On factorisable simple groups.

By J. SZÉP in Szeged.

A group (S) is called factorisable by its subgroups \mathfrak{H} and \mathfrak{R} if each element of (S) may be written in the form G = HK with H in \mathfrak{H} , K in \mathfrak{R} . The present paper contains a sufficient condition for a factorisable group $(\mathfrak{H}) = \mathfrak{H}\mathfrak{K}$ to be simple, if the orders of \mathfrak{H} and \mathfrak{R} are relatively prime. Evidently $\mathfrak{H}\mathfrak{K} = \mathfrak{R}\mathfrak{H}$.

In the proof I shall use a result of my earlier paper¹) which I formulate now as a

Lemma. If in the finite group $\mathfrak{G} = \mathfrak{GR}$ the orders of the factors \mathfrak{G} and \mathfrak{R} are relatively prime, then every normal subgroup $\overline{\mathfrak{G}}$ of \mathfrak{G} is of the form $\overline{\mathfrak{G}} = \overline{\mathfrak{SR}}$, where $\overline{\mathfrak{S}}$ and $\overline{\mathfrak{R}}$ are normal subgroups of \mathfrak{S} and \mathfrak{R} respectively.

I shall now prove the following

Theorem. If in the factorisable group $\mathfrak{G} = \mathfrak{H}\mathfrak{R}$ the orders of \mathfrak{H} and \mathfrak{R} are relatively prime, if further the groups \mathfrak{H} and \mathfrak{R} are maximal subgroups in \mathfrak{G} , then the group \mathfrak{G} is simple, except the case where \mathfrak{H} or \mathfrak{R} is a group of prime order; in the latter case at least one of the fuctors is a normal subgroup.

Proof. It suffices to show that if \mathfrak{G} is not simple, then either \mathfrak{H} or \mathfrak{A} is not maximal.

a) If the group \mathfrak{G} has a normal subgroup $\overline{\mathfrak{G}}$ and $\overline{\mathfrak{G}} \neq \mathfrak{H}$, $\overline{\mathfrak{G}} \neq \mathfrak{K}$, then by our Lemma $\overline{\mathfrak{G}} = \overline{\mathfrak{G}} \overline{\mathfrak{K}}$ where $\overline{\mathfrak{G}} \subseteq \mathfrak{H}$, $\overline{\mathfrak{K}} \subseteq \mathfrak{K}$. Therefore the groups $\mathfrak{H} \overline{\mathfrak{G}} \overline{\mathfrak{K}} =$ $= \mathfrak{H} \overline{\mathfrak{K}} = \overline{\mathfrak{K}} \mathfrak{H} = \mathfrak{H} \mathfrak{H} = \mathfrak{H} \mathfrak{H} = \mathfrak{H} \mathfrak{H} = \mathfrak{H} \mathfrak{H}$ are subgroups of \mathfrak{G} and at least one of them is proper.

b) If the group \mathfrak{X} is a normal subgroup of \mathfrak{G} and the order of \mathfrak{H} is not a prime, then \mathfrak{H} has an element H such that $\{H\} \subset \mathfrak{H}$, since $\{\mathfrak{K}, H\} \subset \mathfrak{G}$. The proof is the same if \mathfrak{H} is a normal subgroup of \mathfrak{G} .

c) If the group \mathfrak{H} is a maximal, but not a normal subgroup and if its order is a prime number, then \mathfrak{K} is necessarily a normal subgroup of \mathfrak{B} . In fact, in this case the groups $K^{-1}\mathfrak{G}K$ are different, whenever K runs over all elements of \mathfrak{K} and have only the unit element in common. Thus a known theorem of FROBENIUS²) implies the statement.

(Received April 1, 1950.)

¹) J. SZÉP, On the structure of groups which can be represented as the product of two subgroups, *these Acta*, 12 A (1950), pp. 57-61.

²) See e g. A. SPEISER, *Theorie der Gruppen von endlicher Ordnung*, 3 ed. (Berlin, 1937), Theorem 180.