An individual ergodic theorem for non-commutative transformations.

By NELSON DUNFORD in New Haven, Conn.

In a recent correspondence Professor H. E. ROBBINS has raised the following interesting question. Let Ω be a measure space of finite measure, let $p \ge 1$, and let $L_p(\Omega)$ be the normed linear space consisting of those measurable functions f on Ω for which $|f| = (\int_{\Omega} |f(\omega)|^p d\omega)^{1/p} < \infty$. Let φ_1, φ_2 be one-to-one measure preserving maps of Ω onto itself. Is it true that for any $f \in L_p(\Omega)$ the double limit

$$\lim_{n,n\to\infty} (m \cdot n)^{-1} \sum_{\nu_1=0}^{m-1} \sum_{\nu_2=0}^{n-1} f(\varphi_1^{\nu_1} \varphi_2^{\nu_2} \omega)$$

exists almost everywhere on Ω ? ROBBINS has pointed out that this double sequence converges in the mean of order p. In fact, this follows readily from the mean ergodic theorem of F. RIESZ¹). As far as the almost everywhere convergence is concerned, it appears that the known methods for proving the individual ergodic theorem fail unless the transformations φ_1, φ_2 commute. It is curious, however, that a proper combination of known ergodic theorems will yield an affirmative answer to ROBBINS' question in case p > 1. The question, as far as I know, is unanswered in the case p = 1. In this note we shall demonstrate the

Theorem. Let $\varphi_1, \ldots, \varphi_k$ be one-to-one measure preserving maps of the measure space Ω onto itself and let p > 1. Then for every $f \in L_p(\Omega)$ the multiple sequence

(1)
$$(m_1 \cdots m_k)^{-1} \sum_{\nu_1=0}^{m_1-1} \cdots \sum_{\nu_k=0}^{m_k-1} f(\varphi^{\nu_1} \cdots \varphi^{\nu_k} \omega)$$

is convergent (as $m_1, \ldots, m_k \rightarrow \infty$ independently) almost everywhere on Ω , as well as in the mean of order p. Furthermore, this multiple sequence is dominated by a function in $L_p(\Omega)$.

¹) F. RIESZ, Some mean ergodic theorems, Journal London Math. Soc., 13 (1938), pp. 274-278.

N. Dunford

For a given function $f \in L_p(\Omega)$ we shall write \overline{f} for the function whose value at the place ω is $\overline{f}(\omega) = |f(\omega)|$, and reserve the symbol |f| for the norm of f as a vector in $L_p(\Omega)$. If A is a transformation in $L_p(\Omega)$ we shall write $A(f, \omega)$ for the value of Af at the point $\omega \in \Omega$. We shall be concerned with the following transformations

$$T_{i}(f, \omega) = f(\varphi_{i} \omega), \quad i = 1, ..., k,$$

$$U(i, m) = m^{-1} \sum_{\nu=0}^{m-1} T_{i}^{\nu}, \quad i = 1, ..., k; \quad m = 1, 2, ...,$$

$$V(m_{1}, ..., m_{k}) = U(k, m_{k}) ... U(2, m_{2}) U(1, m_{1})$$

With this terminology then, $V(m_1, \ldots, m_k)(f, \omega)$ is the multiple sequence (1). Since φ_i is measure preserving we have $|T_i f| = |f|$ and hence

(2)
$$|U(i,m)f| \leq |f|, |V(m_1,\ldots,m_k)f| \leq |f|.$$

By the mean ergodic theorem of F. RIESZ we know that there is a projection operator E_i with

(3)
$$\lim_{m} U(i,m) f = E_{i} f, \quad f \in L_{p}(\Omega), \quad i = 1, \dots, k$$

From (2) and (3) it follows immediately that

(4)
$$\lim V(m_1,\ldots,m_k) f = E_k \ldots E_1 f, \quad f \in L_p(\Omega),$$

for indeed suppose this fact has been established for k-1 maps $\varphi_2, \ldots, \varphi_k$ and note that

$$\begin{aligned} |(U(k, m_k) \dots U(1, m_1) - E_k \dots E_1) f| &\leq |U(k, m_k) \dots U(2, m_2) \{U(1, m_1) - E_1\} f| + \\ + |\{U(k, m_k) \dots U(2, m_2) - E_k \dots E_2\} E_1 f| &\leq \\ &\leq |\{U(1, m_1) - E_1\} f| + |\{U(k, m_k) \dots U(2, m_2) - E_k \dots E_2\} E_1 f| \end{aligned}$$

approaches zero by our induction hypothesis. In connection with his proof of equation (3) RIESZ has shown that E_i projects $L_p(\Omega)$ onto the manifold \mathfrak{M}_i of those f for which $T_i f = f$ and the complementary projection $E'_i = I - E_i$ projects $L_p(\Omega)$ onto the closure of the manifold $(I - T_i) L_p(\Omega)$. Thus if we define \mathfrak{N}_i as the set of functions of the form $(I - T_i) f$ with $\sup_{\omega} |f(\omega)| < \infty$, we have

(5)
$$\mathfrak{M}_i + \mathfrak{N}_i$$
 is dense in $L_p(\Omega)$,

a fact which will be needed later. Now let $g = (I - T_1) f \in \mathfrak{N}_1$ with $|f(\omega)| \leq k$. Then $U(1, m)(g, \omega) = m^{-1} [f(\omega) - f(\varphi_1^m \omega)]$, so $|V(m_1, \ldots, m_k)(g, \omega)| \leq 2k/m_1$, and so

(6)
$$\lim V(m_1,\ldots,m_k)(g,\omega) = 0, \ \omega \in \Omega, \ g \in \mathfrak{N}_1.$$

For a function $f \in \mathfrak{M}_1$ we have $f(q_1 \omega) = f(\omega)$, for almost all $\omega \in \Omega$ and thus $U(1,m)(f,\omega) = f(\omega)$ for almost all $\omega \in \Omega$ and all $m = 1, 2, \ldots$ Since the

theorem is known²) to be true for k = 1, we shall apply induction and assume that is has been proved for the case of k-1 transformations $\varphi_2, \ldots, \varphi_k$. The induction hypothesis yields then for $f \in \mathfrak{M}_1$ the almost everywhere convergence of the multiple sequence

$$V(m_1,\ldots,m_k)(f,\omega) = U(k,m_k)\ldots U(2,m_2)(f,\omega).$$

This fact combined with (5) and (6) shows that

(7) For every f in a set dense in $L_p(\Omega)$ the sequence $V(m_1, \ldots, m_k)(f, \Omega)$ converges almost everywhere on Ω .

Next we define the operator D_i (not linear) by the equation

 $D_i(f, \omega) = \lim_{1 \leq m} U(i, m)(\overline{f}, \omega), \quad i = 1, \dots, k.$

It has been shown by N. WIENER^B) that $D_i f \in L_p(\Omega)$ if $f \in L_p(\Omega)$. Hence if $g_1 = D_1(f)$, $g_i = D_i(g_{i-1})$, i = 2, ..., k, it follows that $g_k \in L_p(\Omega)$. Since $U(i, m_i)$ is a positive operation, i. e., it takes positive functions into positive functions, we have

$$U(2, m_2) U(1, m_1) (\bar{f}, \omega) \leq U(2, m_2) (D_1(f), \omega) \leq \\ \leq D_2 (g_1, \omega) = g_2(\omega), \quad \omega \in \Omega, m_1, \quad m_2 = 1, 2, \dots, \\ U(2, m_2) U(2, m_2) U(2, m_2) (\bar{f}, \omega) \leq \sigma_1(\omega), \quad \omega \in \Omega, \quad m_2, \dots, m_n = 1, 2$$

$$U(3, m_3) U(2, m_2) U(1, m_1) (f, \omega) \leq g_3(\omega), \ \omega \in \Omega, \ m_1, m_2, m_3 = 1, 2, \dots,$$

etc. This yields

(8) For every $f \in L_p(\Omega)$ we have $|V(m_1, \ldots, m_k)(f, \omega)| \le g_k(\omega)$, and $g_k \in L_p(\Omega)$.

The weaker statement

(9) For every $f \in L_p(\Omega)$ we have $\sup_{1 \le m_1, \ldots, m_k} |V(m_1, \ldots, m_k)(f, \omega)| < \infty$,

together with (7) suffices to prove

(10) For every $f \in L_p(\Omega)$ the lim $V(m_1, \ldots, m_k)(f, \omega)$ exists a. e. on Ω .

This final implication is proved in Lemma 7 of a paper by N. DUNFORD and D. S. MILLER⁴). In that lemma we simply take Γ_p to be the set of all $\gamma = (m_1, \ldots, m_k)$ with $m_i \ge p$, $i = 1, \ldots, k_k$ and define for $\gamma = (m_1, \ldots, m_k) \in \Gamma_1$ the

²) The almost everywhere convergence has been proved by H. KHINTOHINZ, Zu Birkhoff's Lösung des Ergodenproblems, *Math. Annalen*, 107 (1933), pp. 285-288. The mean convergence has been proved in the paper of F. RIESZ referred to above. The dominated convergence has been proved by N. WIENER, The ergodic theorem, *Duke Math. Journal*, 5 (1939), pp. 1-18.

⁸⁾ Ibid.

⁴⁾ N. DUNFORD and D. S. MILLER, On the ergodic theorem, Transactions American Math. Soc., 60 (1946), pp. 538-549.

operator $T_{\gamma} \equiv V(m_1, \dots, m_k)$. Thus statements (4), (8), and (10) prove the theorem.

It should be mentioned that if f belongs to ZYGMUND'S class defined by $\int_{\Omega} |f(\omega)| \log^+ |f(\omega)| d\omega < \infty$, then $D_1(f) \in L_1(\Omega)$. This has been shown by N. WIENER⁶). Hence for such an f we see by the maximal ergodic theorem of YOSIDA and KAKUTANI⁶) that

$$|U(2, m_2) U(1, m_1)(f, \omega)| \leq U(2, m_2)(g_1, \omega) \leq g_2(\omega),$$

and $g_2(\omega) < \infty$ a. e. on Ω . Thus, since the only place where the hypothesis p > 1 entered was in the proof of (10), we may say that in case k = 2 we have the $\lim V(m_1, m_2)(f, \omega)$ existing a. e. on Ω providing

$$\int_{\Omega} |f(\omega)| \log^+ |f(\omega)| d\omega < \infty.$$

This fact has also been proved by ZYGMUND (unpublished).

YALE UNIVERSITY New Haven, Conn.

(Received August 16, 1949.)

⁶) K. YOSIDA and S. KAKUTANI, Birkhoff's ergodic theorem and the maximal ergodic theorem, *Proceedings Imperial Acad. Tokyo*, 15 (1939), pp. 165-168.