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On the measure of equldrstrlbutlon of pemt sets.

{
By ALFRED RENYI in Budapest

' lnt’roduction. o

Throughout the paper ‘we are concerned wnth measurable pomt
~ sets E lying in the interval (0, 1): The measure of E- shall be denoted - .
- by |E| and the - characteristic functxon of E by F(x). We define F(x) l_ :
- outside the interval (0,1) so as to be. periodic with period 1. We
denote by E, (for any -real t) the set which has the: characteristic
“function F(x-+1). If we 1magme the .interval ©, l) wound on a circle
of. circumference unity, we may say that E, is obtained by rotating
the set E by the angle —t. Let G(t) denote the' measure of -the set
of points .of the . interval (O, . Wthh are. common to E and .E,. We

'have evxdently = - <

r

. - . .

.o G(t)=d} F(x)_F(xél-t)dx.' -

G(t) is a non-negative function, periodic ‘with perlod 1. We have in
view of the penodrcnty of F(x) .

<2~)A”._ - f (e~ ’]F( \
"thus G(t) is an even funchon Further we have
@ 16e+h—GWl= I [F (e ) — P,
Now it is well known‘) that the integral on the rlght srde tends to O

with &, thus G(t) is continuous. -As we have G(O)—[El it follows
from .the contmuuy of G(t) that if {E]> 0, there exists a constant ¢> 0,

for which G(¢) >0 for 0<t<c This is equlvalent to a theorem of -

1) Ct. for ex. A. ZYGMURD, Trtgonometrzcal series (Warszawa, 1935), p 17
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H. STEINHAUSz), who stated it in the form, that the set of the mutual distances
of the points of a set of positive measure contams a whole - interval
(0, ¢). In view of this mterpretatron we shall call G(t) the dzstance.
_ function of the set E. . .

* Now let us denote the. mmrmal value of the continuous functron
G(t) by m(E). As G(t) is non- negative, further as we have -

S S I .
@ faw dt=ﬂ F(x) F(x+1) dxdt=|E|?,
0. 0 »
it follows o 3 .
(5) B O<m(E)<[E|'

‘.'It is easy to: see that m(E)—|E|2 if and. only if- |E[ 0 or,.|E| ==1.
Thus if we put - - : : S

o m(E)

we have 0<,u(E) <1 for 0<|E| <1 In what- follows M(E) shall be -
called the measure of equzdzstrzbutzon of the set E. Of course the notion
“of equrdrstrlbuhon implied by this definition, is different from (but as
" we shall see is closely connected with) the usual definition for sequen--
. -ces, mtroduced by H. WEyL3). The difference is made clear by remark-

ing that" we are concerned. not with the equidistribution ‘of the poznts o

" of E but with the equrdrstrlbutlon of the set of distances of palrs of'
pomts of E.

The purpose of the present paper is to prove that there exist sets
having any prescribed positive measure, and as “hrghly equrdrstrrbuted”- '
“as 'we' please, i. e., having a measure of equidistribution arbitrarily near
to 1. This shall be proved in-§. 2 (Theorem 1). § 1 contains prelim-

" inary discussions of rather- ‘general character, concerning:the FOURIER o

expansion of the. distance- function and some lemmas. The proof of
Theorem 1 is based-on a property of quadratlc resrdues discovered
by. LAGRANGE?). In § 3 the problem is generalized. We introduce the.’
notion of the measure of k-fold equrdrstnbutron and prove a theorem,
analogous to, but somewhat weaker than Theorem 1 (Theorem 2), baged .
< : ) .

' %) H. STLINHAUS, Sur les distances des points des ensembles. de mesure po-
sitive, Fundaménta Math., 1 (1920), pp. 93—104. .Cf. also S. Piccarp, Sur les en-

sembles de distances des ensembles: de points dun espace euchdren Mémorres
Université Neuchatel, 13 (1939), p pp. 212,

3) H. Wevt, Uber die Glerchverterlung von Zahlen ‘mod. Ems, Math Annalen -

77 (1916), pp. 313—325.
© 9 P. Bacamany, Niedere Zahlentheorte, Vol. [l (Lerpzrg, 1910), pPp- 241—-245
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on a generalization of ‘a theorem ‘of THUE®). In §. 4, we point out the
Connection with some problems of number theory, and prove a theorem
concerning: the sequences - of _integers, called drfference bases, construct- -
~ed by SINGERY) (Theorem 3)

& 1. -Fourier"e_xpansion of the distance function. .

Let F(x).denote the characteristic tnnction'of a ‘meastirable set E
in the interval (0 1), ‘Let us consider the FOURIER expansron ot F(x)

F(x)wao—i—z Z (a, cos2nnx—|— b sm2nnx)

Lemma 1L-If G(i) deriotes ‘the dlstance functzon of the set E as
: defmed in the mtroductton we have :

.

G(t) =q2--2 Z (a® +b’)cos2nnt

n=1

" The serzes on the rzglzt converges umformly

Evrdently Lemma 1 follows from Parseval’s theorem
_In what follows we shall consrder some_ special sets _consisting of

a hmte number of intervals of equal length Let by, by, ..., by_, denote .
a sequence of mtegers which ~are all different modulo q. The set
E=E,(by, b,,...;b5.,) shall ‘be defined as the set . consrstmg of the
intervals : (j~ e (j—O 1, N-—l) Evrdent]y, the "set E

s not ehanged if one of the b, is - replaced by a’ number congruent N
‘_to it modulo q, thus we may suppose 0< b, <q. .

Lemma 2. Let G(i‘) denote the distance- functzon of a set E =
=E; (bo, bl, co N_l) Let us denote -

N-F N
(n - . ~ ; 5 (anan\ \
\i) &= Ly BXP |
. =R q

_ Then we have

q

® ‘_.G(t)_2+ 2| (n )cos‘ennt._

5 A. SCHOLZ Emfuhrung m dze Zahlentheorze (Sammlung Goschen Bd. 1131,

Berlin, 1939}, p. 45.

jols) 1y 4900),

9L SINGER A theorem in tmrte prolectrve geometry_ and some apphcatrons
to number theoty, Transactions American Math. Society, 43 (1938), pp. "377: 385,
'Cf: alse: T. VijAvarRacHavaN and S. CHOWLA, Short proof of theorems of Bose

" and Singer, Proceedings National Academy Sciences India, Section A, 15 (1945), p. 194,
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Lemma 2is venfled easﬂy by calculatmg exphcxtly the FOURIER coeffl-_
.cients of the characteristic function of the set E and applying Lemma 1.

Lemma 3.. Let us have 0<h <. We define

(smnnh
nnh

) cos2mnx-

© R,,<x)—h°+2f22
: =1
Then we have '

Ry (x y=h—|x| for [x|< .

R,(x)=0 for |x]>h : -~

‘ Lemma 3 is easily. verified by calculating the FOURIER coefhc1ents
of R,(x). The function R,(x) may be calléd the “RIEMANN kernel”. As’
" a matter of fact, f(x) denoting” a.function,” L-integrable in ©, 1), the -
: summatlon method of RIEMANN consists in forming the second general-
ized derivative of the funclion Y(x), obtained by 1ntegratmg f(x) twnce .
‘and it is easy to- see that we have - :

D oy w(x+2h>+w<x—2h)—2w<x>
(10) Sam ,zgjﬂtm(x—t)dt

N

" e, Ry(x) is the kernel funchon of the RlEMANN summation?). -
1t can be seen from (7) that ¢,=c, 1f n=m mod q. Further as

smnq—n-0 for n—O mod g, the ‘values of ¢, for n__O mod q figure

in the. expansmn ® only formally, and the FOURIER expansion of G(t)
is completely determined if we know. lhe values of - €1y Coy - v oy €y
"Lemma 3 shows that G(t) can easily be calculated if the values of
1e,i? (n=£0) are all equal: The same is true if they show only relatively
small deviations from a common value. This is expressed by the following

Lemma 4. Let E= E, (b, by, ..., by_y) be defmed as above f |
the numbers ¢, defined -by (T)'s: tzsfy the .relatrons

||c}2 Ql<ﬂ21— for n—l 2 L g—1,

. where Q(l-}—t}‘)<N2 ‘we have
' Bz

_Q(H—ﬁ)

Proof We have evndenﬂy from 8):

_ _;(_-") | G(’)—\é'—z,‘f"Q(Rl/q ® —L)— (f—Q—(Ruq ©0) — )

7) ThlS has been already remarked by M. SCHFCH!ER Uber die Summation -
dlvergenter Fourier-Reihen, Monatshefte fiir Math. und Physrk 25 (191D, pp. 224 234,
It was Prof L. Fesér who has kindly called my attenllon to this paper.



Measure of equidistribution. . ' 81
and thus-
an o . .
(12 L mpz =AY

and Lemma 4 follows easily. .- - _— .

, "Of course the situation is the simplest if, in Lemma ‘4, 9 =0.
" Sequences of . mtegers b; for whxch this ho]ds are characterized by the
: followmg : =

Lemma 5. If b, bl, bg, v by denqte a ”sequence of -I;n:’egers.‘
with the property that the differences.b,—b, (r,s =0, 1, ..., N—1;r=£s)
represent every class of residues modulo q (the class O of course excepted)

- exac Iy k-times, we shall call the sequence b, a - difference basis
. of ordef k mod ulo q. The necessary and .sufficient condition for
_ the sequence b;' being a difference basts of order k- modulo q, is that for - .

any n$0 mod qg -

$ o\
(13) Zexp 2mi ;1 ) =N—k
' |r—0 )
L be valzd , .
- It is clear that the condition (13) is necessary Let us prove that
it is also sufficient. Let 4, ({=1,2,...,q4—1) denote the number of

representations of / 'mod ¢ in the.form b, -~ b,. We have
’ N-1 . b q- l
= Zexp( . ) N—{—Z A,exp(Zm——)
. Slr=0 q . q .
~ Let us denote Ay=k, S,=qk and put. .
S,,=ZA,exp_(2ni17), n=1,2...,4—1.
. . g =0 o T : .
»-E\(iden'tly S,=0forn=12_..., q—1. ltfollows that for v==0 modyq

‘ T—-Z S.exp( 2nzT) - So= - SR

n=0

On the other hand, inverting the. order -of s_um'mations, we-Ao'b_tain.k -'

e qzl S A,exp(zm ¢ q”v)”v)_ A,

=0 n=0

Thus it follows A,— k for v=1, 2,...,q—1, Wthh was to be proved.

Lemma 6, If by, b,,..., by, is a dtfference basis of order k
modulo q, and. ,u(E) denotes the measure of equzdzstrtbutzon of 1he set
E E (bs; by, - - -, b- l), we have ’
. . -N-—k

(14) _' o » (E)—l NZ ' . .
Lemma 6 follows from the proof (not the. statement) of Lemma 4
combined w1th Lemma 5 :




'\\

82 - ' . " A Rényi

Lemma.7. Let E denote a measurable-set, E the set complementary
fo E. We have

"(15) - 1—;L<E>———’f(—‘?%
- ()

. Proof Evndently ‘
. .(16) m(E)—mmf(l—F(x))(l—— §x+t))dx=1—2|E|+m(E)

“and thus Lemma 7 follows.

c Lemma:8. Ij‘ a(x) is mtegrable in-(0, 1), B(x) bounded and in--.
: tegrabie in the same zm‘erval and perlodzc with penod 1 we have o

an fim ja(x)ﬂ(nx)dx__ofa(x)dxfﬂ(x)dx

Thxs lemma is well knowns)

_ Le mma 9. Let E, and E, denote two sets havmg posztwe measares
_|E\| and IEQ[ characteristic functions Fy(x) and Fy(%), distance functions
G,(x) and Gz(x),arespecttvely, and let the minima of the distance functions
be denoted by m(E,) dnd m(E,) respectively. Let us define the
set E® by its characteristic functwn bemg F "’(x)mF (x) Fy(nx)y
(nml 2 ) 1t follows

(-8 - - hm lE‘”’l !EIHEA
“and - '
(19y. - - lim m(E‘”’)>m(E1)m(E2),

where m(E("’) denotes the mlnmzal value’ of the dzstance functzon G(")(t) '
“'Of E(") .
: " Proof. (18) foHows clearly from Lemma 8 As regards to (!9)

let us suppose ‘the contrary. Thus - we. suppose that there exists an
- infinite sequence of integers m, (k=1,2,...), and a- correspondmg
_sequence of real numbers 7, (O<t,,,‘< 1), for whxch .

G (t,)<m (El) m(E,) —e

holds, for some: flxed £>0. Lef us denote. by <., the fractional part
of- nkt,.k _Clearly we may choose an infinite subsequence a{,,_ (k=12,..0)
ofthe sequence 1,; such that if koo, 't,, and .z,,k tend to limits t* and.7",

8) This lemma . has been proved for some special -cases by L. FEJER Le-
besguesche Konstanten und divergente . Fourierreihen, joumal fur reine und ange-
wandte Math., 138 (1910), pp. 27—28. In the general form “the ‘lemma has been
proved by A. ZveMuxD, 1. c. (1), p. 173, § 8 34. . : '



Measure of equidistrihution. e~ ' . 8.;3
: respecttvely Now, puttmg

Gt )_jFl(x)F (x+t )Fz(vkx)F(wkx+z)dx )
“we have .' h

16 ) — Gt r>l<le(x+fv,,) F(x+f ldxt

+J|F2<y+m) Fa(y+w>|dy_

and thus applymg again the theorem by. which - we have proved the-
' contmulty of G(t). (see!)), we obtain ~ = .

R 1) MR lim [G(”k‘(t,k)-—a,,(t* 1)]_
Applymg Lemma 8 agam we obtam . o
{22) " ' llm G,,(t‘ T )——G (* )Gz(z)>m(E)m(E2)
. and thus owmg to (21) it- follows w
;.(23) o . lini a‘"“(ka) >m(E )m(Eg)
: T ‘k>o

But thls clearly contradtcts (20) and thus’ (l9) is. proved
Lem ma’ 10. If I/ze characterzstzc functtons F.(x) and F, (x) of. the

- "measurable séts E, and E, are equal except on. a set of measure —g— .
(O<dx1), we have . ]m(E)—m(Eg)l<6 : -
Lemma 10 follows simply by remarkmg that E(t)‘F (x—l—t) and‘

. Fz(x) Fy(x+1t) are equal‘if neither x nor x-+t does betong to the ex- -

. ceptional set, i.e. except for a set the measure of which . does’ not -

exceed o, and thus- |G, (£) — Gy(f)| < 6 Tor any 1. Let M(a) denote the.

least upper bound of u(E) for all sets Efor whlch lEl—a O<a<t).

~We prove. ' .

; L emm a 1 | PR : :
If M(a)—l and M(ﬂ)—l we - have M(aﬂ)— 1.
Proof. Accordmg to the supposmons of our Lemma, for any ¢>0 '

' there ex1st sets E and E2 with lEl——a lE2|——ﬂ, (E)>1 T. -

™ ds in Lemma9 '

:y(EQ) > l — T Let s defme the sequence of sets E

by v"‘"e uf whtch w: hav:; hm |c( )|— af, and -

n-» o

© lim m(E("))>ap’(1——:—r)'.--' .

‘ n-»on
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Thus if we cﬁo'ose n suff'iciently.large, both inequalities
HE‘"’léaﬂl.<iZ£ and m(E‘"’)gaﬂ(‘l—%) |

will be satisfied. According to [E™|—af <0 or |[E®|--af>0 we may
add or take away.from E®™ a set of measure not exceeding _f‘ﬁ S0 as

to obtain a set &E™ having its measure equal to a¢f..The charactenshc
 function of the set &" does not differ from that of £ but.on a set the

‘measure of which does not exceed i%ﬁ_ Thus, according to Lemma 10,
we have . o
m(&™) = m(E"')) 298 ap(i—e).

As ¢>0 may be chosen arbltranly, thxs proves" Lemma 1.

. Lemma 12 If lim e, = (0<a<l O<a<1) and M(a)_t

n-r o

for n=1,2,..., then we have M(a)_—l

-Proof. For any £>0, we choose n sufhc1ently large S0 as to;'
obtain

S

«

<L
4

" According to .our suoposmons there exlsts a set E, for Wthh |E,|=e, ‘

-and p(E, )> 1 —T We add. to or take away from E, a set of measure

not exceedmg — 80 .as to obtam a set &, of measure - a. We have,

usmg Lemmia 10 _ . . )
m(é°)>m(E)——-—> (1'—-—48'—)—?8 a(]——e) /

';whlch proves Lemma 12, T - o

Lemma 13. Every real number [’ (0 <a< 1) can be represented .
" as a finite or infinite product of the form :

ey - e=J7(1-5) <1§_nkgna;)»;'
. ) 4 '

Proof. Let us suppose that is not a rational number which
is equal to the product of a finite number .of factors of the form

- (1—5‘—) Let us choose n =1 so that we ‘have

(25) S " 1—21 <a<1——l—'

2m’
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further, if ny, m,, ..-'. ., m,_, are already. found, we choose.n,/, s0 as to'

- ‘obtain : o ‘ . .

(26) _'1 R 2',.1_1 < ¢ _<l—-$.‘
S [1(1-—),.-, s

.'Dmdmg (26) by l-—-EL and applymg agam (26) with k—l—l mstead'

of k, we obtam

en .

It follows from (27) that 11,,, > m,. Thus the sequence n,,- Which . is’
" uniquely . determined : accordmg to the above construction. is ) non-de-
creasing. It is easy to. see, that n,- oo As a matter of fact, in-the
.. opposite case n, would be conistant from ‘some index~k, onwards. But."
~ it would follow from- the .construction that .in this case we shiould have ~
for any N, i. e. we should have =0, contrary to our hypothesns Thus~ o
n,;»oo and 1t follows from (26) that . . .

’

llm .__a_-'_'_ 1

L k—»cn k-1 2 <

{7 25).
Jj= .' . .

which proves our lemma S R N

§ 2, Appllcation of the theorem of Lagrange.
The theorem of LAGRANGE is questlon lS the following : Let p~

denote a prlme number ot the torm 4n +3 let rl,rz, Ty (v_P 21] )

T denote a complete system of quadratrc residués mod p. Let 4 denote - -

any mteger,'d$0 mod p. ’I.'heni th,ere'are- p— ry 3_ quadratic réSidu'es in
the " sequence r;+d (j=1,2,..., g).,-'Accordlng to the terminology
introduced in Lemma 5, this theorein can be stated also_ by saying that

the system of quadratic residues to a prime modulus p=3 mod 4 is

a drfference basis of order 14 43 modulo p. ThlS theorem follows easrly '
~ from ‘Lemma 5 and from-the well known formula for Gaussran sums:

_ ] Dol -p-1 ’

Gy ;_exp_(,. a L =ity

A6
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. for péB mod 4. As every class of quadratic residues is répresente_d
twice among the squares 3 (1 <y<p—1), it follows from (29) that
(30) - 5 exp(anrj):z_V—pffl .

E = p 2

R 27 zk
It follows from (30), usmg Zexp

=0, .that if s, sg,\_i .., S de-

note a complete set of quadrahc non- reeidues mod p, we have
) - » 2 fo . _ .
&) _ Zexp( ’”s’)_—_ ifp—1 |

. A J=1 p 2 .

Now thé sequence nr, (j=1,2,...,#) is congruent to the sequence

. of residues or to the sequence of non-residues, according to the quadratic

- character -of n. Thus it fo”ows from (30) and (31) that for any n==0
mod p we have

.(32). | ("mnr)J . p—|—t

4 -
Thus we can apply Lemma 5, and- obtam .that the differences r,—r;,
p—1_ p+1 _p— 3
o 2 4 4.

" times, which is equlvalent to the theorem of LAGRANGE stated above'
' Now everything is’ ready to prove
Theérem 1. The least upper bound M(a) o/ the measure of -
: equzdtstrzbutlon w(E) of measurable sets E having ﬂze measure |E|—a

iFj represent every-class of resxdues mod p exactly

* - .is identically equal to 1 for 0< a< 1.

Proof of Theorem 1. Letp denote a prnme p—3 mod 4,
~and letir,, Tyy ooy I (v= %) denote a complete system,of quadratlc'
residues mod p. Let us define the. set E,= E (4, rg, Ceo Iy)-as in-§ 1..

It -follows from Lemma 6 that

an - . N p+1
(33) - . (E) 11— (p—1)2" . .
. Let 8 denote a set obtained by adding to E, any “interval of 1ength .
2p As |E [——pl, we hav_e_|<‘p°,,|—'—1— and it follows from (33) that .
(34 - u«?)_l—% |

* Since-there are aii infinity of primes of the form 4n+3, it follows that o

.M(%)_l Applymg ‘Lemma 11 we obfain M(

2")-&— 1 :.for k=1; 27"-': -

-
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further, by Lemma 7, M 1—5,;)—1 (k=1 2,...). Applying Lemma
11 again, we obtam that M(e)="1 if ¢ is a finite product of the’ form

(24). Thus it follows, using ‘Lemma 12 and regarding al$o. Lemma '13,
" that M(a)=l for all e, 0<a<1 Thus Theorem 1is proved*’)

§. 3 The measure of -fold' equrdrstrrbutron

‘Let E, E,, |E| and F(x) have the meanmg as- in -the mtroductron

© - Let G(zfl, fy, ..., t;) denote the measure of thé set “of pomts common

to-E,-E, .E,, ..., E,. We have evrdently
. 1

. (35) d@, f;,.'.. tk)_ fF(x)F(x—l—t)F(x—l—tQ) F('Jr—{—_."z;,‘)dic.

It is' easy to see that "G(4, 12, t,,) is a conhnuous functron of its
“variables. The mmrmal value of G(tl, fo,. ., f,) shall be d_enoted by m(E).
-Owing to . o

I " S ST
e rf J Gl . ) dtydty.. .. dty= |EF7,
' 06 ¢ . R , : s
‘ we have I .
@37y - . o 0< < mk(E) < lEl"“ _ . _
The measure of kfold equldlstrrbutron of the set-E shall be dehned by.
: s m,(E) . :
B o m(E)= 1Ek:|k+1 )

Thus we have owmg to 37y O<pk(E)<1 The, 1east upper bound of', :

u,‘(E) for all measurable sets E with |E| =« will be denoted by Mk(a) O

It seems probable that Mk(a)——l identically in a for- any k. ‘In what
-follow: ‘we " shall prove however only the: followmg » o

Theorem 2. _
. ..' . ) * ) i .
. hm/l:f(a)_—4k+—l.

The most surprrsmg consequence of Theorem - b is perhaps that
there exist measurable sets -with “arbitrary small positive measure .with
the property, that-if the set is “rotated’> in the sense. mentioned in the
“introduction, the set of points, which are common to, the fotating set
"and to the original set, is never void, indeed, its measure exceeds always
4 fixed number during the rotatron Though Theorem 2 is relatively

~ 9 Mr. P UNGAR to whom I commurucated at an earher stage of my mvesh-
- gations some’ of my: results, found mdependently a proof of Theorem l, runmng
essentially on the same lmes
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much Weaker than Theorem I, and is not a “best -possible” result, never-
theless it contains the generalization of that interpretation of Theorem 1
which has been emphasised just now.

~ The proof of Theorem 3" will be based on the following gener-
alization of a theorem of THUE:

Lemma 14. I/ p is a prime, k a posmve mteger further the po-

sitive mtegers e, €, ..., 6, f satisfy

(39) : ' ey...e.f> P :
then for any k—tuple of rntegers (r,, Ty ..., ) there can be foun\a( in-
tegers Xx,, Xy, ..., X, and y for whlch 1 <y<f, }x|< e, (i=1,2,...,k

and r, ———J;— mod p (i=1,2,... k) are valid. _
Proof. Letus consider all k-tuples of integers} of the form (yr; 4+ x,).
i=1,2,...,k where | <x,<e (i=1,2,..7.,k)and 1<y<f The
* number of such k—tuples of mtegers being. ele2 ..e.f, as there are only
p* k-tuples which are different gnod p, owing to (39), there must be at

- least two k-tuples of the form considered. which are congruent mod p.

If we denote the two congruent A-tuples by. (yr; +x) and (nr.+§), ‘
1_1 2,. k we have

‘ Yyt x=r: —}—E mod p, i=12,..., k.

Fromy=nq mod p it would follow x,=E&; mod p for all i= 1, 2,..., k,
thus wé have y=E7 mod p, and it follows- o _
. +1&—x . L

r,=——-—>" mod i=1,2,...,k).
S = o4 )
" As 0= |§—x|<e. (i=1 2., k) and 1=ly— n|<f, our Lemma is
proved. .
Now ‘we prove the followmg.

k

. Lemma 15. SIf.p is a prime, k a positive integer, and Q = [ "“]
o [x] denotes. the integral part of x), a set of 2Q-integers ¢, cy,.. ., Caq N
" can be given, having the property that for any k-tuple of integers
- (b, by, - ., b,), elements c.l, Cigs « - -y Cigy ¢; of the given set can be chosen.

. S0 as to obtam Lo S

b, =c,—c mod (;p—l) for r=1,2,.. .,k

Pr_.oo'f.'P'utting e,.=f=[p"“]+ 1=Q+1 (i=1,2,...,k), con--
dition (39) of Temma 14 is evidently satisfied. Let g denote a primitive
root mod p and let mdx denote the index of the residue class x with.

respect to g. It is easy. fo see that" if ° c—mdz Cori=1nd (—1i) -

(i=1,2,...,Q), the sequence ¢; (1 <i<2Q) has the required pro-
perties. ' S _
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Let us now defme .the set E, consisting of the mtervals
» : e —1 < c, +l
@ e
where the ¢, (r=1,2,...,2Q) are, the elements of the set of mtegers of
Lemma 15 Let F(x) denote the characteristic function of the set E, and
let' G(t,, 4, ..., t,) be defined by (35). If (4, £, ..., 4) is an arbitrary
k-tuple of real numbers, 0<t, <4, we put K
o , b+,
. . b= :
~ p——l
where b denotes the integer - ‘which is nearest to (p—l)z‘,, and thus

y

S r=1,2.., k),

T .we” have

‘ I{),lg%' r=1,2..., /.
. " According .to Lemma 15, we can -choose ¢;,, G, . . ., €y, €; SO that '
- b=c,—c¢; mod(p—1) fer r=1,2,..., k

1t follows according. to (40) that if

.Cj_%'- Ci_'-.'%
: — L x5
, : p—1 T p—1 7
we have - ’ o )
R X o A,
" Thus - . B _
. . .1 ) 1
chh)=1 2 it 2 il
— - . L4 <x< '
F(x+t) or r== 1 if P =x= p—T1 .
_lt follows ‘from’ (35) that _ ’ -
owing 1o 1£1= 2% 'lrfl)-’ n
Owing to |E|,_=_T1 Q=|p"""|), we obtain
N : p . .
A (=%
(42) .‘ - : uu’l» (E) = 4];4-1 .

If "any hxed £> 0 is glven -we can choose P suffncnently large s0 as to
obtam _ . : .
43) - . JEl<e and uk(E) >. 4,,; .
" Thus Theorem 2is proved

-
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§. 4. Some remarks on the sequehces of Singer. '

We have seen in §. 1 that the construction of hlghly equidistri-
buted sets is closely connected with the number-theoretncal problem of
constructing difference bases, i. e. finite sequences of integers, the diffe-
rences of which represent every class of residues to a given modulus g
exactly k times, k being the order of the difference basis. In this di-
rection interesting results have been obtained by 1. SINGER (l. c. %))
- who constructed- difference bases of order .1 for any modulus ¢ of the -
form g=p*4p~+1, p prime. Let a, (j=0O,1,...,p) denote such
a sequence of SINGER; we may suppose evidently : R

0<ag,<a,<...<a,<q.

‘It follows that for any k(1 <k<q) either k or k—gq can be repre-
sented in the form a; — a;, and we may ask which subset of 1, 2,. ,q—l
is represented “actually”, i.e. for which k we have k—a—a This-
“problem, in a somewhat different from, has been raised by’ L. REDEI

‘and is discussed in ‘a joint paper of L. REDEI and.the author'®) where ..

‘the following theorem is proved: If * denotes the minimal .number of -
terms-of a finite sequence of integers with the property that their diffe-

rences represent every number 1, 2 .., n, then -~
(44 o lim o
“a - AU n»mVn |y .

'ex1sts further we have'l)

) - V2+—<IF V_

Now these problems are also connected with the theory of equldrstrl-
- bution of point sets. To establish this connection, we have to " defme
the “asymmetric distance function” g(¢) of a set E as follows: )
Let f(x) denote the characteristic - functlon of the set ‘E.if x is
‘contained in the interval o, 1), and let us define- f(x)—O for xout31de
of (0, 1) We put ©

@ 'e(t)—ff(x)f(x+t)dx (~1sf=+ 0.

10) To be pubhshed in the Mat. Sbornik.

. 1) As Bera Sz.-Nagy- kindly remarked, the lower estimation’ in (45) can be
-improved,. by some numerical refmement by approximately 0,01. A .similar remark
applies to (49). P. .Erpds and I. S. GAL' proved by some ‘modification of the original
proof-‘that (44) and, (45) are valid "also.if the sequence of mtegers in questron is
restricted . by the. condition that it is contained in the ‘sequence’ 1, 2;..., n; cf.
Proceedings Konmkltjke Nederlandsche Akademie van Wetenschappen, 51 (1948),
. pp. 1155—1159 .
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It. is easy to see that g(t) is an even contmuous functlon, further that .' .
g(0)=E, g(l)——O and ‘we have :

@ Jg(t)dt—.%'

We obtam further by some srmple calcu]atrons that -

i (48) Jg(t)cos/ltdt— ‘Uf(x) exp(zlx)dx

: f i. e that the FOURIER cosme transform of g(#).is non- negahve This is.
the idea underlymg the proof of the followmg property of the sequences-
of SINGER:

Théorem 3 Let us denote P= =p" (P prime), q=_P2-{-P—|—:1'. -

- and k——g-—é— If 0< a0 < a1 < a, < q- denotes a SINGER seqnence,
and if 1LA <A <. <A denote the' numbers which are representable o
"_in the form.a;—a, wzth i>j, furtlzer if Ay=k+D (1 e. D denotes how . -
: many numbers are mzssmg from the sequence-1,2,..., A,) then we have
ey . - opxPELE

_2 Tz
Proof We have Y

. SN " p EE
(50 Zexp'(-zm'q,t) P+1+2z cos2n 4, t=

. -sin (24, +I)
= P-- F 2 —.)ZCOSZnBt
. | sm_2~_ . L=l . .

. _.where B, (&= L2,.. D) denote the numbers ' <'A, - which are not. .
" contained in:the se‘quenee A, It follows from (50) that B

sin (2_A,,+_1)7

G 0ZPh———— +2D - .
. Co sin— " ) R
for all values of t Let us choose = 2A3+1 ; usmg srnx<x for x>0
' We obtain . : : .
2D>2‘(2A +1) _p

(B2 e
from which Theorem 3 follows by 51mple calculatlon _
It may be remarked that-though,(49) is not a best possible estim- . -

ate, it gives a rather good ~estimation for small values of P. Thus the
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set A; coincides with the set 1,2,..., k only for P=2 and P=23 (the
_corresponding SINGER sequences-are: 0,1,3 for P=2 and O, 1,4,6
for P=4), further (49) asserts that for P=4 there must bé at least
one “gap” in the sequence A;, and really there is exactly one-‘“‘gap”
_ if we consider the SINGER sequence 0,2,7,8,11. For P=35, owing to
(49), there mftist be at least two numbers missing from the sequence A;,
and there are really two gaps 1f we take the SINGER sequence 0, 1,4,

© 10,12, 17, etc.

' Some further progress could be obtained regardmg the problems
. considered ‘in the present paper if some more difference bases could

" be constructed. A necessary and sufficient condition however for the
,exnstence of a difference basis of order 'k modulo ¢, for gwen k and g,
i is not known.

- We, consxdered only sets E lymo in the interval (0, 1), but it is

“clear that the situation is the. same for any bounded linear set. The- .

problem of unbounded- linear sets however is somewhat different, as it '
is shown by the remark, . that ih this case the. symmetric-and- asymmetnc '
- distance functions G(t) and g(t) comc:de :

. My most sincere thanks are dues to P.- ERDOS and L. REDEI for ~
their valuable remarks. . . _

- (Réceived August 5, 1948,)



