On factorisable groups.

By J. SZÉP and L. RÉDEI in Szeged.

We shall call the group \mathfrak{G} factorisable by the (proper) subgroups \mathfrak{H} and \mathfrak{H} , if $\mathfrak{G} = \mathfrak{H}\mathfrak{R}$. There are several papers dealing with the special case $\mathfrak{H} \cap \mathfrak{R} = E^{-1}$ (*E* the unit element) or $\mathfrak{H} \cap \mathfrak{R} = \mathfrak{D}$ where \mathfrak{D} is a normal subgroup of \mathfrak{G}^2). The purpose of the present paper is to deduce quite general results on the same problem by omitting the condition of the normality of \mathfrak{D} . We shall restrict ourselves to finite groups but many of our results may be extended to infinite groups.

Let H, H', ... and K, K', ... denote elements of \mathfrak{H} and \mathfrak{R} respectively. It is known that if the group \mathfrak{G} of finite order is representable as the product of two subgroups, $\mathfrak{G} = \mathfrak{H}\mathfrak{R}$ where $\mathfrak{H} \cap \mathfrak{R} = E$, then each element of \mathfrak{G} can be represented, precisely once, both in the form HKand in the form KH. In the relation HK = K'H' the elements K' and H' are uniquely defined whenever K and H are given. If K is fixed, then H' together with H runs over all elements of \mathfrak{H} . We may thus

associate with each K the permutation $\begin{pmatrix} H \\ H' \end{pmatrix}$ of the elements of \mathfrak{H} .

The case is more difficult, if $\mathfrak{H} \cap \mathfrak{K} = \mathfrak{D} + E$. Even in this case the elements of \mathfrak{G} can be represented in the form HK, and also in the form KH, but these representations are no more unique. Moreover if we fix the element K in HK = K'H' then exactly d solutions of H'

¹) G. ZAPPA, Costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, Atti Secondo Congresso Unione Mat. Italiana Bologna. 1940, pp. 115-125.

J. Szer; Über die als Produkt zweier Untergruppen darstellbaren endlichen Gruppen, *Commentarii Math. Helvetici*, 22 (1948), pp. 31-33; On the structure of groups which can be represented as the product of two subgroups, *these Acta*, 12 A (1950), pp. 57-61.

L. REDEI, Die Anwendung des schiefen Produktes in der Gruppentheorie Journal für die reine und angewandte Math., 188 (1951), pp. 201-227.

²) G. CASADIO, Costruzione di gruppi come prodotto di sottogruppi permutabili, *Rendiconti di Mat. e delle sue applicazioni*, (V) 2, Fasc. III-IV (1941).

J. Szép and L. Rédei

belong to each H, d being the order of \mathfrak{D} . We shall show that we. may associate, also in this case, with each K a set of permutations $\begin{pmatrix} H \\ H' \end{pmatrix}$ and we shall discuss with these sets the structure of the group $\mathfrak{G} = \mathfrak{SR}$. From the results of I we get an explicit theorem and corollary in II.

We shall prove the following

Theorem 1. Let the finite group (5) be factorisable by two propersubgroups S, R:

I.

 $\mathfrak{G} = \mathfrak{H}.$ (1)Then to each $K(\in \Re)$ we can find a permutation $H \rightarrow H'$ of \mathfrak{H} such that $HKH'^{-1}\in\Re^{-1}$ (2)

for each element $H(\in 5)$. Denote by [K] the set of these permutations (belonging to K) and by $[\Re]$ the totality of the permutations in all sets [K]. Then $[\Re]$ is a group; [E] is a normal subgroup of $[\Re]$ (E is the unit element of (\mathfrak{G}) and each [K] is some coset of [E]; furthermore the following homomorphism holds:

 $\Re \sim [\Re]/[E].$

Remark. It is known, that (4)

From (4) we get

 $\mathfrak{H} \mathfrak{R} = \mathfrak{R} \mathfrak{H}.$

thus the theorem holds also for R, S. instead of S, R.

HK = K'H', (5)where K', H' are not uniquely determined by H and K. If K is fixed and H runs over all elements of \mathfrak{H} , then the elements H' are, in general, not all different. We shall show that we can choose elements K' such that the corresponding elements H' shall be different.

Let $\mathfrak{D} = \mathfrak{H} \cap \mathfrak{K}$ and let d denote the order of \mathfrak{D} . First we show that the system of the elements H' (each H' taken with its multiplicity) contains from each coset in the right side of $\mathfrak{H} = \mathfrak{D} + \mathfrak{D}\overline{H} + \ldots$ exactly d elements. Indeed the system of the H' contains from no coset: $\mathfrak{D}\overline{H}$ more elements than d. For, if we had in (5).

 $H_x K = K_x H'_x$ (x = 1,..., d+1), (6)where H_1, \ldots, H_{d+1} are different and $H'_x \in \mathfrak{D}\overline{H}$, then from (6) we should get $H_x H_y^{-1} = K_x H_x' H_y'^{-1} K_y^{-1}$ (x, y = 1, ..., d+1). (7) This is absurd, because the elements $H'_x H'_y^{-1}$ and hence even the ele-

ments $H_x H_y^{-1} = K_x H'_x H'_y^{-1} K_y^{-1}$ all belong to \mathfrak{D} for $x = 1, \dots, d+1$, in

contradiction to the fact that \mathfrak{D} contains d elements.

236

(3)

We write (5) in the form

$HK = K'D^{-1}DH'$

with $D \in \mathfrak{D}$; then $K'D^{-1} \in \mathfrak{R}$, $DH' \in \mathfrak{H}$. The above discussions imply that to each $H \in \mathfrak{H}$ we can select a suitable element D = D(H) such that in (8) DH' together with H runs over all elements of \mathfrak{H} .

According to (8) we may associate with each $K \in \Re$ a non-empty set of permutations of the elements of \mathfrak{H} . The set of permutations belonging to K will be denoted by [K].

Let $\varrho \in [K]$, $\sigma \in [K']$ be two permutations, $K, K' \in \Re$. Then $HK(\varrho H)^{-1}$, $HK'(\sigma H)^{-1} \in \Re$ (ϱH and σH denote the elemente of \mathfrak{H} into which H passes by the permutation ϱ resp. σ), hence $HKK'(\sigma \varrho H)^{-1} \in K$, i. e. $\sigma \varrho \in [KK']$.

This fact will be expressed in following manner:

(9)

(10)

(8)

$[K][K'] \subseteq [KK'].$

From [9] it follows that $[\Re]$ (the totality of the permutations in all sets [K]) is a group, further $[E]^2 \subseteq [E]$, i. e. [E] is a subgroup of $[\Re]$. Furthermore (9) implies that $[K][E] \subseteq [K]$, i. e. [K][E] = [K] and of course dually [E][K] = [K]. Hence we get that [E] is a normal subgroup of $[\Re]$ and instead of (9) we can write

$$[K][K'] = [KK'].$$

The correspondence $K \rightarrow [K]$ is a many-to-one mapping of \Re onto the factor-group $[\Re]/[E]$, and clear y it is (according to (10)) a homomorphism. This completes the proof of theorem 1.

Using Theorem 1 we prove the following

Lemma. If the group \Re has an element $K(\pm E)$ for which [K] contains the unit permutation (i. e. [K] = [E]) then \mathfrak{G} has a normal subgroup \mathfrak{R} ($\pm E$) for which the isomorphism

(11) $\Re/\Re \simeq [\Re]/[E]$ holds.

Proof. The elements K of \Re with [K] = [E], form a subgroup \Re of \Re which is by (3) normal in \Re and (11) holds. Further, since for $K \ (\in \Re)$ we have

$$(K' =) HKH^{-1} \in \Re \qquad (H \in \mathfrak{H}),$$

therefore

$$H^{-1}K'H\in\mathfrak{R} \qquad (H\in\mathfrak{H})$$

and hence $K' \in \mathfrak{N}$. Consequently, $H \mathfrak{N} H^{-1} = \mathfrak{N}$, i. e. \mathfrak{N} is normal subgroup in $\mathfrak{G} (= \mathfrak{H} \mathfrak{K})$.

Н.

From Theorem 1 we obtain the following .

Theorem 2. If the group \mathfrak{G} is factorisable by two of its proper . subgroups \mathfrak{H} and $\mathfrak{D} = \mathfrak{H} \cap \mathfrak{K}$ contains a normal subgroup $(\pm E)$ of \mathfrak{H} (or \mathfrak{K}), than \mathfrak{G} is not simple.

Proof. Let $\mathfrak{D}'(\mathfrak{CD})$ be a normal subgroup of \mathfrak{H} and $\mathfrak{D}' \neq E$. If $D(\neq E) \in \mathfrak{D}'$, then $HDH^{-1} \in \mathfrak{D}' \subset \mathfrak{K}$ ($H \in \mathfrak{H}$), therefore according to Theorem 1 [D] contains the unit permutation $H \rightarrow H$, i. e. [D] = [E]. This together with Lemma implies the statement.

The following corollary might be of particular interest.

Corollary. Let $\mathfrak{G} = \mathfrak{HR}$, where \mathfrak{H} and \mathfrak{R} are proper subgroups of \mathfrak{G} and \mathfrak{H} is Abelian, further $\mathfrak{D} = \mathfrak{H} \cap \mathfrak{R} + E$. Then \mathfrak{G} is not simple. In fact, Theorem 2 proves the assertion, since \mathfrak{D} is a normal subgroup of \mathfrak{H} .

Remark. It is easy to see that every finite group, not a cyclic p-group, is factorisable if it has a subgroup of prime index.

The authors did not find any finite groups which are not factorisable, except the cyclic *p*-groups.

(Received April 1, revised October 31, 1950.)