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On the measure of equidistribution of point sets. 
• . ' - By ALFRÉD RÉNYI. in Budapest. • '. ( 

Introduction. 

Throughout the paper we are concerned • with measurable point 
sets E lying in the'interval (0,1). The measure of E shall be denoted 
by | £ | and the characteristic function of E by F(x). We define F(x) • 
outside the interval (0, 1) so as to bé periodic with period 1. We 
denote by Et (for any real t) the set which has the characteristic 
function / ^ x + f)- If we imagine the interval (0, i) wound on a circle 
of circumference unity, we may say that Et is obtained ..by rotating ' 
the set ¿ by the angle —t.' Let G(t) denote the measure of the set 
of points of the interval (0,1) which, are common t o £ a n d i : , . We 
have evidently • - - . ' . 

' l • • . ' • ' 
(1) • ' • G ( t ) ^ j F(x)F(x + t)dx. 

G(t) is a non-negative function, periodic with period 1. We have, in 
view of the periodicity of F(x)\ 

1 • : '' ' 

(2) . .. 0 ( 0 = [ ^ - - l ^ + ^ W . - - v . ^ y v ¿J • . 0 
• thus G ( 0 is an even function. Further we have 

i . • 
(3) . \G(t+h)-G(t)\^\\F(x+h)-F.(x)\dx. 

Ó • - o 
Now, it is well known1) that the integral on the right side tends to 0 
with h, thus G(t) is continuous. As we have G(0) = \'E\, it follows 
from-the continuity of G(r) that if j£ j > 0, there exists a constant c > 0 , 
for which G ( 0 > 0 for 0 ^ / < c . This is equivalent to a theorem of 

I) Cf. for ex. A. ZYGMUND, Trigonometrical series (Warszawa, 1935), p. 17. 
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H. STEINHAIÍS2), who stated it in the form, that the set of the mutual distances 
of the points of a set of positive measure contains, a whole" interval 
(0, c). In view of this interpretation, we shall call G(t) the distance 
function of the set E. • 

Now let us denote the minimal value of the continuous function 
G(/) by m(E). As G(t) is nori-negative, further as we have 

i . 1 1 - . . 
( 4 ) J g ( 0 í / / = J J F(x)F(x + t)dxdt = \E\*, 

0 0 u 
it follows " ; ' 

(5) -V , ' 0 < m ( E ) ^ \ E f . . 

It is easy to. see that m(E) = \E\z if and only if | £ | = 0 or.. |£| = l . 
Thus if we put 

(6) ; . - .. . 

we have 0<:¿¿(£) < 1 for 0 < | £ ' | < 1 . In what follows shall be 
called the measure of equidistributión of the set E. Of course the notion 
of equidistribiution, implied by this definition, is different from (but as 
we shall see is closely connected with) the usual definition for sequen-
ces, introduced by H. WEYL3). .The difference is made clear by remárk-
ing that ; we are concerned-not with the equidistributión of the points 
.of. E but. with the equidistributión of the set of distances, of pairs of 
points of E. 

The purpose of the present paper is to prove that there exist sets 
having any prescribed positive measure, and as "highly .equidistributed"-
as-we'pleaise, i. e., having, a measure of equidistributión arbitrarily near 
to 1. This shall be proved in §. 2 (Theorem . 1). §. 1 contains prelim-
inary discussions of rather- general character, concerning- the FÓURIER 

expansion ofv the -distance function and some lemmas. The proof of 
Theorem .1 is based on a property of quadratic residues, discovered 
by- LAGRANGE4). In. § . 3 the problem is generalized. We introduce the. 
notion of the measure of /c-fold equidistributión, and prove a theorem, 
analogous to, but somewhat weaker than Theorem 1 (Theorem 2), based 

2) H. STEINHAUS, Sur les distances des points des ensembles, de mesure po-
sitive, Fundamenta Math., 1 (1920), pp. 93—104. Cf. "also S. PICCARD, Sur les en-
sembles de distances des ensembles de points d'un espace euclidien, Mémoires 
Université Neuchalel, 13 (1939), pp. 212. . ' • 

3) H. WEYL, Über die Gleicliverteilu'ng von Zahlen mod. Ems, Math. Annalen, 
77 (1916), pp. 3 1 3 - 3 2 5 . . . . 

i) P: BAOHMANN, Niedere Zahlentheorie, Vol. II, (Leipzig, 1910), pp. 241—245. 
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on a generalization of a theorem of THUE5),' In § . 4 , we point out the 
connection with some problems of number theory, and prove a theorem 
concerning the sequences of integers, called difference, bases, construct-
ed by SINGER6) (Theorem 3 ) . 

§. Fourier expansion of the distance function. 

Let F(x) denote the characteristic function of a measflrable set E 
in the interval ( 0 , 1 ) ! 'Let us consider the-FOURIER expansion of F(x 

00 -

• F(x)^o0 + 2'^, (o„cos2Tinx-{-.b„s\n2jinx). 
ii . * -. • ' 

L.e m m a 1 . If G(t) denotes the distance function of the set E as 
defined in the introduction, we have 

CO 
G(t) = al + 2 Z(al+ bl)cos27int, . 

ti=l * 

The series on the right converges uniformly. 
"Evidently Lemma 1 follows from Parseval's theorem. 
. In what follows/we shall consider,some special sets consisting of 

a finite number of intervals of. equal length. Let b0,by,..bs_ 1 denote 
a sequence of integers, which/are all different modulo q. The set 
E = Eq(b0, blf...,- ¿>jV_i) shall .be defined as the set . consisting of the 

-•,'.•• ( ¿ - I - v i - i i : -
intervals I — , — ( / = = 0, 1 , . . N — 1).. Evidently, the set-E 

is not changed if one of the is replaced by a number congruent 
to it modulo q, thus we may suppose O^gb^q. 

L e m m a 2. Let GQ)' denote the distance function of a set E = 
= £,• (b0, blt. .'., bN_J. Let us denote • " . ' • ''. -

) " . , • - q - y . . . . . . . . : . • 

Then we have ' - . ' • ' . 

( .' till \2 sin — \ 

- ^ • y o ^ n n t . • 

s) A. SCHOLZ, Einführung in die Zahlentheorie (Sammlung Göschen, Bd. 1131, 
Porlir. t QQO\ r̂  At. 

«) I. SINGER, A theorem in finite projective geometry and some applications 
to number theory, Transactions American Math. Society, 43 (1938), pp.'377- 385. 
Cf: also: T. VJJAYARAGHAVAN and S. CHOWLA, Short proof of theorems of Bose 
and Singer, Proceedings National Academy Sciences India, Section A, 15 (1945), p. 194. 



80 A. Rényi: Measure of equidistribution. 

Lemma 2 is verified easily by calculating explicitly the FOURIER coeffi-
cients of the characteristic function of the sèt E and applying Lemma 1. 

L e m m a 3.. Let us have 0 < f t < 1. We define 

<9) " ..Rh{x) = h2
 + 2 h 2 ± [ ^ ^ c o , 2 n n ^ . 

tl= 1 ^ ' 
Then we have • 

Rh(x) = h-,\x\ for \x\£h, 
• - . ' • /?*(*) = 0 for \x\>h. 

Lemma 3 is easily- verified by calculating the FOURIER coefficients 
of Rk(x). The function Rh(x) may be called the "RIEMANN kernel". As' 
a matter of fact, f(x) denoting' a . function,' L-integrable in (0,1), the 
summation method of RIEMANN consists in forming the second general-
ized derivative of the function ip(x), obtainéd by integrating f(x) twice, 
and it is easy to see that we have . -

(10) .Mx + 2h) + ^(x-2fl)-2rp(x) = ^ m R h { x _ t ) d t , ' \ 

• o • ^ • 
i. e. Rh(x) is the kernel function of the RIEMANN summation'):. • 

It can be seen from (7) that c„ — cm if n = m mod q. Further,- as 
fl71 

s i n - ^ - = Ö for n = 0 mod q, the values..of c„ for n = 0 mod <7 figure' 

in the expansion. (8) only formally, and the FOURIER expansion of G(t) 
is completely determined if we know, the values of cu c 2 , . . . , c 
Lemma 3 shows that G(t) can easily be calculated if the values of 
|c„f ( n ^ O ) are all equal- The same is true if they show only relatively 
small déviations from a common value. This is expressed by the following 

- • L e m m a 4. Let E = Eri (b0, blt.'.., 6V-i) -be defined as above. If 
the numbers c„ defined by (7)-s -,tisfy, the .relations 

| ] c „ | 2 - Q | < ^ r for n- 2,..., q - \ , 

where Q.(l+d-y< N2, we have • 

!i{h)>\ — -—jji . 

P r o o f . We have evidently from (8) . 

(11) G(t) > ^ + Q (/?./, (O - r ^ j - ^ ; ( / ? , „ (0) - - 1 

7) This has been; already remarked by' M. SCHECHTER, Über die Summation 
divergenter Fourier-Reihen, Monatshefte für Math, und Physik, 25 (1911), pp. 224 - 234 
It was Prof.. L. FEJÉR who has kindly called my attention to this paper. 
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and thus 

(12) m{E N*-Q( 1 + 3 ) 

• Q9-' 
and Lemma 4 follows easily. • . 

Of course the situation is the simplest if, in Lemma'4, 3 = 0. 
Sequences of . integers b, for which this holds, are characterized by the 
following - " . . 

Le m m a 5. If b0, bu b2,, :bN.t denote a sequence of in'egers 
with the property that the differences .br — b, (r, s =.0, 1 - , . . . , N— 1 ; r + s) 
represent every class of residues modulo q (the class 0 of course excepted) 
exacly k-times, we shall call the sequence b, a difference basis 
of order k modulo q. The necessary and sufficient condition for 
the sequence b]'being a difference basis of order k modulo q, is that for • 
any /isj=0 mod q 

(13) : 

• • r=o ' q J 
. be valid. •. • . • 

It is clear that the condition (13) is necessary. Let us prove that 
it is also sufficient. Let'¿4, ( / = 1 , 2 , . . . , ^ — 1 ) denote the number of 
representations of / mod q m the . form br - b.. We have 

N-k; V f i • M 2, exp \2m-j-
r=u • \ q 

Let us denote A0 = k, S0 = qk and put. 

S* = 2 n=\,2,...,q — 1. ' (--ai I q ) 
-Evidently S„ — 0 for n = 1, 2 , . . ., q— 1. It follows that for t ^ O mod q 

>i=o \ • • q ) 
On the other hand, inverting the. order of summations, we obtain 

i=o «=o I Q • J t 
Thus it follows Ai = k for v= 1, 2 , . . . , q— 1, which was to be proved. . 

L e m m a 6. If b0, blt..., bN^ is a difference basis of order ,k 
modulo q, and. fi(E) denotes the measure of equidistribution of the set 
E=E,(ba;bu..., V 0 , we have " . • ' 

. N-.k . 
(¡4) • . ( i ( E ) = l - - j ^ - . . . 

Lemina ¿ follows from the proof (not the statement) of Lemma 4 
combined with Lemma 5. • . 
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L e m m a. 7. Let E denote a measurable-set, E the set complementary 
to E. We have 

(15) 1 ... 

. \\E\ M 
P r o o f . Evidently • • 

1 . ' • • 
(16) .m(É) = min Í ( l . - / r ( x ) ) ( l - / 7 ( x + 0 ) ^ = l — 2 I £ I + / "( E ) 

0 1 

and thus Lemma 7 follows. 

L e m m a 8. If a(x) is integrable in (0,1), bounded and in-
tegrable in the same interval and periodic with period 1, we have 

1 ' i . i 
(17) ' . lim \a(x)P(nx)dx=\a(x)dx\l3(x)dx.. 

«-»•<» o 0 0 '• v • ' 
This lemma is well known8).' • 

L e m m a 9. Let El and E2 denote two sets having positive measures 
¡¿^l and |Zra[, characteristic functions F.^x) and F2(x), distance functions 
0¡(x) and G2{x),-respectively, and let the minima of the distance functions 
be denoted . by m(E}) and m(E2) respectively. Let us define the 
.set EM by. its characteristic function being F(")(x) = F1 (x) Fe(nx) 
(n = 1 , 2,. ...). It follows ' 

(-8). . ' lim |£ ( n ) | = ! ^ | | £ 2 | 

and , ' . . 

(19). " • ' lun m(£w)¡>m(Ei)m(E2), 
Jl->00 - . , 

where m(E(n)) denotes the minimal value'of, the distance function G(n)(t} 
of E(n\. ' ; • 

P r o o f . ' (18) follows clearly from Lemma 8. As regards to (19), 
let us suppose the contrary. Thus • we-suppose that there exists ;an 
infinite sequence of integers ( £ = 1 , 2 , . . . . ) , and ¿ corresponding 
sequence of real numbers tnk (0<^t„k< 1),. for which 

holds,, for somej;fixed e > 0 . Let us denote, by z„k the fractional part 
of- nkt„k..Clearly we may choose an infinite subsequence vk (k = 1, 2, . . . ) 
of the sequence nk; such that if k-*ao, %k and -%n tend to limits t* and.T*, 

8) This lemma , has been proved for some special cases by L. FEJ£R, .Le-
besguesche Konstanten und divergente. Fourierreihen, Journal für reine und ange-
wandte Math., 138 (1910), pp. 27 —28. In the general form'the lemma has been 
p r o v e d b y A. ZYGMUND, I. e . I1), p . 173, § 8 . 3 4 . • • . . 
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respectively. Now, putting ' 
• : i 

• Gk(r, T*) = J F1 (x) F1 (x + O F2(vkx)F,{vkx + z*) dx, 
' o " 

w.e "have • . . . 

o ' 
' ' l . • • • 

'* / . + J|F2(y'-\-. TV]t)—F^y[-\- r*) \dy . 
and thus, applying again the theorem by which we have, proved the 
continuity of G(0 . (see *)), we obtain • 

•(21) - I i m . [ G w ( ^ ) - G t ( r , O ] = 0. 
fc—• 00 - ' . 

Applying Lemma 8 again, we obtain 
(22) V lim Gk(t\T*) = G1(r)G2(T*)>m{E1)m{E2) • k->- co 
and thus owing to (21) it follows 

(23)" "". . Iini 
' fc->Qo ; -

But this clearly contradicts (20) and thus (19) is proved. . 

L e m m a . 10. If the characteristic functions F^x) and F^x)-of .the 

measurable sets E1 and E2. are equal except on a set of measure — 

( 0 < J < 1), we have \m (Er) — m (E2) | <• «5. 
Lemma 10 follows simply by remarking that ^ ( ^ ^ ( x + ^ and 

F2(x) F^ix + t) are equal 'if neither x nor x + t does belong, to the ex-
ceptional set, i .e . except for a set the measure of which .does not 
exceed <?, and .thus- |G.i(0 — G2(t)\.< <3 for any t. Let M(a) denote the 
least upper bound of .it (£ ) for all sets E for- which | £ | = a ( 0 < a < l ) . 
We-prove • • 

L e m m a 11. " . 
If,M(a) — landM(ß)=-\,wehaveM(aß)==\. 

P-.r oo f . According to the suppositions of our Lemma, for any e > 0 

there exist sets E^ and E2 with j ^ l = a, \E2\ = ß, ^(£"0 > 1 — 

ji{E2) > 1 — Let us define the sequence of sets £ ( n ) a s in Lemma 9, 

by. virtue of which we have lim ¡E(")i = a/i and i 
«->- GO ' . ; 

' . lim \ ' 
n-fc. CO V J 
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Thus if we choose n sufficiently large, both inequalities 

and 1 - ^ - ) 

will be satisfied^ According to |'£(B)| — aft < 0 or | £ ( n ) | — cc/?>0 we may 
£ ct a 

add or. take away .from £ ( n ) a set of measure not exceeding so as 
to obtain a set* &{n) haying its measure equal to a/?..The characteristic 
function of the set S(n) does not differ from that of E(n) but on a set the 

measure of which does not exceed - ^ p - . Thus, according to Lemma 10, 

we have 

m (g(n}) k m ( E { n ) y - ^ (1 - - e). 

As £ > 0 may be chosen arbitrarily, this proves Lemma 1.1. 
• L e m m a 12. If lim «„ = « (0<«„<1 , 0 < a < l ) and M ( « n ) = t 

o * «-»><» , 
for /2=1,2,.'.., then we have M(a)=\. 

P r o o f . For any £ > 0, we choose n sufficiently large, so as to 
obtain 

1 a 
E 

According to our suppositions, there exists a set E„ for which \E„\=a„ 

and fi(E„) ^ 1 — We add to or fake away from E„ a set of measure 

Ct € 

not e x c e e d i n g s o as to obtain a set £„ of measure a. We have, 

using Lemma 10, 

•^which proves Lemma 12^. 

L e m m a 13. Every real number a (0'< «.< 1) can be represented 
as a finite or infinite product of the form 

(24) 

P r o o f . Let us suppose that a is not a rational number which 
is equal to the product pf a finite number of factors of the form 

i l — — V Let us choose ^ > 1 so that we have 
V 2"*j . . 

(25) . 1 ^ - ¡ - < « < 1 v . /. 2 2 
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further, if riy, n2 , .•. . , ' nk_x are already found, we choose , n^+'j so as to 
obtain . 

Dividing (-26) by 1 and applying- again (26) .with k+ 1 instead • 
2 4 _ . 

of k, we obtain 
( 2 7 ) • ' 

•','.'. ; . ' • . u I • 2 " > J . 
It follows from (27) that nk+r^>nk. Thus the sequence nk!- which • is 
uniquely . determined according to the above construction is non-cie-
creasing. It is easy to see, that nk->oo. As a matter of fact, in- the 
opposite case nk would be constant from'some indexv&0 onwards. But 
it would follow from the. construction that in this case we should have / . . > . . . 

for any JV, i. e. we should have a = 0, contrary to our hypothesis'. Thus-
nk-*oq, and it follows.from (26) that, 

a • 
. ' I»«" " ^ = 1 

which proves our lemma. 

§. ¿.^Application of the theorem of Lagrange^ 

The theorem of LAGRANGE i s . question is the following: Let p 

denote a prime number of the form 4n + 3. Let h,'r2,..., rv (v 

denote a complete system of quadratic residues mod /?. Let d denote 

any integer, </E|EO mod p. Then there are ^ 3 quadratic residues in 

the'sequence rs + d' ( / = 1 , 2 , . . .,y). According to the terminology 

introduced in Lemma 5, this theorem can be stated also, by saying that 

the system of quadratic residues to a prime modulus p = 3 mod 4 is 

a difference basis of order ? 3 modulo p. This theorem follows easily 

from Lemma 5 and from the well known formula for Gaussian sums: 

y=o x P J 
' . . • - A 6 



86 A. Renyi 

lor /? = 3 mod 4. As every class of quadratic residues is represented 
twice among the squares yz (1 <y^p — \), it follows from (29) that 

It- follows from (30), using exp - ^ ^ = 0, that if s^ . s v de-
k=0 P . . 

note a complete set of quadratic non-residues mod we have 

(ZniS;} —iVp—1 < 3 1 ) . e x p = ' 

Now the sequence nr, ( j = \ , 2 , . . v ) is congruent to the sequence 
of residues or to the sequence of non-residues, according to the quadratic 
character of n. Thus it follows from (30) and (31).that for any n ^ O 
mod p we have . • 

(32) . 
(2 nitiTj 

2 exp -
3=1 V P 

P+» 

Thus .we can-apply Lemma 5, and obtain ..that the differences •ri — r.i, 

i 4=y represent everyclass of residues mod p exactly — 

times, which is equivalent to the theorem of LAGRANGE stated above. 
Now everything is ready to prove • 
T h e o r e m 1. The least tipper bound. M(a) of the measure of 

equidistribution n(E) of measurable sets E having the measure |£| = a 
is identically equal to~ \ for 0 <a^l. v , . 

P r o o f ' of T h e o r e m 1. Let p denote a prime, p = 3 mod 4, 

and let rlt r2,.:., rv (v= p 1 ) denote a complete-system of quadratic' 

residues mod p. Let us define the. set Ep=r='Ej,(ru r2,..., rv) as in § 1.. 
It follows from Lemma 6 that 

(33) • • • .. . A*(E,) = 1 — ( ^ 2 - . . 

Let"«*?, denote a set obtained by adding to Ep any interval of length 

^U. As \EP\.= ^ ~ , we have and it follows from (33) that 

(34) > ( £ , ) : > ' . . . . . , 

Sincethere are an infinity of primes of the form 4n + 3, it follows that 

. Applying Lemma 11, we obtain A i Q j j = l :for k—.\, 2,. . . , 
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\ 1 } ^ . . further, by Lemma 7, My 1 — —J = 1, (k= 1,2,. ...). Applying Lemma 

11 again, we obtain that A i ( a ) = l if a is a finite product of'the form 
(24). .Thus it follows, using Lemma 12 and regarding also. Lemma : 13, 
that M(a) = 1 for all a, 0 < a^ 1.. Thus Theorem l is proved9). ' 

§. 3. The measure o f / > f o I d equidistribution. 

Let E,E„\E\ and F(x) have the meaning as in the introduction. 
Let G(t1} t2,.. 4) denote the measure of the set of points common 
to^E,- .E t„Et i; . ..,Eti. -We have evidently 

. . • ; • 1 - . • . - . 

(35) G&J,,.:.,^)^^ F(x)F(x + t1)F(x + t2)...F(x+l!c)dx. 

It is easy to see that G'(tt, U,'•' • 4 ) is a continuous function of its 
variables. The minimal value of G(U, t2,\.., tt) shall be denoted by mk{E). 
Owing to .: 

' i i i : ' • • ' . " ' ' 
( 3 6 ) . . J f . . ]G(i,J2,.'..,tk)dtidt2-....dtk==\E'?+\ • . . . 

0 0 0 ' - ' . • 

we have 

(37) : ^ " 0 t i n h ( E ) ± \ E r \ 
The measure of .¿-fold equidistribution of the set £ shall be defined by. 

(38) . V • • . : 

Thus we have, owing to (37)j 0^p k {E)<L 1. The. least upper bound of , 
fik'(E) for all measurable sets E with' j£ | a will be denoted by ^ ( a ) . . 
•It seems probable that' Mk{a) = 1 identically in a for any k. In what 
follows we shall prove however only the-following 

T h e o r e m 2. 
1 lim Mk{a 4*+i • Tt-

The most surprising ..consequence of Theorem ! is perhaps that 
there exist measurable sets with 'arbitrary small positive measure .with 
the property, that - if the set is "rotated"-in the sense mentioned in the 
introduction, the set of points, which are common to. the rotating set 
and to the original set, is never void, indeed, its measure exceeds always 
a fixed number during the rotation. Though Theorem 2 is relatively 

Mr. P. UNGAR, to whom 1 communicated at an earlier stage of my investi-
gations some'of my- results, found independently a proof of Theorem 1, running 
essentially on the same lines. ; 
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much weaker than Theorem T, and is not à "best possible" result, never-
theless it contains the generalization of that interpretation of Theorem 1 
which has been emphasised just now. 

The proof of Theorem 3 will be based on the following gener-
alization of à theorem of T H U E : 

L e m m a 14. 7 / ^ is a prime, k a positive integer, further the po-
sitive integers elt e2,..., ek,f satisfy 
(39) e1.e3...ek.f>p\ 
then for any k-tuple of integers (ru r2,..., rk) there can be found in-
tegers xltx2, .. .,xk and y for which 1 <Ly <f |x, | < e, ( / = 1 , 2, . . . , k) 

and = mod/? ( / = 1 , 2 , . . ., k) are valid. 

P r o o f . Let us consider all ¿-tuples of integers of the form (yr{ + x ;). 
/ = 1 , 2 , . . . , k,. where l ^ x ^ C ; ( / ' = 1, 2,..''•., k) and 1 ^ y < / . The 
number of such A>tuples of integers being. exe2.... ekf as there are only 
ph k-tuples which are different mod p, owing to (39), there must be at 
least two ¿-tuples of the form considered which are congruent mod p. 
If we denote the two congruent ¿-tuples by. and ( ^ r . - f l , ) , 
/ = 1, 2 , . . k , we have 

' .. y rt + x^ijrf+ii mod p, 

Fromj>=î? mod p it would follow = ^ mod p for all i—\,2,...,k, 
thus wé have y^q mod p, and it follows 

, mod p (/ — •!,-2, 'k).-

As O ^ l l ; — < e { . ( / ' = 1, 2 , . . . , k) and l £ l | j > — y \ < f our Lemma-is 
proved. 

Now we prove the following. 

L e m m a 15 .Vf p is a prime, k a positive integer, and Q = [p t"1] 
([x] denotes the integral part of x), a set of 2Q-integers c1; c2,...., c2Q 

can be given, having the property that for any k-tuple of integers 
(bu b2,.. .,bk), elements c<,, c^,..., cik, Cj of the given set can be chosen, 
so as to obtain . . 

br = cir—cj mod {.p— 1) for r= \ ,2,..., k. 

P r o o f . Putting ^ = / = [ / 7 ^ ] + 1 = Q + 1 ( / = \,2,...,k), con-
dition (39) of lemma 14 is evidently satisfied. Let g denote a primitive 
root mod p and let ind x denote the index of the residue class x with, 
respect to g. It is easy' to see that if ' c, —ind /, = ind (—/') 
(/== 1, 2 , . . . , Q), the sequence C; ( 1 < / ' < 2 Q ) has the required pro-
perties. 
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Let us now define, the set E, consisting of the intervals: 
<40> ' • 

where the cr (r = 1, 2 , . . . , 2Q) are, the elements of the set of integers. of 
Lemma 15 Let F(x) denote the characteristic function of the set E, and 
let . G(tu t2,. .., 4) be defined by. (35). If ( t u t2,..., 4) is an arbitrary 
A-tuple of real numbers, 0<,tr<A, we put 

where b'r denotes the integer which is nearest to ( p — 1 )tr, and thus 
we have 

. . K M ^ y (r=M, 2, . . . , * ) . 

According.to Lemma 15, we can choose .-,Cik,Cj so that 

br = cir—Cj m o d ( p — 1 ) for r= 1 , 2 , . . . , k. 

It follows according to (40) that if . 
_ 1 , l 

ci 2 '¡+2 
< x < • • p-1 p-\ ' . • 

we have . " . ' • • • • ' . • 

+ for. r=\,2,:..,k. : 
p— 1 . • P—1 . • 

Thus 
' c - - 1 - . C + 1 . 

F(x + ir)=^\ for r = 1 , 2 i f ' p-.l • 

It follows from (35) that 
( 4 1 ) ' 

Owing to | E H - ^ - ( q = [/>*+•]), we obtain . . ' . ; 

P i i - i f : 
(42) • - > 4 ( ; e . ; : . . 

If any fixed e > 0 is given,- we can choose p .sufficiently large so as to 
obtain 

(43) * ] E | . < e . and fik{E) • 

Thus Theorem 2 is proved. -
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§ . 4 . Some remarks oh the sequences of Singer. 

We. have seen in §. 1 that the construction of highly equidistri-
buted sets is closely connected with the number-theoretical problem of 
constructing difference bases, i. e. finite sequences of integers, the diffe-
rences of which represent every class of residues to a given modulus q 
exactly k times, k being the order of the difference basis. In this di-
rection interesting results have been obtained by I. S I N G E R (1. c . 6 ) ) 
who constructed difference bases of order . 1 for any modulus q of the 

•form q = p2m-f-pm-{-1 , p prime.. Let as (j— 0, ],..., p) denote such 
a sequence of S INGER ; we may suppose evidently 

0^a0<a1<...<ap<q. 

It follows that for any k (1 <,k <q) either k or k — q can be repre-
sented in the form at — áj, and we may ask which subset of 1, 2,. . . , q— -1 
is represented '^actually", i. e. for which k we have k = a t — a T h i s -

'problem, in a somewhat different from, has been raised by L. R É D E I 

and is discussed in a joint paper of L. RÉDEI and. the author10) where 
the following theorem is proved: If ^ denotes the minimal .number of 
terms-of a finite sequence of integers with the property that their diffe-
rences represent every number 1, 2 , t h e n • 

(44) l i m - ^ ^ y 
»-»•00 |/77 

"exists, further we have11) 

Now these problems are also connected with the theory of. equidistri-
buti'on of point sets. To establish this connection, we have to define 
the "asymmetric distance function" g(t) of a set E as follows: 

Le t / (x ) denote the characteristic - function of the set ' E ; if x is 
contained in the interval (0, 1), and let us def ine / (x) = 0 for x outside 
of (0, 1). We put ' 

_. • i ' . . . 

(46) g ( t ) ^ j f ( x ) f ( x + t)dx ( - 1 $ / < L + 1). ; .. 
10) To be published in the Mat. Sbornik. 
u ) As BÉLA SZ.-NAGY • kindly remarked,' the lower estimation in (45) can be 

•improved,, by. some numerical refinement, by approximately 0,01. A .similar remark 
applies to (49). P. .ERDŐS and I. S. GÁL proved by some modification of the original 
proof-that (44) and. (45) are valid 'also if the sequence of integers in question is 
restricted. by the. condition that it is contained in the sequence 1, 2 , . . . , n ; cf. 
Proceedings Koninklijke . Nederlandsche Akademie van_ Wetenschappen, 51 (1948), 

. pp. 1155-1159 . . . ' . " 
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It, is easy to see that g(t) is an even continuous function, further that 
£(()) = £ , ¿T(1) = 0, and we have ' . 

(47) ' • . J 5 ( 0 dt-- 2 ' 
o 

We obtain further by-some simple calculations that 
' ' 1 

(48) • J s " ( 0 cos — -2 I J / (x) exp(iP.x)-dx \ 
• . - 0 . .' ov • ' ' • " ' • 

i. e. that the FOURIER cosine transform of ¿"(if), is non-negative. This is 
the idea underlying the proof of the following property of the sequences 
o f SINGER : . • ; • ' . . ' ; 

T h e o r e m 3 . L e t us denote P^=pm (p prime), q=.P2 + P+ 1 

and k = • If ® = °O < « I < • • • < a!i<q- denotes a SINGER sequence, 

and if 1 <-A; < A2< ... < Ak denote the" numbers which are representable 
in the form .a, — ay with i>f, further if •Ak==-k + D (i. e. D denotes how 
many numbers are' missing from the sequence 1 ,2 , . . . . , Ak) then we have 

'<«> " : " Z ' l - 2 - ' ; 
- . P r ô o f . . We have . '• • •* - , 

_p 2 ' - 'ft 
(50) £ cxp (2n icijt) 

j=o 
P+\ + 2^coi-2nAnt = 

• n=l ' - . 
sin (2A + 0 - Î - - » 

= = P + - r ^ - 2 cos 2n B J , 
s m T ' . V=1 

where B„ (v= 1 , 2 , . . . , D) denote the numbers <Ak which are not 
contained in-the sequence As. It follows from (50) that 

' . ' sin (2A-+1) I 
(51) . . -j-—-—+ 2£> - • 

' • : • • ' " sin^- • • 
3h • 

for all values of t. Let us choose t=. . , using s i n x < x f o r x > 0 . 

We obtain ' • 

( 5 2 ) '.. 2 / , a i e v t i > _ / ; . 
* ' J » -.- - • 
from which Theorem 3 follows by simple calculation. -

It- may be remarked .that though, (49) is .not a best possible estim-
ate, it gives a rather good estimation for small values of P. Thus the' 
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set A} coincides with the set 1, 2 , . . . , k only for P= 2 and P = 3 (the 
corresponding SINGER sequences "are: 0 , 1 , 3 for P = 2 and 0 , 1 , 4 , 6 
for P—4), further (49) asserts that for P = 4 there must be at least 
one "gap" in the sequence A), and really there is exactly one "gap" 
if we consider the SINGER sequence 0, 2,7, 8," 11. For P = 5, owing to . 
(49), there mdst be at least two numbers missing from the sequence Ait 

and there are really two gaps if we take the SINGER sequence p, 1,4, 
10, 12, 17, etc. . 

Some further progress could be obtained regarding the problems 
considered in the present paper if some more difference bases could 
be. constructed. A necessary and sufficient condition however for the 

. existence of a difference basis of order k modulo q, for given k and q, 
is not known. 

We, considered only sets E lying in the interval (0,1), but it is 
clear that the situation is the same for any bounded linear set. The 
problem of unbounded linear sets however is somewhat different, as it 
is shown by .the remark, that ih this case the. symmetric and asymmetric 
distance functions G(t) and g(t) coincide; 

. My most sincere thanks are due* to P. ERDŐS and L. RÉDEI for 
their valuable remarks. . • 

(Réceived August 5, 1948.) 


