On factorisable groups.

By J. SzEP and L: Rédej in Szeged.

We shall call the group (5) factorisable by the (proper) subgroups \mathfrak{N} and Ω, if © $\mathcal{G} \mathfrak{R}$. There are several papers dealing with the special case $\mathfrak{K} \cap \Omega=E^{1}$) (E the unit element) or $\mathfrak{G} \cap \Omega=\mathfrak{D}$ where D is a normal subgroup of $\left(\operatorname{JS}^{2}\right)$. The purpose of the present paper is to deduce quite general results on the same problem by omitting the condition of the normality of \mathscr{D}. We shall restrict ourselves to finite groups but many of our results may be extended to infinite groups.

Let H, H^{\prime}, \ldots and K, K^{\prime}, \ldots denote elements of ξ and \mathfrak{K} respectively.
It is known that if the group (3) of finite order is representable as the product of two subgroups; $\mathfrak{G}=\mathfrak{F} \mathfrak{K}$ - where $\mathfrak{G} \cap \Omega=E$; then each etement of G can be represented, precisely once, both in the form $H K$ and in the form $K H$. In the relation $H K=K^{\prime} H^{\prime}$ the elements K^{\prime} and H^{\prime} are uniquely defined whenever K and H are given. If. K is fixed, then H^{\prime} together with H runs over all elements of \mathfrak{b}. We may thus associate with each K the permutation $\binom{H}{H^{\prime}}$ of the elements of \mathfrak{t}.

The case is more difficult, if $\mathfrak{S} \cap \Omega=\mathfrak{D} \neq E$. Even in this case the elements of © Gan be represented in the form $H K$, and also in the form $K H$, but these representations are no more unique. Moreover if we fix the element K in $H K=K^{\prime} H^{\prime}$ then exactly d solutions of H^{\prime}

[^0]belong to each H, d being the order of \mathfrak{D}. . We shail show that we may associate, also in this case, with each K a set of permutations $\binom{H}{H^{\prime}}$ and we shall discuss with these sets the structure of the group $(\mathbb{F}=\mathscr{\varrho} \Omega$. From the results of I we get an explicit theorem and corollary in 11 .

I.

We shall prove the following
Theorem 1. Let the finite group (5) be factorisable by two proper. subgroups $\mathfrak{G}, \mathfrak{R}$:

$$
\begin{equation*}
\mathfrak{F}=\mathfrak{G} \Omega \tag{1}
\end{equation*}
$$

Then to each $K(\epsilon \Omega)$ we can find a permutation $H \rightarrow H^{\prime}$ of \mathfrak{y} such that (2)

$$
H K H^{-1} \in \Omega
$$

for each element $H(\in \mathfrak{G})$. Denote by $[K]$ the set of these permitations (belonging to K) and by $[\Omega \mid$ the totality of the permutations in all sets $[K]$. Then [Ω] is a group; $[E]$ is a normal subgroup of $[\Omega]$ (E is the unit element of (5) and each $[K]$ is some coset of $[E]$; furthermore the following homomorphism holds:

$$
\Omega \sim[\Omega] /[E] .
$$

Remark. It is known, that

$$
\begin{equation*}
\mathfrak{H} \mathfrak{N}=\mathfrak{R} \mathfrak{G} \tag{4}
\end{equation*}
$$

thus the theorem holds also for $\mathfrak{R}, \mathfrak{W}$. instead of \mathfrak{G}, Ω.
From (4) we get

$$
\begin{equation*}
H K=K^{\prime} H^{\prime}, \tag{5}
\end{equation*}
$$

where K^{\prime}, H^{\prime} are not uniquely determined by H and K. If K is fixed and H^{\prime} runs over all elements of \mathfrak{G}, then the elements H^{\prime} are, in general, not all different: We shall show that we can choose elements K^{\prime} such that the corresponding elements H^{\prime} shall be different.

Let $\mathfrak{D}=\mathfrak{b} \cap \mathfrak{N}$ and let d denote the order of \mathfrak{D}. First we show that the system of the elements H^{\prime} (each $\cdot H^{\prime}$ taken with its multiplicity) contains from each coset in the right side of $\mathfrak{W}=\mathfrak{D}+\mathfrak{D} \bar{H}+\ldots$ exactly d elements. Indeed the system of the H^{\prime} contains from no coset. $\mathfrak{D} \bar{H}$ more elements than d. For, if we had in. (5).

$$
\begin{equation*}
H_{x} K=K_{x} H_{x}^{\prime}: \quad(x=1, \ldots, d+1), \tag{6}
\end{equation*}
$$

where H_{1}, \ldots, H_{d+1} are différent and $H_{x}^{\prime} \in D \bar{H}$, then from (6) we should get

$$
\begin{equation*}
H_{x} H_{y}^{-1}=K_{x} H_{x}^{\prime} H_{y}^{\prime-1} K_{y}^{-1} \quad(x, y=1, \ldots, d+1) \tag{7}
\end{equation*}
$$

This is absurd, because the elements $H_{x}^{\prime} H_{y}^{\prime-1}$ and hence even the elements $H_{x} H_{y}^{-1}=K_{x} H_{x}^{\prime} H_{y}^{\prime-1} K_{y}^{-1}$ all belong to D for $x=1, \therefore, d+1$, in contradiction to the fact that \mathfrak{D} contains d elements.

We write (5) in the form

$$
\begin{equation*}
H K=K^{\prime} D^{-1} D H^{\prime} \tag{8}
\end{equation*}
$$

with $D \in \mathfrak{D}$; then $\dot{K}^{\prime} D^{-1} \in \dot{\mathfrak{R}}, \dot{D} H^{\prime} \in \mathscr{E}$. The above discussions imply that to each $H \in \mathfrak{Z}$ we can select a suitable element. $D=D(H)$ such that in (8) $D H H^{\prime}$ together with H runs over all elements of \mathfrak{g}.

According to (8) we may associate with each $K \in \Omega$ a non-empty set of permutations of the elements of \mathfrak{H}. The set of permutations belonging to K will be denoted by [K].

Let $\varrho \in[\dot{K}], \sigma \in\left[K^{\prime}\right]$ be two permutations, $K, K^{\prime} \in \mathfrak{R}$. Then $H K(\varrho H)^{-1}$, $H K^{\prime}(\sigma H)^{-1} \in \mathfrak{I}(\rho H$ and σH denote the elemente of \mathfrak{G} into which H passes by the permutation ϱ resp. o), hence $H K K^{\prime}(\sigma \varrho H)^{-1} \in K$, i. e. $\sigma \rho \in\left[K K^{\prime}\right]$.

This fact will be expressed in following manner:

$$
\begin{equation*}
[K]\left[K^{\prime}\right] \subseteq\left[K \dot{K}^{\prime}\right] \tag{9}
\end{equation*}
$$

From [9] it follows that [$[\sqrt{\Omega} \mathrm{j}$ (the totality of the pemitations in all sets $[K]$) is a group, further $[E]^{2} \subseteq[E]$, i. e. $[E]$ is a subgroup of $[\Omega]$. Furthermore (9) implies that $[K][E] \subseteq[K]$, i. e. $[K][E]=[K]$ and of course dually $[E][K]=[K]$. Hence we get that $[E]$ is a normal subgroup of [Ω] and instead of (9) we can write (10)

$$
[K]\left[K^{\prime}\right] \doteq\left[K K^{\prime}\right]
$$

The correspondence $K \rightarrow[K]$ is a many-to-one mapping of Ω onto the factor-group $[\Omega] /[E]$, and cleary it is (according to (10)) a homomorphism. This completes the proof of theorem 1.

Using Theorem 1 we prove the following
Lemma. If the group \mathfrak{K} has an element. $K(\neq E)$ for which $[K]$ contains the unit permutation. (i. e. $[K]=[E]$) then (G) has a normal subgroup $\mathfrak{Y}(\neq E)$ for which the isomorphism
$\Omega / \mathfrak{N} \cong[\Omega] /[E]$
holds.
Proof. The elements K of \mathscr{K} with $[K]=[E]$, form a subgroup $\mathfrak{\Omega}$ of \mathfrak{K} which is by (3) normal in \bar{K} and (11) holds. Further, since for $K(\in \Re)$ we have ${ }^{-}$

$$
\begin{equation*}
\left(K^{\prime}=\right) H K H^{-1} \in \AA \tag{H}
\end{equation*}
$$

therefore

$$
H^{-1} K^{\prime} H \in \mathfrak{\Re}
$$

and hence $K^{\prime} \in \mathfrak{\Re}$. Consequently; $H \Re H^{-1}=\mathfrak{N}$, i. e. \mathfrak{M} is normal subgroup in $\mathfrak{F}(=\mathfrak{G} \Omega)$.

11.

From Theorem 1 we obtain the following
Theorem 2. If the group (Gs is factorisable by two of its proper subgroups $\sqrt[S]{ }$ and \mathfrak{K} and $D=5 \cap \mathfrak{N}$ contains a normal subgroup $(\neq E)$ of \mathfrak{G} (or \mathfrak{K}); than (G) is not simple.

Proof. Let $\mathfrak{D}^{\prime}(\subset \mathfrak{D})$ be a normal subgroup of \mathfrak{D} and $\mathfrak{D}^{\prime} \neq E$. If $D(\stackrel{i}{\mp} E) \in \mathbb{D}^{\prime}$, then $H D H^{-1} \in \mathbb{D}^{\prime} \subset \Omega(H \in \mathscr{S})$, therefore according to Theorem $1[D]$ contains the unit permutation $H \rightarrow H$, i. e. $[D]=[E]$. This together with Lemma implies the statement.

The following corollary might be of particular interest.
Corollary. Let $\mathscr{G}=\tilde{\mathscr{E}} \mathfrak{A} \cdot$ where 5 and \mathscr{A} are proper subgroups of (G) and \mathfrak{W} is Abelian, further $\mathfrak{D}=\mathfrak{G} \cap \mathfrak{A} \neq E$. Then (5) is not simple.

In fact, Theorem 2 proves the assertion, since D is a normal subgroup of 6.

Remark: It is easy to, see that every finite group, not a cyclic p-group, is factorisable if:it has a subgroup of prime index.

The authors did not find any finite groups which are not faciorisable, except the cyclic p-groups.
(Received April 1, revised October 31, 1950.)

[^0]: ${ }^{1}$) G. Zappa, Costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, Atti Secondo Congresso Unione Mat. Italiana Bologna. 1940, pp. 115-125.
 J. Sżép; Über die als Produkt zweier Uńtergruppen darstellbaren endlichen Gruppen, Commentarii Math. Helvetici, 22 (1948), pp. 31-33; On the structure of groups which can be represented as the product of two subgroups, these Acta, 12 A (1950), pp. 57-61.
 L. Réder, Die Anwendung des schiefen Produktes in der Gruppentheorie Journal für die reine und angewandte Math., 188 (1951), pp. 201-227.
 ${ }^{2}$) G. Casadio, Costrizione ai gruppi come prodotto di sottogruppi permutabili, Rendiconti di Mat. e delle sue applicazioni, (V) 2; Fasc. III-IV (1941).

