs of surprlsmg simplicity based on ideas related to those
_ used by HERMITE nearly ninety years ago. There is no loss of gener-
-ality. on dividing out by a factor in writing "

‘ fx; y) = ax® 4 baty - cxytHdys;

and supposing that if D>0, D= 49, and if D <0, D=—23.

.. - Take first’ D>0 Wnte the Hessmn or quadratlc covanant of

flx, y) as , _ '
" Ax*+Bxy-+Cy? '(bx+cy)2—-(30x+by)'(cx'+3dy)-

This is a posmve defmlte form of negative discriminant

, ' B—4AC =—3D; :

and so by the usual method of reduction, we, can transform the- He551an

by a unimodular substitution with integer coeffxcnents into ‘dnother with -

C=A=B>=0. On applying the same substitution to the cubic; we

o may suppose that its’ He551an is so reduced. Then he proved the

Theorem“) Ezlher]f(l 0)|<1 or |f(0 i1, or |f(1 ni=i,
or |f(1, —1)|<1; an inequality sign holds except. when

+f(x, ) =x3+x2y—2xy"—)b or x3+2x%y—xy —)°

2) H. Davexport, The minimum of a binary cubxc form, ]ounzal London
Math. Society, 18 (1943), pp. 168—176. ] .
9 L. J. MorpELL, The minimum of a bmary cubic form, lbtdem, 18 {1943),
pp. 201—210, 210—217.
" 1) L. ]J. MORDELL, Lattxce pomts in - the reglon ]x3—[- y3|£1 Ibidem, 19
(1944), pp 92-—99. ;
* 1) H. DavenporT, The reductxon ofa bmary cubic form. I, Ibzdem, 20 (1945)
pp- 14 -22.



Miriimum of a binary cubic form. S 75
A similar result holds when D <0, and so we can take D = — 23.
The cubic f(x; y) has now one real linear factor and can be written as,

| F(x, 3)=(x+89){Px + Qxy+RY),
where 9, P, Q, R are real. We may suppose that the quadratlc form

" Px*+-Qxy-+Ry* is positive definite on considering —f(x, y) if need
be mstead of f(x, y), and ‘then_ that it is reduced, i.e.” -

IQI<P<R

) and fmally that Q>0 by wr1tmg -~y for.y if need be. By a unimodular
integral substitution on the cubic; we'may suppose that f(x,y) is such .
that these  conditions ‘are satisfied for the quadratlc Then DAVENPORT

’proved the” & : . , . - .

: Theorem!?), Either fQ, 0)‘<1 or|f(0 DIESE or]f(l —1)|<1 =
_or |f(1,2)|< 1. An ‘mequallty sign holds except when .
S ) =%+ Xy +2x)° 495, :

: whzdz on. putting x—X y=—X-Y becomes X3—XY2—VY3,

5. A flood of results followed from my method for the apphca‘non
of. the .geometry of numbers to the minimum “of a binary cubic meant
. that correspondmg questions for nonconvex regions were no. longer
mtractable An obv1ous region to investigate was

|xjr -yl < 1.

= wh1ch for = >1 is convex and had been studied by MlNKowsxlw) When

p<1, it is not convex. and had not been previously considered by
-mathematicians. 1 found that my methods apphed not only to thls region
but to' the more general one

. Fxh =, | .
Where for x=0,.y=0, f(x, y) is defined, is -symmetrical in- x, y-
and -homogeneous. of drmensron 1 say.. We suppose that the region
f(x, »=f(1,1), x=0, y>0 is convex and terminates in the axes or
has them as asymptotes. Then just as for the binary cubic, "parallelo-.
grams can be’ constructed - -Whose vertices and middle points of sides’
all lie on the boundary of the region. Their existence follows since- -
it can be proved that unique numbers a, b, c wrth a> b>c are dehned
by the equations :
 flatb, a=0)=f, b)—Cf(l b,
. . az—l—b2—2

3 T 1) H, DAVENPORT, The reduction of a binary. cubxc form II, ]ournal London
. Math. Society, 20 (1945), pp.- 139—=157. to-
1f") H. MINEOWSKI, l c. %), pp. 2158,
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By consrdermg various regrons in-which fattice pomts must lie
and utilising the ideas. developed for the binary cubic, | was then able?)
to reduce the quesnon to a minimym problem of the type considéred
by Minkowskl. Further there. existed many regions for which the mini-
mum’ problem could be solved. Thus for lattices of determinant 1, best '
possible results were found of the form 1x|? —|—|y|”< 2¢%,033...<p<1;

{ ~y dE V_ , also for a star shaped oclagon etc. .

Srmrlar methods apply to the region =
e b=y nz4 S
l conclude by saying that ‘the- success of these methods led

" MAHLER to -his ‘general and important theory of Iattice pomts in star.
shaped regions, a fruitful’ theory which has recently added- so much to.

our knowledge of the geometry of numbers and has also been the

- startmg ‘point of many hew results
(Received December. '16‘,_ 1948.) .

‘Note. ln 1945, B. DELAUNAY publrshed a paper entitled “Local-
methods.in the geometry of numbers”, Bulletin. Acad- Sci. URSS, Série
:Math 9'(1945), pp. 241—256 (in. Russran) He finds a-new and simple
solution for-the minimum of a binary cubic of positive. drscrrmmant by an
.extensron of MINKOWSKI's method of continually diminishing the deter-
- minant of a lattice  which has no point other than the origin in a region.

(Added June 20, 1949.)

" 1) L. J. MORDELL, On the geometry of numbers in_some noficonvex - regrons,
' Proceedmgs London Math, Soczety, (2) 48 (1945), pp. 339 390.
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