Farey series and their connection with the prime number problem. II.

By Miklos Mikolas in Budapest.

In a previous paper of the same title ${ }^{1}$) we considered the asymptotical behaviour of sums of the type

$$
\sum_{v=1}^{\Phi(m)} f\left(o_{v}\right),
$$

where the summation is extended over all fractions of the Farey series of order x. By supposing that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)=A
$$

exists, the relations

$$
\sum_{\nu=1}^{\Phi(x)} f\left(o_{\nu}\right) \sim A \Phi(x) \sim \frac{3 A}{\pi^{2}} x^{2}
$$

have been established; we sharpened this result for functions $f(t)$ having a bounded derivative in $0 \leqq t \leqq 1$, and showed e. g. that, for many special $f(t)$ of this class, the order of the difference

$$
R_{f}(x)=\sum_{v=1}^{\Phi(x)} f\left(\rho_{v}\right)-A \Phi(x)
$$

is connected with the validity of RIEMANN's hypothesis concerning the roots of the zeta-function.

Now we shall discuss in detail the case of the simplest functions $f(t)$ which are continuous for $0<t \leqq 1$ (moreover having derivatives of arbitrary order in this interval), but become infinite in the left end-point $t=0$; by applying the Euler-Maclaurin summation formula, we obtain in Part 1 the following relations:

[^0](I)
\[

$$
\begin{aligned}
\sum_{v=1}^{\Phi(x)} \log e_{v} & =-\Phi(x)+\frac{1}{2} \psi(x)+O\left(x e^{-c_{1}(\log x)^{y}}\right)= \\
& =-\Phi(x)+\frac{1}{2} x+O\left(x e^{-c_{2}\left(0_{e} \cdot x\right)^{y}}\right)
\end{aligned}
$$
\]

where

$$
\psi(x)=\sum_{\substack{p^{n} \leq \leq x \\ p \text { prime }}} \log p
$$

denotes TCHEBYCHEF's function, $\frac{1}{2}<\gamma<\frac{4}{7}$, and $c_{1}>0, c_{2}>0$ are constants depending on the choice of γ only;

$$
\begin{equation*}
\sum_{v=1}^{\Phi(x)}\left(\frac{1}{\varrho_{v}}\right)^{\gamma}=\frac{1}{1-\lambda} \Phi(x)+\frac{\zeta(\lambda)}{(1+\lambda) \zeta(1+\lambda)} x^{1+\lambda}+O(x)= \tag{IIa}
\end{equation*}
$$

$$
=\frac{3}{\pi^{2}(1-\lambda)} x^{2}+\frac{\zeta(\lambda)}{(1+\lambda) \zeta(1+\lambda)} x^{1+\lambda}+O(x \log x), \quad \text { if } 0<\lambda<1 ;
$$

$$
\text { (II b) } \sum_{v=1}^{\Phi(x)}\left(\frac{1}{\varrho_{\nu}}\right)^{\lambda}= \begin{cases}\frac{\zeta(\lambda)}{(\lambda+1) \zeta(\lambda+1)} x^{\lambda+1}-\frac{3}{\pi^{2}(\lambda-1)} x^{2}+O\left(x^{2}\right), & \text { if } 1<\lambda<2, \\ \frac{\ddots(\lambda)}{(\lambda+1) \zeta(\lambda+1)} x^{\lambda+1}+O\left(x^{2}\right), & \text { if } \lambda \geqq 2 ;\end{cases}
$$

finally

$$
\begin{gather*}
\sum_{v=1}^{\Phi(x)} \frac{1}{\varrho_{v}}=\Phi(x)\left\{\log x+\left(C-\frac{1}{2}-\frac{\zeta^{\prime}(2)}{\zeta(2)}\right)\right\}+O\left(x \log ^{2} x\right)= \tag{III}\\
=\frac{3}{\pi^{2}} x^{2}\left\{\log x+\left(C-\frac{1}{2}-\frac{\zeta^{\prime}(2)}{\zeta(2)}\right)\right\}+O\left(x \log ^{2} x\right)
\end{gather*}
$$

C denoting Euler's constant.
(I) will be of special interest, in view of the corollary

$$
\left(\prod_{v=1}^{\phi x 1} \varrho_{\nu}\right)^{\Phi(\bar{x})} \sim \frac{1}{e}
$$

and because it will be proved:
Riemann's hypothesis is true if and only if the relation

$$
\begin{equation*}
\sum_{v=1}^{\phi(x)}\left(\log \varrho_{\nu}+1\right)-\frac{1}{2} \psi(x)=O\left(x^{\frac{1}{2}+\varepsilon}\right) \tag{IV}
\end{equation*}
$$

holds for all positive values of ε.
In Part 2 we give a theorem of Tauberian type, which may be regarded as a converse of the relations (llb):

Suppose that $f(t)$ is non-negative, decreasing for $0<t \leqq 1$ and such that

$$
\sum_{v=1}^{\infty} f\left(\rho_{v}\right) \sim B x^{a},
$$

B, a denoting constants with $B>0, \alpha>2$, respectively. Then we have

$$
f\left(\frac{1}{t}\right) \sim B \frac{\alpha \zeta(\alpha)}{\zeta(a-1)} t^{a-1}
$$

Our method is elementary; we do not need e. g. the complex integral formula

$$
\begin{equation*}
\frac{1}{2 \pi i} \lim _{T \rightarrow \infty} \int_{(\alpha+\varepsilon)-i T}^{(\alpha+\varepsilon)+i T} \frac{x^{s}}{s^{2}} \frac{F(s)}{\zeta(s)} d s=\sum_{n=1}^{|x|} \sum_{(k, n, n=1} f\left(\frac{k}{n}\right) \log \frac{x}{n} \quad(\varepsilon>0), \tag{V}
\end{equation*}
$$

where $\alpha \geqq 2$ denotes the absolute convergence abscissa of

$$
F(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) .
$$

Nevertheless, we mention (V) since, under suitable restrictions, its application gives the formula

$$
\sum_{v=1}^{\Phi(x)} f\left(\rho_{v}\right) \sim \operatorname{Res}_{s=\alpha} \frac{x^{s} F(s)}{s \zeta(s)}
$$

which discloses the deeper ground of the above asymptotical results.

$$
\text { 1. The cases } f(t) \equiv \log t \text { and } f(t) \equiv \frac{1}{t^{2}} \quad(\lambda>0)
$$

In what follows fat numbers refer to the theorems or formulae of my paper [1].

Next let us apply ${ }^{2}$)
Lemma l. If $f(t)$ is continuous, decreasing and non-negotive for $0<t \leqslant 1$, and if

$$
\lim _{t \rightarrow+0} \int_{E}^{1} f(t) d t=\int_{0}^{1} f(t) d t
$$

exists, then we have

$$
\sum_{v=1}^{\Phi(x)} f\left(\varphi_{v}\right) \sim \dot{\Phi}(x) \int_{0}^{1} f(t) d t
$$

For $f(t)=\log t$ we can write

$$
\int_{\frac{1}{v}}^{1} \log t \cdot d t=-1-\frac{\log v}{v}+\frac{1}{v} \rightarrow-1
$$

when $v \rightarrow+\infty$; consequently
${ }^{\text {a }}$) See Mikolis [1], pp. 101-102.

$$
\begin{equation*}
\sum_{\nu=1}^{\Phi(x)} \log e_{v} \sim-\Phi(x), \tag{1}
\end{equation*}
$$

i. e.
$\left(\prod_{v=1}^{\Phi(r)} o_{\nu}\right)^{\frac{1}{\alpha(x)}}=\exp \left(\frac{1}{\Phi(x)} \sum_{v=1}^{\Phi(x)} \log \rho_{v}\right)=\exp (-1+o(1))=\frac{1}{e} \cdot e^{o(1)} \rightarrow \frac{1}{e}$,
if $x \rightarrow+\infty$.
Lemma 2. The geometrical mean of $F_{x}{ }^{3}$) is asymptotic to $1 / e$.
To improve the relation (1), we use Stirling's formula in the following elegant form: ${ }^{4}$)

$$
\begin{equation*}
\log n!=n \log n-n+\frac{1}{2} \log n+\log \sqrt{2 \pi}-\int_{n}^{\infty} \frac{P_{1}(t)}{t} d t \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{1}(t)=-\sum_{k=1}^{\infty} \frac{\sin 2 k \pi t}{k \pi} . \tag{3}
\end{equation*}
$$

We need still
Lemma 3 Let $\Lambda(n)= \begin{cases}\log p, & \text { if is a prime or one of its powers, } \\ 0 & \text { otherwise. }\end{cases}$ We have for Tchebychef's function, defined by

$$
\psi(x)=\sum_{n=1}^{[x]} \Lambda(n)=\sum_{\substack{p m \leq x \\ p \text { prime }}} \log p,
$$

the identities ${ }^{5}$)

$$
\begin{equation*}
\psi(x)=\sum_{n=1}^{|x|} M\left(\frac{x}{n}\right) \log n=\sum_{n=1}^{|x|} \mu(n) \log \left[\left.\frac{x}{n} \right\rvert\,!\right. \tag{4}
\end{equation*}
$$

Proof. By the well-known identity ${ }^{6}$)

$$
\begin{equation*}
\Lambda(n)=\sum_{d / n} \mu\left(\frac{n}{d}\right) \log d \tag{5}
\end{equation*}
$$

we can write

$$
\sum_{n=1}^{x]} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log d=\sum_{\substack{d, 0 \\ d \delta \leqq x}} \mu(\delta) \log d=\sum_{d=1}^{|x|} M\left(\frac{x}{d}\right) \log d=\sum_{\delta=1}^{|x|} \mu(\delta) \log \left[\frac{x}{\delta}\right]!
$$

According to Tchudakov's results ${ }^{7}$), we have the estimation
${ }^{3}$) As usual, F_{x} denotes the Farey series of order x.
${ }^{4}$) See e.g. Knopp [1], p. 547.
${ }^{\text {5) }} \boldsymbol{\mu}(n)$ denotes the Möbius function, $M(x)=\sum_{n=1}^{\lfloor x]} \mu(n!$.
${ }^{6}$) See e.g. Hardy-Wright [1], p. 253.
${ }^{7}$) Cf. Tchudakov [1], Theorem 3 (p. 599). - [2], pp. 421-422.
(6)

$$
\psi(x)=x+O\left(x e^{-\varepsilon_{1}(\log x)^{\gamma} \gamma}\right),
$$

where γ denotes any number with $\frac{1}{2}<\gamma<\frac{4}{7}$, and $c_{1}>0$ depends on the choice of γ only.

On the other hand, as is well-known, the relation

$$
\begin{equation*}
\psi(x)-x=O\left(\sqrt{x} \log ^{2} x\right) \tag{7}
\end{equation*}
$$

holds if and only if Riemann's hypothesis is true ${ }^{8}$).
Now we may formulate
Theorem 1.

$$
\begin{aligned}
\sum_{\nu=1}^{\Phi(x)} \log \rho_{\nu} & =-\Phi(x)+\frac{1}{2} \psi(x)+O\left(x e^{-c_{0}(\log x)^{\gamma}}\right)= \\
& =-\Phi(x)+\frac{1}{2} x+O\left(x e^{-\varepsilon_{3}(\log x)^{\gamma}}\right)
\end{aligned}
$$

where γ has the meaning as in (6), and $c_{2}>0, c_{3}>0$ depend upon the choice of γ only:

Pro.of. We take γ as fịed. By using the identity (4) and (2), we can write

$$
\begin{gathered}
\sum_{v=1}^{\Phi(x)} \log \varrho_{v}=\sum_{n=1}^{[x]} M\left(\frac{x}{n}\right) \sum_{k=1}^{n} \log \frac{k}{n}=\sum_{n=1}^{[x]} M\left(\frac{x}{n}\right)(\log n!-n \log n)= \\
=\sum_{n=1}^{[x]} M\left(\frac{x}{n}\right)\left(-n+\frac{1}{2} \log n+\log \sqrt{2 \pi}-\int_{n}^{-\infty} \frac{P_{1}(t)}{t} d t\right)
\end{gathered}
$$

Partial integration shows that

$$
\begin{equation*}
\int_{n}^{\infty} \frac{P_{1}(t)}{t} d t=-\frac{1}{12 n}+2 \int_{n}^{\infty}{\underset{t}{3}}^{P_{3}}(t) d t=O\left(\frac{1}{n}\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
P_{3}(t)=\sum_{k=1}^{\infty} \frac{2 \sin 2 k \pi l}{(2 k \pi)^{3}} \tag{9}
\end{equation*}
$$

and so, in view of (5), (6), (4), (8), we obtain

$$
\begin{equation*}
\sum_{\nu=1}^{\Phi(x)} \log \varrho_{\nu}=-\Phi(x)+\frac{1}{2} \psi^{\prime}(x)+\log \sqrt{2 \pi}+O \sum_{n=1}^{\mid x]} \frac{1}{n}\left|M\left(\frac{x}{n}\right)\right| \tag{10}
\end{equation*}
$$

By discussing the function

$$
h(u)=\frac{1}{\sqrt{u}} e^{-c_{2}(\log x-\log u)^{\gamma}}
$$

it is easy to verify that

$$
\begin{equation*}
\frac{1}{\sqrt{u}} e^{-c\left(\log \frac{x}{n}\right)^{\gamma}} \leq e^{-c(\operatorname{cog} x)^{\gamma}} \tag{11}
\end{equation*}
$$

${ }^{8}$) See Landad [2], vol. II., pp. 121, 156.
if, $1 \leqq u \leqq \frac{x}{\xi} ; \xi=\exp \left(\frac{c_{2} \gamma}{2}\right)^{\frac{i}{1-\gamma}}(>1) ;$ by use of (19) and (11) it follows for the last sum under (10)

$$
\begin{align*}
& \sum_{n=1}^{[x]} \frac{1}{n}\left|M\left(\frac{x}{n}\right)\right|=O \sum_{n \leq x} \frac{1}{n} \cdot \frac{x}{n} \cdot e^{-c_{2}\left(\log \frac{x}{n}\right)^{y}}= \\
& =x\left\{O \sum_{n \leq \frac{n}{\xi}} \frac{1}{n^{2}} e^{-c_{2}\left(\log \frac{x}{n}\right)^{\gamma}}+O \sum_{\frac{x}{\xi}<n \leq x} \frac{1}{n^{2}} e^{-c_{2}}\left(\log \frac{x}{n}\right)^{y}\right\} \tag{12}\\
& =x\left\{O\left(e^{-c_{2}(\log x)^{y}} \sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}\right)+O \sum_{n>\frac{x}{\xi}} \frac{1}{n^{2}}\right\}= \\
& =x\left\{O\left(e^{-c_{x}(\log x)^{\gamma}}\right)+O\left(\frac{1}{x}\right)\right\}=O\left(x e^{-c_{2}(\log x)^{\gamma}}\right)
\end{align*}
$$

(10), (12) and (6) involve indeed

$$
\therefore \sum_{x=1}^{\Phi(x)} \log \varrho_{y}+\Phi(x)=\frac{1}{2} \psi(x)+O\left(x e^{-c i(\log x)}\right)^{y}=\frac{1}{2} x+O\left(e^{-c_{2}(\log x} y\right) .
$$

Theorem, 2.. The relation

$$
\begin{equation*}
\sum_{\nu=1}^{\Phi(x)}\left(\log \rho_{\nu}+1\right)-\frac{1}{2} \psi(x)=O\left(x^{\frac{1}{2}+c_{4} \frac{\log \log \log x}{\log \log x}}\right) \tag{13}
\end{equation*}
$$

c_{4} denoting a positive donstant, is equivalent to Riemann's hypothesis; we may write $O\left(x^{\frac{1}{2}+\varepsilon}\right.$,) (with an arbitrary $\varepsilon>0$) instead of the expression on the righthand side, and x in place of $\psi(x)$.

Proof. If our assertion holds, (7) and (13) are clearly equivalent so' that, in fact, $\psi(x)$ may be replaced by x because of

$$
O\left(\sqrt{x} \log ^{9} x\right)=O\left(x^{\frac{1}{2}+2, \frac{\log g}{\log x} x}\right)=O\left(x^{\left.\frac{1}{2}+e^{\frac{\log \log \log \log x}{\log \log x}}\right) .}\right.
$$

10 Next suppose that RIEMANN"s hypothesis is true," then we have, according to: (20)

$$
M(x)=O\left(x^{\frac{1}{2}} \cdot x^{\frac{\log \log \log x}{\log \log x}}\right)=O\left(\sqrt{x} \cdot \exp ^{\frac{e_{4} \log x \cdot \log \log \log x}{\log \log x}}\right)
$$

Since the last exponent is monotonically increasing for $x>x_{0}(>1)$, there are constants $K>0$ and $\xi \geqq x_{0}$ such that

$$
|M(y)|<K \sqrt{y}: x^{\frac{\log \log \log x}{\log \log x}}
$$

whenever $1 \leqq y \leqq x, x>\equiv$.
Thus, by (10), we can write

$$
\begin{gathered}
\sum_{v=1}^{\Phi(x)}\left(\log \rho_{v}+1\right)-\frac{1}{2} \psi(x)=\log \sqrt{2 \pi}+O \sum_{w=1}^{|x|} \frac{1}{n} \frac{\sqrt{x}}{\sqrt{n}} x^{c_{4} \frac{\log \log \log x}{\log \log x}}= \\
=O\left(x^{\frac{1}{2}+c_{4} \frac{\log \log \log x}{\log \log x}}\right) .
\end{gathered}
$$

2^{0}. Assume that (13), i. e. for every $\varepsilon>0$ the relation

$$
\begin{equation*}
\sum_{\nu=1}^{\Phi(x)}\left(\log \varphi_{\nu}+1\right)-\frac{1}{2} \psi(x)=O\left(x^{\frac{1}{2}+\varepsilon}\right) \tag{14}
\end{equation*}
$$

is valid.
Since, by Lemma 1 (38) and (5),

$$
\sum_{\substack{k, k \\(k, n)=1}} \log \frac{k}{n}+\varphi(n)-\frac{1}{2} A(n)=\sum_{d, n} \mu\binom{n}{d}\left(\sum_{k=1}^{d} \log \frac{k}{d}+d-\frac{1}{2} \log d\right),
$$

the application of Lemma 7 gives

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{1}{n^{s}}\left(\sum_{(k, \leq n} \log \frac{k}{n}+\varphi(n)-\frac{1}{2} \Lambda(n)\right)= \tag{15}\\
=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} \cdot \sum_{n=1}^{\infty} \frac{1}{n^{s}}\left(\log n!-n \log n+n-\frac{1}{2} \log n\right)
\end{gather*}
$$

this equality holds, however, for $\sigma>1$ because of

$$
\log n!-n \log n+n-\frac{1}{2} \log n=O(1)
$$

(cf. (2), (8)).
Considering (2), we obtain from (15)

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{1}{n^{s}}\left(\sum_{\substack{k=n \\
(k, i, i)=1}} \log \frac{k}{n}+q(n)-\frac{1}{2} \Lambda(n)\right)-\log \sqrt{2 \pi}= \tag{16}\\
=-\frac{1}{E(s)} \sum_{n=1}^{\infty} \frac{1}{n^{s}} \int_{n}^{\infty} \frac{P_{1}(t)}{t} d t
\end{gather*}
$$

Our hypothesis (14) intplies, by virtue of Lemma 6, that the series on the left-hand side is regular for $\sigma>\frac{1}{2}$; the series at the right of (16) is, by (8), (convergent and so) regular for $\sigma>0$. Thus, if we show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{s}} \int_{n}^{\infty} \frac{P_{1}(t)}{t} d t \neq 0 \tag{17}
\end{equation*}
$$

for $\sigma>\frac{1}{2}$, it follows from (16) that $\zeta(s)$ has no zeros in this half-plane, i.e. that Riemann's hypothesis holds.

To verify (17), we write (cf. (8.)

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{1}{n^{s}} \int_{n}^{\infty} \frac{P_{1}(t)}{t} d t=-\frac{1}{12} \zeta(s+1)+2 \sum_{n=1}^{\infty} \frac{1}{n^{s+1}} n \int_{n}^{\infty} \frac{P_{3}(t)}{t^{3}} d t= \tag{18}\\
=-\zeta(s+1)\left(\frac{1}{12}-2 \sum_{n=1}^{\infty} \frac{b_{n}}{n^{s+1}}\right)
\end{gather*}
$$

Using the condition

$$
\sum \frac{b_{n}}{n^{s+1}}=\sum \frac{\mu(n)}{n^{s+1}} \cdot \sum \frac{1}{n^{s+1}} n \int_{n}^{\infty} \frac{P_{3}(t)}{t^{s}} d t
$$

(the right-hand series are plainly absolutely convergent for $\sigma>0$), we obtain for the coefficients b_{n} (cf. Lemma 7)

$$
b_{n}=\sum_{\delta ; n} \mu\left(\frac{n}{\delta}\right) \delta \int_{\delta}^{\infty} \frac{P_{3}(t)}{t^{3}} d t
$$

and so (cf. (2), (9))

$$
\begin{gather*}
B(u)=\sum_{n=1}^{|n|}\left|b_{n}\right| \leqq \sum_{n=1}^{|n|} \sum_{\delta / n} \delta\left|\int_{\delta}^{\infty} \frac{P_{3}(t)}{t^{3}} d t\right|=\sum_{n=1}^{|n|}\left[\frac{n}{n}\right]|n| \int_{n}^{\infty} \frac{P_{1}(t)}{t^{3}} d t t_{1} \leqq \\
\leqq \sum_{n=1}^{|u|}\left|\int_{n}^{\infty} \frac{P_{3}(t)}{t^{3}} d t\right|<u \sum_{k=1}^{\infty} \frac{2}{(2 k \pi)^{3}}: \sum_{n=1}^{[w 1} \int_{n}^{\infty} \frac{d t}{t^{3}}<u \frac{\zeta(3)}{8 \pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=u \frac{\zeta(3)}{48 \pi} \\
(19) \quad\left|\sum_{n=1}^{\infty} \frac{b_{n}}{n^{s+1}}\right| \leqq \sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n^{\sigma+1}}=\sum_{n=1}^{\infty} B(n)\left(\frac{1}{n^{\sigma+1}} \frac{1}{(n+1)^{\sigma+1}}\right)=(\sigma+1) \int_{1}^{\infty} \frac{B(u)}{u^{\sigma+2}} d u< \\
<(\sigma+1) \frac{\zeta(3)}{48 \pi} \int_{1}^{\infty} \frac{d u}{u^{\sigma+1}}=\left(1+\frac{1}{\sigma}\right) \frac{\zeta(3)}{48 \pi} \quad(\sigma>0) .
\end{gather*}
$$

Finally, by (18) and (19), we have for $\sigma>\frac{1}{2}$ (cf. (42))

$$
\begin{gathered}
\left|\sum_{n=1}^{\infty} \frac{1}{n^{s}} \int_{n}^{\infty} \frac{P_{1}(t)}{t} d t\right| \geqq|\zeta(s+1)|\left(\frac{1}{12}-2\left|\sum_{n=1}^{\infty} \frac{b_{n}}{n^{x+1}}\right|\right)> \\
>\frac{1}{12}|\zeta(s+1)|\left(1-\left(1+\frac{1}{\sigma}\right) \frac{\zeta(3)}{2 \pi}\right)>\frac{|\zeta(s+1)|}{12}\left(1-\frac{3 \zeta(3)}{2 \pi}\right)= \\
=\frac{|\zeta(s+1)|}{12}(1-0.574 \ldots)>0,
\end{gathered}
$$

which completes the proof.

As another interesting example, we discuss the case where $f(t)=\frac{1}{t^{2}}(\lambda>0)$.
Let us suppose $0<\lambda<1$; then, by

$$
\lim _{\varepsilon \rightarrow+0} \int_{\varepsilon}^{1} \frac{d t}{t^{\lambda}}=\lim _{\varepsilon \rightarrow+0} \frac{1}{1-\lambda}\left(1-\varepsilon^{1-\lambda}\right)=\frac{1}{1-\lambda},
$$

Lemma 1 gives

$$
\begin{equation*}
\sum_{v=1}^{\phi(x)} \frac{1}{\varrho_{v}^{\lambda}} \sim \frac{\Phi(x)}{1-\lambda}, \tag{20}
\end{equation*}
$$

relation which holds for $\lambda \leqq 0$ too. (Cf. Theorem 2.).
To find much sharper results, we use the relations

$$
\begin{equation*}
1+\frac{1}{2}+\ldots+\frac{1}{n}=\log n+C+\frac{1}{2 n}+O\left(\frac{1}{n^{2}}\right) \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
1+\frac{1}{2^{2}}+\ldots+\frac{1}{n^{2}}=\zeta(\lambda)-\frac{1}{\lambda-1} \cdot \frac{1}{n^{2-1}}-+\frac{1}{2} \frac{1}{n^{2}}+O\left(\frac{1}{n^{\lambda+1}}\right)(\lambda>0, \dot{\lambda} \neq 1) \tag{22}
\end{equation*}
$$

which can be obtained simply from the Euler-Maclaurin summation formula.
Theorem 3.

$$
\sum_{\mathrm{v}=1}^{\Phi(x)}\left(\frac{1}{\rho_{v}}\right)^{\lambda}= \begin{cases}\frac{1}{1-\lambda} \Phi(x)+\frac{\zeta(\lambda)}{(1+\lambda) \zeta(1+\lambda)} x^{1+\lambda}+O(x)= \\ =\frac{3}{\pi^{2}(1-\lambda)} x^{2}+\frac{\zeta(\lambda)}{(1+\lambda) \zeta(1+\lambda)} x^{1+\lambda}+O(x \log x), & \text { if } 0<\lambda<1, \\ \frac{\zeta(\lambda)}{(\lambda+1) \zeta(\lambda+1)} x^{\lambda+1}-\frac{3}{\pi^{2}(\lambda-1)} x^{2}+O\left(x^{2}\right), & \text { if } 1<\lambda<2, \\ \frac{\zeta(\lambda)}{(\lambda+1) \zeta(\lambda+1)} x^{\lambda+1}+O\left(x^{2}\right), & \text { if } \lambda \geqq 2 .\end{cases}
$$

Proof. Let $\lambda>0, \lambda \neq 1$.
In view of (14), the use of (22) gives (cf. (5), (6))

$$
\begin{aligned}
\sum_{v=1}^{\Phi(r)}\left(\frac{1}{\varrho_{v}}\right)^{2} & =\sum_{n=1}^{[x \mid} M\left(\frac{x}{n}\right) \cdot \sum_{n=1}^{n}\left(\frac{n}{k}\right)^{\lambda}= \\
& =\sum_{n=1}^{[x]} M\left(\frac{x}{n}\right) n^{2}\left(\zeta(\lambda)-\frac{1}{\lambda-1} \cdot \frac{1}{n^{2-1}}+\frac{1}{2} \cdot \frac{1}{n^{2}}+O\left(\frac{1}{n^{2+1}}\right)\right)= \\
& =\zeta(\lambda) \sum_{n=1}^{[x]} M\left(\frac{x}{n}\right) n^{2}-\frac{1}{\lambda-1} \Phi(x)+\frac{1}{2}+O \sum_{n=1}^{\mid x} \frac{1}{n}\left|M\left(\frac{x}{n}\right)\right|= \\
& =\zeta(\lambda) \sum_{n=1}^{[x]} M\left(\frac{x}{n}\right) n^{2}-\frac{1}{\lambda-1} \Phi(x)+O(x) .
\end{aligned}
$$

. Since, according to (22),

$$
\sum_{k=1}^{m} k^{\lambda}=\int_{0}^{m} u^{2} d u+\frac{1}{2} m^{2}+O \int_{0}^{m} u^{\lambda-1} d u=\frac{m^{\lambda+1}}{\lambda+1}+O\left(m^{2}\right)
$$

we have by (1)

$$
\begin{equation*}
\sum_{n=1}^{|x|} M\left(\frac{x}{n}\right) n^{2}=\sum_{n=1}^{|x|} \mu(n) \sum_{k=1}^{\left[\frac{x}{n}\right]} k^{2}=\frac{1}{\lambda+1} \sum_{n=1}^{|x|} \mu(n)\left[\frac{x}{n}\right]^{2+1}+O\left(x^{2} \sum_{n=1}^{|x|} \frac{1}{n^{2}}\right) . \tag{24}
\end{equation*}
$$

By taking $\left[\frac{x}{n}\right]=\frac{\boldsymbol{x}}{n}-\boldsymbol{\vartheta}(0 \leq \boldsymbol{v}=\boldsymbol{\vartheta}(x, n)<1)$, we see that

$$
\begin{aligned}
& \sum_{n=1}^{|x|} \mu(n)\left[\frac{x}{n}\right]^{\lambda+1}=\sum_{n=1}^{|x|} \mu(n)\left(\frac{x}{n}\right)^{2+1}+O \sum_{n=1}^{|x|}\left(\frac{x}{n}\right)^{2}= \\
&=x^{\lambda+1} \cdot \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{\lambda+1}}+x^{\lambda+1} O \sum_{n=\{x \mid+1}^{\infty} \frac{1}{n^{\lambda+1}}+O\left(x^{2} \sum_{n=1}^{|x|} \frac{1}{n^{2}}\right) .
\end{aligned}
$$

Hence, by (40) and (cf. (27))

$$
\sum_{n=[x]+1}^{\infty} \frac{1}{n^{2+1}} \sim \int_{x}^{\infty} \frac{d u}{u^{2+1}}=\frac{1}{\lambda x^{2}}
$$

it follows

$$
\begin{equation*}
\sum_{n=1}^{|x|} \mu(n)\left[\frac{x}{n}\right]^{2+1}=\frac{x^{2+1}}{\zeta(\lambda+1)}+O(x)+O\left(x^{2} \sum_{n=1}^{|x|} \frac{1}{n^{2}}\right) \tag{25}
\end{equation*}
$$

so that (23), (24), (25) imply

$$
\begin{equation*}
\sum_{\nu=1}^{\Phi(x)} \frac{1}{\varrho_{v}^{\lambda}}=\frac{\zeta(\lambda)}{(\lambda+1) \zeta(\lambda+1)} x^{\lambda+1}-\frac{1}{\lambda-1} \Phi(x)+O(x)+O\left(x^{2} \sum_{n=1}^{|x|} \frac{1}{n^{\lambda}}\right) . \tag{26}
\end{equation*}
$$

But (cf. (27))

$$
\sum_{n=1}^{|x|} \frac{1}{n^{2}} \sim \begin{cases}\frac{\zeta(\lambda)}{x} & \text { for } \lambda>1 \\ \int_{1}^{x} \frac{d t}{t^{2}} \sim \frac{x^{1-\lambda}}{1-\lambda} & \text { for } 0<\lambda<1\end{cases}
$$

and therefore we can write

$$
\sum_{\nu=1}^{\Phi(x)} \frac{1}{\rho_{v}^{\lambda}}-\frac{\zeta(\lambda)}{(i+1) \zeta(\lambda+1)} \cdot x^{\lambda+1}-\frac{1}{\lambda-1} \Phi(x)=\left\{\begin{array}{l}
O\left(x^{2}\right), \text { if } \lambda>1, \\
O(x), \text { if } 0<\lambda<1 .
\end{array}\right.
$$

Using now (7), we obtain the estimations in question.
Let us take, finally, $\lambda=1$.
Theorem 4.

$$
\begin{aligned}
\sum_{v=1}^{\Phi(x)} \frac{1}{\varrho_{v}} & =\Phi(x)\left\{\log x+\left(C-\frac{1}{2}-\frac{\zeta^{\prime}(2)}{\zeta(2)}\right)\right\}+O\left(x \log ^{2} x\right)= \\
& =\frac{3}{\pi^{2}} x^{2}\left\{\log x+\left(C-\frac{1}{2}-\frac{\zeta^{\prime}(2)}{\zeta(2)}\right)\right\}+O\left(x \log ^{2} x\right),
\end{aligned}
$$

where C is Euler's constant.
Proof. Applying (4), (21), we get (cf. (5), (6))

$$
\sum_{v=1}^{\Phi(x)} \frac{1}{\varrho_{v}}=\sum_{n=1}^{|x|} M\left(\frac{x}{n}\right) \sum_{k=1}^{n} \frac{n}{k}=\sum_{n=1}^{[x]} M\left(\frac{x}{n}\right) n\left(\log n+C+\frac{1}{2 n}+O\left(\frac{1}{n^{2}}\right)\right)=
$$

$$
\begin{align*}
& =\sum_{n=1}^{[x]} M\left(\frac{x}{n}\right) n \log n+C \Phi(x)+\frac{1}{2}+O \cdot \sum_{n=1}^{[x]} \frac{1}{n}\left|M\left(\frac{x}{n}\right)\right|= \tag{27}\\
& =\sum_{n=1}^{[x]} M\left(\frac{x}{n}\right) n \log n+C \Phi(x)+O(x)
\end{align*}
$$

Since, according to (27),

$$
\begin{gathered}
\sum_{k=1}^{n} k \log k=\sum_{k=1}^{m-1}(k+1) \log (k+1)=\int_{0}^{m-1}(u+1) \log (u+1) d u+\frac{1}{2} m \log m+ \\
+\frac{B_{2}}{2!}\{(\log m+1)-1\}+\frac{B_{4}}{4!}\left(1-\frac{1}{m^{2}}\right)-6 \int_{0}^{m-1} \frac{P_{b}(u)}{(u+1)^{4}} d u= \\
=\frac{1}{2} m^{2} \log m-\frac{1}{4} m^{2}+\frac{1}{2} m \log m+\frac{1}{12} \log m+O(1)
\end{gathered}
$$

we can write, by (4), for the first sum under (27)

$$
\begin{gathered}
\sum_{n=1}^{[x]} M\left(\frac{x}{n}\right) n \log n=\sum_{n=1}^{[x]} \mu(n) \sum_{k=1}^{\left[\frac{x}{n}\right]} k \log k= \\
=\sum_{n-1}^{[r]} \mu(n)\left\{\frac{1}{2}\left[\frac{x}{n}\right]^{2} \log \left[\frac{x}{n}\right]-\frac{1}{4}\left[\frac{x}{n}\right]^{2}+\frac{1}{2}\left[\frac{x}{n}\right] \log \left[\frac{x}{n}\right]+\frac{1}{12} \log \left[\frac{x}{n}\right]+O(1)\right\}
\end{gathered}
$$

By taking $\left[\frac{x}{n}\right]=\frac{\boldsymbol{x}}{n}-\boldsymbol{\vartheta} \quad(0 \leq \boldsymbol{\vartheta}=\boldsymbol{\vartheta}(\dot{x}, n)<1)$, we see that

$$
\begin{aligned}
& \log \frac{x}{n}-\log \left[\frac{x}{n}\right]=\log \left(1+\frac{\boldsymbol{y}}{\left[\frac{x}{n}\right]}\right)<\frac{1}{\left[\frac{x}{n}\right]}, \\
& \log \left[\frac{x}{n}\right]=\log x-\log n-\frac{\theta}{\left[\frac{x}{n}\right]} \quad(0 \leq \theta=\theta(x, n)<1)
\end{aligned}
$$

and therefore (cf. (5), (6), (4))

$$
\sum_{n=1}^{[x]} M\left(\frac{x}{n}\right) n \log n=\sum_{n=1}^{[x]} \mu(n)\left\{\frac{1}{2}\left[\frac{x}{n}\right]^{2}\left(\log x-\log n-\frac{\theta}{\left[\frac{x}{n}\right]}\right)-\frac{1}{4}\left[\frac{x}{n}\right]^{2}+\right.
$$

$$
\begin{equation*}
+\frac{1}{2}\left[\frac{x}{n}\right]\left(\log x-\log n-\frac{\theta}{\left[\frac{x}{n}\right]}+\frac{1}{12}\left(\log x-\log n-\frac{\theta}{\left[\frac{x}{n}\right]}\right)+O(1)\right\}= \tag{28}
\end{equation*}
$$

$$
\begin{aligned}
& =\log x\left(\Phi(x)-\frac{1}{2}\right)-\frac{1}{2} \sum_{n=1}^{\{x]} \mu(n) \log n\left[\frac{x}{n}\right]^{2}+O \sum_{n=1}^{|x|}\left[\frac{x}{n}\right]-\frac{1}{2}\left(\Phi(x)-\frac{1}{2}\right)+ \\
& + \\
& +\frac{1}{2} \log x+\frac{1}{2} \psi(x)+O \sum_{n \leqq x} 1+\frac{1}{12} M(x) \log x+O \sum_{n \leqq x} \log n+ \\
& +O \sum_{n \equiv x} 1+O(x)=\left(\log x-\frac{1}{2}\right) \Phi(x)-\frac{1}{2} \sum_{n=1}^{[x]} \mu(n) \log n \cdot\left[\frac{x}{n}\right]^{2}+O(x \log x)
\end{aligned}
$$

Considering that (cf. (40))

$$
-\frac{d}{d s} \frac{1}{\zeta(s)}=\frac{\zeta^{\prime}(s)}{\zeta^{2}(s)}=\sum_{n=1}^{\infty} \frac{\mu(n) \log n}{n^{s}} \quad(\sigma>1)
$$

furthermore by (cf. (27))

$$
\sum_{n=[x]+1}^{\infty} \frac{\log n}{n^{2}} \sim \int_{x}^{\infty} \frac{\log t}{t^{2}} d t=\frac{\log x+1}{x}
$$

and

$$
\sum_{n=1}^{|x|} \frac{\log n}{n} \sim \int_{1}^{x} \frac{\log t}{t} d t=\frac{1}{2} \log ^{2} x
$$

we have under (28)

$$
\begin{equation*}
\sum_{n=1}^{|x|} \mu(n) \log n \cdot\left[\frac{x}{n}\right]^{2}=\sum_{n=1}^{|x|} \mu(n) \log n\left(\frac{x}{n}-\vartheta\right)^{2}= \tag{29}
\end{equation*}
$$

$$
=x^{2} \sum_{n=1}^{\infty} \frac{\mu(n) \log n}{n^{2}}-x^{2} O \sum_{n=[x]+1}^{\infty} \frac{\log n}{n^{2}}-2 x O \sum_{n==1}^{[x]} \frac{\log n}{n}+O \sum_{n=1}^{[x]} \log n=
$$

$$
=x^{2} \frac{\zeta^{\prime}(21}{\zeta^{2}(2)}+O(x \log x)+O\left(x \log ^{2} x\right)+O(x \log x)=\frac{\zeta^{\prime}(2)}{\zeta^{2}(2)} x^{2}+O\left(x \log ^{2} x\right)
$$

Lastly, in view of (27), (28), (29), it follows

$$
\begin{gathered}
\sum_{v=1}^{g(x)} \frac{1}{\varrho_{v}}=C \Phi(x)+O(x)+\left(\log x-\frac{1}{2}\right) \Phi(x)+O(x \log x)- \\
-\frac{\zeta^{\prime}(2)}{2 \zeta^{2}(2)} x^{2}+O\left(x \log ^{2} x\right)=\left(\log x+C-\frac{1}{2}\right) \Phi(x)-\frac{\zeta^{\prime}(2)}{2 \zeta^{2}(2)} x^{2}+O\left(x \log ^{2} x\right)
\end{gathered}
$$

which by

$$
\Phi\left(x ;=\frac{3}{\pi^{2}} x^{2}+O(x \log x)=\frac{x^{2}}{2 \zeta(2)}+O(x \log x)\right.
$$

(cf. (7)), establishes the assertion.

2. A theorem of Tauberian type,

The question arises: how far the asymptotical behaviour of $f(t)$ is determined by that of $\Sigma f\left(o_{v}\right)$, i. e. which asymptotical properties of $f(t)$ can be deduced, if an asymptotic formula for $\Sigma f\left(\varphi_{\nu}\right)$ is given?

From this point of view (as a converse of Theorem 3) the following result has a certain interest:

Theorem 5. Suppose that $f(t)$ is non-negative and decreasing for $0<t \leqq 1$, furthermore

$$
\sum_{v=1}^{q(x)} f\left(o_{v}\right) \sim A x^{a}
$$

α, A denoting consfants with $a>2, A>0$, respectively. Then we have

$$
f\left(\frac{1}{t}\right) \sim A{\frac{\alpha \zeta(\alpha)}{\zeta(\alpha-1)} t^{\alpha-1}}^{\text {. }}
$$

For proving this theorem we need the well-known ${ }^{9}$)
Lemma 4. Let $h(x)$ be a function which is defined for $x \geqq 1$ and let us put

$$
\begin{equation*}
g(x)=\sum_{n=1}^{|x|} h\left(\frac{x}{n}\right) \tag{30}
\end{equation*}
$$

Then we have for $x \geqq 1$,

$$
\begin{equation*}
h(x)=\sum_{n=1}^{|x|} \mu(n) g\left(\frac{x}{n}\right) . \tag{31}
\end{equation*}
$$

Conversely: if (31) is valid for all $x \geqq 1$, then (30) holds also.
Proof of Theorem 5.
1^{0} Assume that $f(t)$ satisfies our conditions and

$$
\begin{equation*}
\sum_{v=1}^{\left.\Phi^{\prime} x\right)} f\left(\varrho_{v}\right) \sim A x^{a} \quad(A>0, a>2) \tag{32}
\end{equation*}
$$

Put

$$
\begin{gather*}
V(x)=\sum_{k=1}^{|x|} f\left(\frac{k}{[x]}\right), \tag{33}\\
G(x)=\sum_{n=1}^{|n|} V(n)=\sum_{n=1}^{|x|} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) ; \tag{34}
\end{gather*}
$$

then (4) implies

$$
\begin{equation*}
H(x)=\sum_{n=1}^{\infty(n)} f\left(\rho_{v}\right)=\sum_{n=1}^{|x|} M\left(\frac{x}{n}\right) V(n)=\sum_{n=1}^{\mid\}} \mu(x) G\left(\frac{x}{n}\right) \sim A x^{a}, \tag{35}
\end{equation*}
$$

so that, in virtue of Lemma 4,

$$
\begin{equation*}
G(x)=\sum_{n=1}^{i \times 1} H\left(\frac{x}{n}\right) . \tag{36}
\end{equation*}
$$

Let any $\varepsilon>0$ be given. According to (32), a number $\xi=\xi(\varepsilon) \geqq 1$ can be found such that for all $x \geqq \xi$

$$
H(x)-A x^{\alpha} \mid<\varepsilon x^{\alpha}
$$

${ }^{9}$) See e.g. Landau [1], p. 579.
and therefore for $x \geqq \cong ; n \leqq \frac{x}{\underline{s}}$,

$$
\begin{equation*}
\left|H\left(\frac{x}{n}\right)-A \frac{x^{r}}{n^{\alpha}}\right|<\varepsilon\left(\frac{x}{n}\right)^{\alpha} \tag{37}
\end{equation*}
$$

Furthermore, by $H(x)=O\left(x^{u}\right)$, there is a constant $B>0$ such that

$$
\left|H\left(\frac{x}{n}\right)\right|<B\left(\frac{x}{n}\right)^{\alpha} \text { when } \begin{align*}
& x \tag{38}\\
& n
\end{align*}
$$

Now let $x \geqq \xi$ and let us write (cf. (36))

$$
\begin{gather*}
G(x)=\sum_{n \geq i} A \cdot \frac{\dot{x}^{\alpha}}{n^{\alpha}}+\sum_{n \leq \frac{x}{x}}\left(H\left(\frac{x}{n}\right)-A \cdot \frac{x^{\alpha}}{n^{\alpha}}\right)+\sum_{\frac{x}{i} \leq \sum_{n \leq x}}\left(H\left(\frac{x}{n}\right)-A \frac{x^{\alpha}}{n^{\alpha}}\right)= \tag{39}\\
=\Sigma_{1}+\Sigma_{2}+\Sigma_{3}
\end{gather*}
$$

Plainly :

$$
\begin{equation*}
\Sigma_{1}=A \cdot x^{\dot{a}} \cdot \sum_{n \leq x} \frac{1}{n^{\alpha}}=A x^{\alpha}(\zeta(\alpha)+o(1))=A \zeta(\alpha) \cdot x^{\alpha}+o\left(x^{\alpha}\right) . \tag{40}
\end{equation*}
$$

On the other hand, using (37) we get

Finally, according to (38),
where $K=\operatorname{Max}(A, B)$.
(39), (40), (41), (42) involve

$$
\left|\frac{G(x)}{x^{\alpha}}-A \cdot \xi(a)\right|<|o(1)|+\varepsilon \zeta(a)+\frac{K}{x^{\alpha+1}} .
$$

We see that a number $\dot{\eta}=\eta(\varepsilon)>\xi$ can be found such that the righthand sum is less than $c \varepsilon$ (where c is a constant depending only on a), provided that $x \geqq \eta$; this implies

$$
\begin{equation*}
G(x) \sim A \zeta(\alpha) \cdot x^{a} . \tag{43}
\end{equation*}
$$

2° We have by hypothesis

$$
\begin{gather*}
V(n+1)-V(n)=\sum_{k=1}^{n+1} f\left(\frac{k}{n+1}\right)-\sum_{k=1}^{n} f\left(\frac{k}{n}\right)= \tag{44}\\
\quad=\sum_{n=1}^{n}\left(f\left(\frac{k}{n+1}\right)-f\left(\frac{k}{n}\right)\right)+f(1) \geqq 0,
\end{gather*}
$$

i. e. $V(n)(\leqq 0)$ monotonically increasing.

Thus the inequalities

$$
\sum_{n=(\mathbb{1}+\dot{c}} V(n)\left\{\begin{array}{l}
\leqq V(x+\delta x) \cdot(\delta x+1), \\
\geqq V(x) \cdot(\delta x-1)
\end{array}\right.
$$

hold for every positive δ.
On the other hand, by use of (43) we obtain

$$
\begin{aligned}
& \sum_{x: n \leqq(\delta) \cdot r} V(n)=G(x+\delta x)-G(x)=A \zeta(\alpha)\left((x+\delta x)^{\alpha}-x^{\alpha}\right)+ \\
& +o\left((1+\delta)^{\alpha} x^{\epsilon}\right)+o\left(x^{\alpha}\right)=A \zeta(\alpha)\left((1+\delta)^{\alpha}-1\right) x^{\alpha}+o\left(x^{\alpha}\right)
\end{aligned}
$$

and therefore

$$
\left.\begin{array}{r}
V(x+\delta x) \cdot(\delta x+1) \geqq \\
V(x) \cdot(\delta x-1) \leqq
\end{array}\right\} A \zeta(\alpha)\left((1+\delta)^{\alpha}-1\right) x^{\alpha}+o\left(x^{\alpha}\right) .
$$

Hence

$$
\begin{gather*}
V(x) \leqq A_{=}^{\ddot{O}}(\alpha) x^{\alpha} \frac{(1+\delta)^{a}-1+o(1)}{\delta x-1}=A_{G}(\alpha) x^{n-1} \frac{(1+\delta)^{\alpha}-1+o(1)}{\delta+o(1)}= \tag{45}\\
=A \zeta(\alpha) x^{\alpha-1} \frac{(1+\delta)^{\alpha}-1}{\delta}+o\left(x^{\alpha-1}\right)
\end{gather*}
$$

we deduce similarly

$$
V(x+\dot{\delta} x) \geqq A \zeta(\alpha) x^{t-1} \frac{(1+\delta)^{\kappa}-1}{\delta}+o\left(x^{\alpha-1}\right)
$$

and, x being replaced by $\frac{1}{1+\delta}$, it follows

$$
\begin{equation*}
V(x) \cong A \zeta(\alpha) x^{\alpha-1} \frac{(1+\delta)^{\alpha}-1}{\delta(1+\delta)^{\alpha-1}}+o\left(x^{\alpha-1}\right) \tag{46}
\end{equation*}
$$

According to (45), we have

$$
\limsup _{x \rightarrow \infty} \frac{V(x)}{x^{\alpha-1}} \leqq A \zeta(\alpha) \frac{(1+\delta)^{\alpha}-1}{\delta}
$$

(46) shows that

$$
\liminf _{x \rightarrow \infty} \frac{V(x)}{x^{\alpha-1}} \geqq A \zeta(\alpha) \frac{(1+\delta)^{\alpha}-1}{\delta(1+\delta)^{a-1}} .
$$

Let now $\delta \rightarrow+0$, we get

$$
\begin{aligned}
& \limsup _{r \rightarrow \infty} \frac{V(x)}{x^{\alpha-1}}=A \alpha \zeta(\alpha) \\
& \liminf _{x \rightarrow \infty} \frac{V(x)}{x^{\alpha-1}} \geq A \alpha \zeta(\alpha)
\end{aligned}
$$

consequently

$$
\lim _{x \rightarrow \infty} \frac{V(x)}{x^{\alpha-1}}=A a \zeta(\alpha),
$$

i. e.

$$
\begin{equation*}
V(x) \sim A \alpha \mathscr{C}(\alpha) x^{\alpha-1} \tag{47}
\end{equation*}
$$

3^{0}. In virtue of (47) (cf. (33))

$$
\begin{equation*}
\sum_{k=1}^{[x]} f\left(\frac{k}{[x]}\right)=A \alpha \zeta(\alpha) x^{\alpha-1}+o\left(x^{\alpha-1}\right) \tag{48}
\end{equation*}
$$

furthermore

$$
\sum_{k=1}^{[x]+1} f\left(\frac{k}{[x]+1}\right)=A \alpha \dot{\zeta}(\alpha) x^{\alpha-1}+o\left(x^{\alpha-1}\right)
$$

and so

$$
\begin{equation*}
\sum_{k=1}^{[x]+1} f\left(\frac{k}{[x]+1}\right)-\sum_{k=1}^{[x]} f\left(\frac{k}{[x]}\right)=o\left(x^{\alpha-1}\right) \tag{49}
\end{equation*}
$$

Since $f(t)$ is non-negative and decreasing in the interval $0<t \leq 1$, we can write

$$
0 \leqq \sum_{k=1}^{[x]} f\left(\frac{k}{[x]}\right) \leqq \sum_{k=1}^{[x]} f\left(\frac{k}{x}\right) \leqq \sum_{k=1}^{[x]+1} f\left(\frac{k}{[x]+1}\right)
$$

so that (cf. (48), (49))

$$
\begin{align*}
\sum_{k=1}^{|x|} f\left(\frac{k}{x}\right)- & \sum_{k=1}^{|x|} f\left(\frac{k}{[x]}\right) \leq \sum_{k=1}^{|x|+1} f\left(\frac{k}{[x]+1}\right)-\sum_{k=1}^{|r|} f\left(\frac{k}{[x]}\right)=o\left(x^{\alpha-1}\right) \tag{50}\\
& \left.\sum_{k=1}^{[x \mid]} f\left(\frac{k}{x}\right)=A \alpha \zeta(\alpha) x^{\alpha-}\right)+o\left(x^{\alpha-1}\right)
\end{align*}
$$

Let $q(t) \equiv f\left(\frac{1}{t}\right)$ for $0<t \leqq 1$, then

$$
\dot{F}(x)=\sum_{k=1}^{[x]} f\left(\frac{k}{x}\right)=\sum_{k=1}^{[x]} q\left(\frac{x}{k}\right)
$$

which implies, according to Lemma 4 ,

$$
\begin{equation*}
q(x)=\sum_{n=1}^{[x]} \mu(n) F\left(\frac{x}{n}\right) \tag{51}
\end{equation*}
$$

Next we may argue as above $\left(1^{0}\right)$, by writing

$$
\begin{gathered}
q(x)=\sum_{n \leqq x} \mu(n) A \alpha \zeta(\alpha)\left(\frac{x}{n}\right)^{\alpha-1}+ \\
+\sum_{n \leq \frac{x}{\xi}} \mu(n)\left(F\left(\frac{x}{n}\right)-A \alpha \zeta(\alpha) \frac{x^{\alpha-1}}{n^{\alpha-1}}\right)+\sum_{\frac{x}{\xi}<n \leqq x} \mu(n)\left(F\left(\frac{x}{n}\right)-A \alpha \zeta(\alpha) \frac{x^{\alpha-1}}{n^{\alpha-1}}\right)
\end{gathered}
$$

and applying (50) We obtain finally ($\alpha>2$)

$$
q\left(x=A \alpha \zeta(\alpha) x^{\alpha-1} \sum_{n \leq x} \frac{\mu(n)}{n^{\alpha-1}}+o\left(x^{\alpha-1}\right)\right.
$$

and therefore (cf. (40))

$$
\begin{gathered}
q(x)=\underset{f(\alpha-1)}{A \alpha(\alpha)} x^{\alpha-1}+o\left(x^{\alpha-1}\right) \\
f\left(\frac{1}{x}\right) \sim \frac{A \alpha-(\alpha)}{\zeta(\alpha-1)} x^{\alpha-1}
\end{gathered}
$$

Bibliography.

G. H. Hardy-E. M. Wright
[1] An introduction to the theory of numbers (Oxford, 1938).
K. Knopp
[1] Theorie und Anwendung der unendlichen Reihen, 3. edition (Berlin, 1931).
E. Landau
[1] Handbuch über die Verteilung der Primzahlen, vol. I-ll (Leipzig-Berlin, 1909),
[2] Vorlesungen über Zahlentheorie, vol. I- II (Leipzig, 1927).
M. Mikolás
[1] Farey series and their connection with the prime number problem. l, these Acta, 13 (1949), pp. 93-117.

N. Tchudakov

[1] On zeros of Dirichlet's L-functions, Recueil Math. Moscou (Mat. Sbornik), 1 (1936), pp. 591-602.
[2] On the function $\zeta(s)$ and $\pi(x)$, C. R. (Doklady) Acad. Sci."URSS, 21 (1938), pp. 421-422.

[^0]: ${ }^{1)}$ MikoLis [1]. (Numbers in brackets [] refer to the bibliography at the end of the paper.)

