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Conservative series tô series transformation matrices. 
By P . VERMES in London. 

1. Introduction. 

In a recent paper [9]') infinite matrices representing regular series to 
series summation methods have been discussed. The present paper is mainly 
concerned with conservative series to series summation matrices, a more general 
class of matrices. Regular matrices form a subclass, of these matrices, and 
the results obtained in this paper are therefore valid also for this subclass. 

The standard method of 'summing' a series of complex terms «„ + / / , + ••• 
with partial sums s t = u0 + UiH 1-uk is the transformation of the sequence 
sk by a matrix of complex elements! P=(p„k) into a convergent sequence 
o/, = ^kp„ksk. The matrix is called conservative if the convergence of 2uk 

implies that a„ exists for n > 0 and that a t t ends to a finite limit (which may 
be different from 2uk). A conservative sequence to sequence summation matrix 
is called a K-matrix [4, p. 388]. : 

Another. method is the transformation of the series Zuk into (¡convergent 
sequence a„ = 2kgnluk by a matrix G = (g„k). A conservative series to sequence 
summation matrix is called a ft-matrix [4,397]. Sufficient and necessary con-
ditions for G to be a >1-matrix are [4, 394—396] : 

(1.1) ' -* \g«t—gn.t+i IS M (G) for /1 = 0 , 1 , 2 , . . . , 

(1.2) g„k tends to a finite limit fik as n-+°° for k = 0,, 1, 2 , . . . 

We shall employ (1. 1) and (1.2) as the definition of a /î-matrix. 
A third method is the transformation of the series 2uk by the matrix 

B~(b„k) into a convergent series 2v„, so that v„ = 2kb„kuk. If the matrix is 
conservative, i. e. if the convergence of 2uk implies the existence of v, for 
n = 0 , 1 , 2 , . . . and the convergence of (where the two sums may differ), 
we shall call the matrix B a ô-matrix. 

The following results will be proved in section 2 : A necessary and 
sufficient condition for a matrix to be a ¿-matrix is that the corresponding 

>) Numbers in square brackets indicate references given at the end of this paper. 
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series to sequence method is conservative; the product of a /S-matrix and a 
¿-matrix is a fi-matrix; the sum and product of ¿ matrices, addition and 
multiplication being associative; a norm can be defined for ¿-matrices under 
which they form a non-commutative complex Banach algebra with unit ele-
ment [5, 1.14,p. 12] 

In section 3 we discuss the subclass of ¿-matrices A which satisfy the~ 
condition a„ = lim a„k = 0 for every n, this being necessary for a ¿-matrix 

to be stronger than convergence. Denoting these matrices ¿0-matrices, we show 
that they form a subalgebra of the algebra of ¿-matrices under the same norm. 
The sequence to sequence summation matrix corresponding to a ¿0-matrix is 
a /f-matrix, and the correspondence is an isomorphism. The norm of /(-matrices 
can therefore be introduced to ¿„-matrices. Considering the class (33) of series 
with bounded partial sums, if A and B are ¿„-matrices, they apply to every 
series of 

OB) and transform it into a series of (58), and A(B(ut)) = (AB)(ut). 
A ¿0-matrix and the corresponding /T-matrix are equivalent for series of (¡W), 
but examples are given of series of unbounded partial sums and of ¿„-matri-
ces where the two methods are not equivalent. 

In section 4 the following ¿„-matrices are studied: 

(ii) bni = $ ( \ - t ) r - b r k , 

(ni) • ^ ( " i ^ o - n / V " -
These matrices are ¿„-matrices when |/ -f | / " | < 1, they sum the Taylor 

series 2utzk of the function / (z) in some partial star-domains to the value 
/ (oz) , a depending on the matrix They also display a modified left- or right-
translativity. The corresponding series to sequence and sequence to sequence 
matrices cannot be expressed in simple terms, so that the introduction of 
¿-matrices was essential. These matrices can be regarded as modified methods 
of Euler, Taylor and Laurent series continuation discussed in recent papers 
[3, 6, 9 and 10]. 

In section 5 special ¿„-matrices are constructed which are efficient for 
Taylor series at an infinity of isolated points outside its circle of convergence. 

2. ¿-matrices. 

We first consider /?-matrices G. The following properties follow from 
the definition and (1. 1), (1 .2) : 
(2. \) If 2ut = 5, then the G-sum of^u, is given byfills + Z(,^—^l,l)(sL — s). 

This is proved in [4, 394—395]. 
(2. 2) The row limit lim gnl=g„ exists for every n. 
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For 2k(g,lk-gl,_k+l)=gn0-Ymg„t exists by (1.1). 

(2.3) 
r r 

For A+ i | = lim I SM{G), for every r. 
k—i.J n-ca k—0 

(2.4) lim ftk = ft exists. 
This follows from (2.3) as (2. 2) followed from (1.1). 

(2.5) The elements of G are bounded. 
fc-i | 

For + where 

/f(G) = s u p . | f t o | . 
The column limits ftk, their limit ft, and the row limits g„ will be called 

the characteristic numbers of G. 
We now consider the summation by series to series transformation of 

any series t / 0 + u , + . . , . . Summability by the matrix B means that 
(2 .6) va — 2kb„kuk exists for /2 = 0, I , . . . , and 2v» = s 

Writing v0 + t;H t-v„ = on and bak + bn.-\ Ybnk = gnk, we have 

<2.7/ o, = 2kgllkuk, 

the existence being implied by (2.6). Conversely, writing g„k —g„_vk = b„k 

(/i = 0, 1 , . . . ) and = 0, we find that the existence of (2.7) implies the 
existence of (2.6). Hence we obtain 

L e m m a 2. I. / / the matrices B and G are connected by the relation 
g„i = bak-\-blk-{- \-b„k, then the series to series transformation by B and 
the series to sequence transformation by G are equivalent. 

An immediate consequence of the Lemma is: 

T h e o r e m 2. 1. The matric B^(bnk) is a d-matrix if . and only if G, 
given by gnl = bak + blkA 1-bnt, is a ft-matrix. 

We shall call matrices, when they are related as in Theorem 2 I, corre-
sponding matrices. 

The following properties of ft-matrices are easily obtained: 

(2.8) 2k\b„k—b„kfi\<L2M(G); 

(2.9) 2,b.„ = ftt for every k (ftk is defined in (1. 2)) ; 

(2. 10) the row limit lim b„k = b„ exisis for every n, and, writing — 0, 
k-*- 00 

b„ — <>„—gm_t (§•„ is defined in (2 .2 ) ) ; 

(2. 11) \b„k\ 2K(G)-\-2M(G). 
It follows from (2.9) that b„k-0 as / 1 - ^ for every A:, so that every 
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¿•matrix is a /^-matrix with zero column limits. But not every /^-matrix satis-
fying (2 .8) and (2.9) is a ¿-matrix, as shown by example (2. 10) of. [9]. 

The unit matrix I and the zero matrix O are ¿-matrices. 

T h e o r e m 2. II. The product GC of a p-matrix G and a ¿-matrix C 
exists and is a (¡-matrix. 

P r o o f By (2.9), SjCn is convergent, and since G is a ^-matrix, 
(GC)„l = 2jgnjC;k exists for every n and k, hence G C exists. Denoting the 
product matrix by F, we have 

l im/„ i = lim 2jgmjcjk = G-sum of c,k exists for every k, 
n-*-ao «->-06 

so that F satisfies condition (1. 2). If H is the /î-matrix corresponding to C, 
with column limits yk, we have. 

( 2 . 1 2 ) f„ i = 2 j g „ i ( h ; k - h j ^ , k ) = 2 j { g „ J - g ^ + 1 ) h j i + Y m g „ i h J t ; 

hence 
/«t— A.i+t = -Agij—g+j+\) (f'n—+gArk—n+O-

Using (1.1), (2 .5) and (2. 3) we obtain 
(2. 13) 2k\fnk-fnii„\<M(G)M(H) + {K(G) + M(G)}M(H), 
so that F satisfies condition (1. 1). This concludes the proof. 

C o r o l l a r y 2. II. 1; The row limits of the product matrix are: 

/„ = g.Y + "M^—g«.,^) h,. 
This follows from (2.12), taking the limit of the right-hand side when 

Ac-oo. The series'being dominated by s u p | / 7 / t ] — g „ , J + l \ , the order of 
summation and limit can be interchanged. 

C o r o l l a r y 2. II. 2. The column limits of the product matrix are 

For <pk = lim 2jg„,clk = G-sum-^j = ^yk + - ^ ( / i ,—fi j + l ) (hjk - yk) = 
n-voo 

= lim P,hik—An+lim P,rk.' 1 j-*•» . . . " 

C o r o l l a r y 2. II. 3. lim<rk = fir + W - / W » , -
fc-* 00 

For the previous corollary gives 

<fi = ^,{hlk-h1_hk)li1 = 2 i ( f l - i i ^ ) h l i + lim 

the last sum being dominated by sup | /Sr>*|-—^|—/ï/L11. Letting Ar-oo, we 
obtain the result. ! i ' ' : ) 

C o r o l l a r y 2. II. 4. The elements of the product matrix are bounded, 
thus ' , 

\f.k\< {M(H) + K(H)} {2M(Gy+K(G)}. 
This follows from (2. 12), applying- (Î. 1) and (2 5). : 
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T h e o r e m 2. III. A sufficient and necessary condition for the matrix product 
GCto exist and be a ¡¡-matrix for every ft-matrix G is that C should be a 6-matrix. 

The proof is the same as of [9, 2. V]. This result is parallel to a 
previous result on the product of a 7-matrix and a y-matrix [7], which can 
be extended to the product of a /¡"-matrix and a /i-matrix in a similar way 
as in theorem 2. II of the-present paper. 

T h e o r e m 2. IV. The product of two d-matrices exists and is a d-matrix. 

P r o o f . In the notation of theorem 2.11 F=GC is a ft-matrix, and the 
corresponding ¿-matrix A is given by 
(2. 14) ank =/„*—/,_,.* = Mg«i—gn-i.,) c,; = bnjcjk, 
which is the product of the ¿-matrices B and C. 

C o r o l l a r y 2. IV. I. The row limits of the product matrix are 
a„=b„y + 2j(bni—b„J+l)hi. 

This follows from corollary 2. II. 1. 

C o r o l l a r y 2. IV. 2. The elements of the product matrix are bounded, 
thus 

|a„*| {2M(H) + 2K{H)} {2M(G) + K(G)}. 
This follows from corollary 2. II. IV. 
T h e o r e m 2. V. The product of 6-matrices is associative. 
P r o o f . Let A, B, C be tf-matrices, F, G, H the corresponding ft matrices 

respectively, AB = D, GC=R. We consider the double series • 

(2.15) Z S j i a . i - a ^ i & i - g w ) ! ! » 

which converges absolutely. Summing as indicated, we obtain 

-¡(ani - t f „ , + 1 ) {2j(hJk- A , L I M & A * } 

= f•— fl„.m) —g.n} = (a„i—a„,i+1) (r,k—g,n) 

= a„i— lim a„irit—yi2i(ani—a„ti+1)gi 

= [A(BC)]„k-a„ok-yk(d-aJ) by corollary 2. IV. 1.' 

Reversing the order of summation in (2. 15), we obtain 

= ^ h j M j - d » . ^ ) - a . - /?,+1) hik 

= 2j{hjk-hj_l:k) dnj—\vmd„jhjk—a„ 2jhcjk-+ ajim ftjhik 

= 2}d„tCjk -d„yk - o„ok + a„yk = [(AB) C\„k—anol—rk<d„—aJ), 
showing that [ j4(f iC)]*=[(4£)C] . 
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C o r o l l a r y 2. V. I. The product of a ¡¿-matrix on the left followed by 
¿-matrices is associative. 

This follows from the fact that if (ank) is a ¿-matrix, so is (fl„_i.t), i. e. -
if a zero row is added to A. Hence all the double sums -£¡.5¡ahib,JCJK for 
h = 0, l , . . . , n can be inverted as well as their sum -¡•S'J/niôi,cjt.. 

T h e o r e m 2. VI. Every finite linear combination of â-matrices is a 
d-motrix. 

P r o o f If A and B are ¿-matrices, F, G the corresponding ^-matrices, 
JC,y complex numbers, xF+yG = H, then \hnk—h„Ml\<,\x{f„k—f„,k^)\ + 
+ so that 

<2. |6) 2k\h,k-h._k+l\^\x\M(F) + \y\M(G), 

and limAn l exists. Thus H is a /î-matrix and C=xA -\-yB a ¿-matrix. 
It follows from the last three theorems that 5-matrices form a non-

commutative ring, with the unit matrix as unit element vand the zero matrix 
as zero element. The ring contains zero-divisors, for example >4fi = 0 when 
a a i . = l for all k, all the other elements of A being zero, ¿>ot = — 1. hll.= \ t 

all the other elements of B being zero. 
It is possible to define a norm for ¿-matrices in the following w a y : 

If B is a ¿-matrix, G the corresponding /î-matrix, N(G) = su^2k\gnk—gvM[, 
K(G) = supng„a (as in (2.5)) , the norm of B is defined as the number 

(2.17) c | | f i | | = 2{/V(G) + A-(G)}. 

The following properties of the norm are easily verified: 

(2. 18) (i) and | |fl, | = 0 if and only if B is t he>ero matrix. 
(ii) | xB | = |JC| ||fl||, x being a complex number. 
(iii) ||B+c||^||B|f.+l!C||. 
(iv) ! |SCi |< ' | IB| | . | |C | | . 
( V ) I V ^ I I ^ I I -

Here (i), (ii) follow from the definition of the norm, (iii) from (2.16), (v) 
from (2. 11). To prove (iv), we use the notation in the proof of theorem 2. V. 
It follows from (2. 13) that N(F)^N(H){2N(G) + K{G)}. Also = 
= 2,(g„-g,„1+1) A/o + lim g.,hl0, hence K(F) K{H) {2/V(G)»-ftf(G)}, and 

/-»•oo 
(iv) follows by adding N(F) and K(F). 

T h e o r e m 2. VII. With the given norm, â-matrices forr, anon-commu-
tative complex Banach algebra with unit element. [5, 1.14, p. .2; 1.11, p. 10]. 

P r o o f . It is sufficient to prove that the space of d-^natrices is com-
plete in the topology induced by the metric d(B, C) = | | f l—C| | , i. e. that every 
Cauchy sequence A(t) ( / = 1 , 2 , . . . ) of ¿-matrices converges to a limit matrix 
A which is a ¿-matrix. We first prove 
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L e m m a 2. VII. I. If 2,\_A{t)\\ converges, then -,A(t) = A exists and 
is a ¿-matrix. 

P r o o f . Let F(t) be the //-matrix corresponding to A(t). The sums 
ZJitU and lim 2,f(t)nk = u m 

= .2, l im/(i)nt are all dominated by the series 2,| |j4(0II, hence the matrix 
H-fr-GD 

F=2,F(t) exists and is a /J-matrix, and A = 2,4(t) is the corresponding 
¿-matrix. 

C o r o l l a r y to t he l emma. The characteristic numbers of the sum matrix 
are the sums of the corresponding characteristic numbers. 

This follows from the uniform convergence of all the series concerned. 

L e m m a 2. VII. 2. The space of 6-matrices is.complete under the given norm. 

P r o o f . Assuming that A (t) is a Cauchy sequence, so that for t, t' > T(e). 
11^(0 — i4(i ' ) | | < £, we find, that \a(t)„k-a(t')nk\ < e, hence a(t)„k-+a„k as 
t-+oo. T h u s . 4 . ( 0 tends in each element to a matrix A = (a„k). Determining 
a sequence of positive integers such that \\A(tj) — A(tj_l)\\<2'3, so 
that the series 4( ' / - i ) l l converges, we find that, by the previous 

OP 

lemma, the series 4 ( M + 2 i A ( f j ) — converges, and its sum 

lim 4 ( / , )== l im A(t) is a ¿matr ix . Since, for / > T(e), | ' 4 ( 0 — 4 | | < e, the J->00 ' i-KQO 
convergence is strong. This proves the lemma, and therefore the theorem. 

C o r o l l a r y 2. VII. 1. The norm of the limit matrix is the limit of the 
norms 

For | | | 4 ( 0 | | - | | 4 ( / ' ) l l | s ] | 4 ( 0 - 4 ( / ' ) | | < e , and hence | | | 4 ( 0 | | - | | 4 l | | < 

C o r o l l a r y 2. VII. 2. The characteristic numbers of the limit matrix 
are the limits of the corresponding characteristic numbers. 

This follows from the corollary to lemma 2. VII. 1. 
It is known that in a Banach algebra with unit element the neighbourhood 

of the unit element consists, of regular elements. If A is a ¿-matrix such that 
| | 4 — / | | < 1, the reciprocal A'1 is the power series / + (/ — A) + ( I — . . . . 
[5, Theorem 5.2.1, p. 92]. More generally if p — X1\\<\VW A has a two-sided 
¿-matrix reciprocal, given by r 1 { / + ( / — A l * ) + ( / — 4 / i ) s + . . . } . . , 

. If all the column-sums ft of a <1 matrix B are equal to unity, the matrix 
is a regular series to series summation matrix, called an a-matrix ..[9,.541]. 
The a-matrices form a subclass of the algebra of ¿-matrices which is not an 
algebra since the sum of two a-matrices is not an a-matrix. But if A is an 
a-matrix and . | | i4—/| | < 1, then A~1 obtained as the sum of a convergent 
power series is an a-matrix, since a|l the column-sums of the matrix / — A 
are zero, and therefore, by,Corollary 2. II. 2, so are the column-sums of (/— A)K 
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The same can be proved when \\A — >.I\\ < when the column-sums of 
the reciprocal are given by Z'l2(\ — \lX)>, giving unity. 

A column vector u0,uu... can be regarded as an infinite matrix with 
zero columns except the first column. It is easy to verify that such a matrix 
U is a ¿-matrix if and only if - u* is convergent. In this sense, then conver-
gent series are elements of the algebra. This gives the following theorem: 

T h e o r e m 2. VIII. If the a-matrix A has a right reciprocal A'1 which 
is a 6-matrix, then A~' is an a-matrix. 

P r o o f . If U is a column vector such that uk is convergent, V=A~lU 
is a column vector such that 2vn is convergent, since A'1 is a ¿-matrix. 
Hence A V= AA'XU= U, and A being an a-matrix, it follows that 2vn = 2ut. 
Thus A'1 sums' every convergent series to its sum, and is therefore an a-matrix. 

3. ¿„-matrices. 

The class of ¿-matrices so far considered is the class of matrices which 
transform convergent series into convergent series. Their use for generalized 
summation of series however requires more: they should transform at least 
one divergent series into a convergent series. In other words: they should 
be 'stronger than convergence'. It is possible, at this stage, to exclude a wide 
class of trivial ¿-matrices from further investigations by the following result: 

T h e o r e m 3. I. A necessary condition that a 6-matrix B = (A„t) should 
be stronger than convergence is that 

(3.1) ¿>„ = lim bnk = 0 for /1 = 0 , 1 , 2 , . . . . 
;.•->-oo 

The proof is based on the following lemma: 
L e m m a 3.1. if -k\bk—bk+l\ — M <oo, and lim ¿>¿4=0, then the conver-

gence of 2bkuk implies the convergence of 2uk. 
Proof of the l e m m a : By hypothesis there exist positive numbers r a n d 

oo . 
R such that for k^r, | 6 t | > / ? . Hence 2 I l/£*+i! and by a 

r 

lemma due to ABEL and HADAMARD [4, 394] , Zck\bk converges whenever Sck 

converges. The lemma is proved by taking ck — bkuk. 
The theorem then follows from (2. 8) and (2. 10). 
C o r o l l a r y . A necessary condition that a /?-matrix G ~ (g„k) be stronger 

than convergence is that 

(3.2) 4Tn = lim gni = 0 for n = 0, 1,2 
k -*• oo 

That the condition (3.1) is not sufficient, is shown by the unit matrix. 
We shall call a /?-matrix satisfying (3. 2) a /%-matrix, and a ¿-matrix 

satisfying (3. 1) a ¿0-matrix. Obviously conditions (3. 1) and (3.2) are equi-
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valent : / / B is a ¿^matrix, the corresponding matrix G is a ¡%-matrix, and 
conversely. 

T h e o r e m 3. II. Under the norm (2. 17) ¿^-matrices form a nonr commu-
tative complex Banach algebra with unit element 

P r o o f , t h e sum of two ¿„-matrices is obviously a ¿„-matrix. That the 
product is a ¿o-matrix follows from corollary 2. IV. I since bn = 0, hj = 0 
implies a„ = 0. The unit matrix and the zero matrix are ¿o-matrices. Theorem, 
2. VII, the two lemmas and the corollaries apply to ¿„-matrices, and show 
in particalar that the space is complete. This concludes the prooif, 

The column vectors U, regarded as infinite matrices, are ¿„-matrices if 
and only if Sat is convergent. In this sense, convergent series are elements 
of the algebra of ¿„-matrices. 

A significant property of ¿„-matrices is revealed by investigating the 
corresponding sequence to sequence summation matrices. Such a matrix P 
is conservative, and called a K matrix, and is defined by [4,385] 

(3.3) for /2 = 0 , 1 , ? , . . . . , 
(3.4) p„t tends to a finite limit % as n •*•«*> for Ar = 0 , i , 2 , . . . , 
(3.5), ' 2kPnh —Pn tends to a finite limit p as 
The corresponding series to sequence summation matrix G is given by 

(3.6) V = P „ * + A u + i + 

it is known that if P is a K-matrix, G is a ¿¿-matrix,, and in fact it is 
a A-matrix. Conversely, if G is given, P is given by 
< 3 . 7 ) P„i—g„k—g„.k+i,: 

If G is a /^-matrix, P given by (3. 7) is not necessarily a /(-matrix [4, 
399]. The correspondence between G and P, defined by (3. 7), is not one-to-one, 
for P is unaltered when g„L is replaced by g„k+g',, where g'„ is an arbitrary 
sequence. Starting with G, and using (3. 7) and (3.6) in turn, the corre-
spondence G -P * G' gives 

'gnk=P»kJrPn,k + l-Sr • • •=g„l—g„.k-H+gr,.k + \—g,,k+i+- • '•=gKk—g, 

and G = G ' if and only if gv = 0. Using the one-one correspondence be-
tween <$„- and /¿„-matrices, we obtain 

T h e o r e m 3. III. There is a one-to-one,correspondence between 6a matrices 
B, and K-matrices P, expressed by either of the equivalent formulae ~ ' , 

( 3 . 8 ) P„k='E(bil—biik+1), - . • , 
.1 o . . . 

gg . . . . . 

(3.9) (P*>—P«-i,/) with 
. . ; . . . . . . . . .) k . . ...t . . . . . . . . . . . ' . . . . . • : 

T h e o r e, m, 3. IV. The correspondence, in theorem 3. 1.11 is an isomorphism.' 
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P r o o f . If B, C are ¿„-matrices, G , H the corresponding ¿„-matrices and 
P, Q the corresponding A"-matricts, it fo lows from (3. 8) and (3.9) that B + C 
corresponds to P + Q Again 

( . P H ) n l = 2 j p n ; h i k = = 

since g„jhjj-«-0 as j - c o . Thus (PH)nk = (GC)nk, and PH== GC is a ¿„-matrix, 
PQ is the corresponding /¿"-matrix, and BC the corresponding ¿„-matrix. Thus 
PQ corresponds to BC. This concludes the proof of the theorem. 

We can now introduce a new norm for ¿„-matrices. It is known that 
/(-matrices form a Banach algebra under the' norm 

(3.10) -II ^li = sup„ 

and, using the last theorem, we can define the norm of a ¿„-matrix B as the 
norm of ihe corresponding K-matrix P, i. e. 

( 3 . H ) № = L!"P||. 

The unit matrix is a /(-matrix and the corresponding ¿„-matrix is the same 
matrix. In the same way, the zéro matrix corresponds to itself. We have 
therefore ¡|/1L- = PII = 1. whereas the ¿-norm of / as defined in (2.17) has. 
the value 4: The norm (3. 11) for ¿„-matrices has the properties (2. 18) in-
cluding the property (v) (which is not generally required in abstract algebras, 
but is essential for infinite matrices to establish completeness of the space). 

We consider now series 2uk.with partial sums sk, and use the following 
notations. We denote a sequence to sequence transformation by P, Q , . . . : 

o„ = P(st) = 2kpvksk ; 
a series to sequence transformation by G, H, ... : 

otl=G(Zuk) = Zkg„kuk] 
a series.to series transformation by B,C,...: 

Zva = B(2uk) = Zn(2kb»kuk). 

We denote the class of series 2uk, such that the partial sums sk are bounded, 
by (SB). It is known that a K-matrix P transforms every bounded sequence 
sk into a bounded sequence a„. If G is the corresponding ¿„-matrix, we have 
(3.12) P(sk) = G(?uk) [ 4 , 3 9 8 - 3 9 9 ] . 
Hence we obtain 

T h e o r e m 3. V. Every ôn-matrix B transforms every series 2uk of (;M) 
into a series of (33) . 

We also have 

T h e o r e m 3. VI. If B and C are- â0-matrices, and the series -utbelongs 
to ($) then B[C{2uk)] = (BC)(?uk). 

P r o o f . I f .G, / /a re the corresponding ¿„-matrices. P, Q the corresponding 
'/(-matrices, sk the partial sums of Suk, we have P[Q(s t)] = (PQ) (sk). Now 
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Q(st) = H(2ut) = oK, and if o-on_, = v„, P[Q(s 4 ) ] = P K ) = fi(^„) = 
= fi[C(2u„)]. Again, (PQ) (sk) = (BC)(2uk). This proves the theorem. 

It follows from the identity (3. 12) that the sequence to sequence and 
series to series summation methods are identical for all series of the class (93), 
That this is not the case for series with unbounded partial sums, is shown 
by the following examples: 

(3.13) uk = (k-\-1)3, 6„4 = (— 1 )*/(n + 1) (n + 2) (k + 1 )3. 

Here g„t = (-\T(n+\)l(n + 2)(k+\y so that < 2^(A:+ 1)-*, 
and g„k tends to a limit as and to zero as o. Hence B is a 
¿„-matrix, and 

2v„ = 2n2kbnkUk = 2n2k(-\yftk+ l ) ( n + l)(/z + 2) = log2, 
so that the 5-sum exists. Again puk = g„k—g„,h+i=0(k-3), sk=0(k% hence 
2kp„ksk diverges, so that the P-sum does not exist. 

(3.14) i/t = ( - l ) * ( 2 A : + l ) , b„k=\l(n+l)(n + 2)(k+\). 

Here 2tb„,.uk diverges, so that the fi-sum does not exist. Again 

= (-!)*(*+1), gnl = (n+\)l(n + 2)(k+\), 
pnk = (n+\)l(n + 2)(k+\)(k+2) 

and 2kp„ksk = 2 k { - l Y ( n + m k + 2)(n + 2 ) - + 1— log2 as n + oo. Hencethe 
P-sum exists. 

4. Some examples of ¿„-matrices with applications 
to Taylor series. 

When a ¿„-matrix B is applied to the Taylor series 2ukzk representing 
the function f(z) in its circle on convergence, it cannot be expected that the 
generalized sum S(z) shall be the 'right' value f(z). The relation between 
the two values for convergent series with partial sums sk(z)->-f(z) can be 
expressed, using (2. 1), as S(z)=p0f(z) + 2(pk-/3k+1) {Sk(z)-f(z)}, and the 
generalized sum is the analytic continuation of 5(2) in an open connected 
domain of summability containing the circle of convergence. 

In this section we consider matrices for which the relation /(2)->-5(2) 
is the simplest possible: S(z)=f(az), a being a complex number depending 
on the matrix, but independent of the series to which it is applied. Such 
matrices turn up as a natural generalization of matrices discussed by the 
author in a previous paper [9, sections 3, 4, 5]. The corresponding sequence 
to sequence summation matrices have recently also been discussed by other 
writers [3 and 6]. We restrict, our attention to series to series methods, the 
corresponding sequence to sequence matrices having too complicated expres-
sions to be of any use. 

A 3 
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As in the case of regular summation methods, the domain of summa-
bility .for general Taylor series can be defined, if the domain of summability 
D(B) for the series 2z? is known. For conservative methods we require a 
modified restatement of a theorem due to E. BOREL [1 , 1 9 7 — 2 0 0 ] , which we 
give here without proof: 

T h e o r e m 4. I. Let f ( z ) be represented by the series 2ukzl in its prin-
n 00 

cipal star-domain. If <p„(z) = 2 Z b„kzk —«• (p{z) as n -* oo uniformly in every 
/~0 1=0 

closed region of a star-domain D(B), then the B-sum of 2ukzk = 2n2ibnkuizt 

exists in the partial star-domain corresponding to D(B), and its value is 

| w~'f(w) cr(zlw) dw, r being a small circle about the origin, inside and on 
T 

which f(w) is regular. (Star-domains are defined in [9, 3. 23, p. 551]). 

In the particular case when <T>(Z) = 1/(1 — az), the B-sum is 

J f(w)l(w — az) dw =f(az). 
r 

A natural generalization of the Taylor series continuation method [9, 
section 3 ; 3 and 6 the method 7(a)], is the matrix A(t, t') depending on 
the two complex parameters t and t', given by 

(4.1) flni = a ( / , n n i = ( i ; ) / ' ; -" r (n = 0 , l , 2 , . . . ) . 

Applying A(t, t') to the series 2z\ we obtain 

V„(z) = 2ka„kzl = (t'lty i (J) (tzy, 

2vn(z) = 0-tzy,2(t'z)nl(l-tz)n = ]IO-az) (a = t + f ) ; 
provided that 

' 

z 
which defines the domain D(A). 

D(A) contains the unit circle in its inside, hence 

(4.3) A(t,t ) is a <J0-matrix when |f | + |< ' |< 1, 

and we shall consider this case only. 
Assuming (4.3), the following types of summability domains may occur, 

(i) being always the inside of the circle with centre 0, radius 1/"|/|: 
(a) | / ' | i > | 2 / | ; D(A) is the inside of the circle (ii) which is inside the 

circle (i); • 
(b) \2t\>\t'\>\t, the circles (i) and (ii) intersect, and D(A) is inside 

both circles; 
(c) | / ' | = |f | , D{A) is the larger segment of circle (i) cut of by the 

(4- 2) (i) > i a 0 0 J L - / z 
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line (ii) which is the perpendicular bisector of the radius joining the origin 
to the point z = 1//; 

(d) t'\ < | / | , the two circles intersect, and D{A) is inside (i) and outside (ii). 
In all cases D(a) depends on t and but not on a r g ( f ) . The union 

of all domains D(t,t') for t,t' satisfying (4 3), is the whole ope I z-plane. 
The question also arises, whether J4(/, f ) ' is 'relatively conservative', 

i . e . whether it contains all points z such that az is inside the circle of 
convergence. This requires that D{A) contain the circle \z\< l / | a | , which is 
satisfied if and only if | « | > | / | + | f ' | , and since a = t+.t', we must have 
arg (0 = a r g ( f ) . 

The method A(t,t') has restricted translative properties [e.g. 9 , 3 . 1 1 , 
547]. Writing, if they exist, v„ = Zka„kuk, v'„ = 2ka„ik+1uk, <r„ = +1;, +.. . + t;„ 
< = + ^ + - • • + '-I, we have v'„ — tvn = t' r„_, for n = 1,2 v'0 — tv0 = 0, 
hence a'„ = to„ + t'>'„--,, so that when Thus: 

"A(t, t') sums the series «„ + «, + ... to the value S" implies that it 
sums the series 0 + ;/„ -j- ^ - ( - . . . to the value «5. We may say that A(t,t') 
is translative to the left with factor a. 

The generalization of the Euler matrix on similar lines gives the matrix 
B(t,t') as the transpose of A(t',t) multiplied by (1 — t ), i. e. 

<4.4) b„k = b(t, f)nk = (J) {\-t')t'nktk. 
0 

Applying B(t,t') to the series 2z1', we obtain 

VÁZ) = (1 -t')2k(5 r - \ t z f = (1 - O (f + tz)n, 

2v„(z) = ( \ - t ' ) l ( \ - t ' - t z ) = \ j { \ - a z ) (a = t\{\-t')), 

provided, that 
(4-5) . \z + t'lt\< 1/|/|, 

defining D(B) which is a circle. This contains the unit circle in its interior, 
i. e. B(t, t') is a ó0-matrix when | / | + | / ' | < 1. The union of all domains D(B) 
is the whole open z-plane. 

The matrix is in addition 'relatively conservative' if D(B) contains the 
circle \z\ < l / | a | , i. e. if 11 —1 ' \< 1 —1/' | ; this requires that . / ' be positive. 

Translative properties of B(t, t'.) follow from the identity tan = a^+1—t'a^ 
which can be established in the same way as for A(t,t'). When 
<j„^S' (1 —t')lt = S'\a. Hence B(t, t') is translative to the right with factor 1 ¡a. 

The generalization of the Laurent summation method [9, section 5] and 
[6, the method S(a)] on similar lines gives the matrix C(t, t') defined by 

(4.6) c„k = c(t, / ' )„*•=(""£*) ( 1 - / ' ) t"t'\ 

Applying C(t,t') to the series 2zk, we obtain 
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,•,(*)=-(!-/')/'" ̂  I" J*] (/*)', . 
- C „ ( 2 ) = ( I - 0 ( 1 -tzYlZJ"H 1 - 1 / 0 - ( « = ' / 0 - ) > 

provided that 
(4-7) (i) ¡ z | < l / | / | (ii) j z - 1//j > :t'jt\ 
This defines die domain D(C) inside the circle (i) and outside tlie circle (ii). 
D(C) contains the unit circle in its inside, i. e. C(t,t') is a o„7nwtrix when 
|?[ + U ' | = 1 . The union of all domains D C) is the whole open z-plane. 

The method is in addition 'relatively conservative' if D(C) contains the 
circle \z'< l / | a | , i. e. | ! — / ' ( • ' I— | f i . This requires that / ' be positive. 

The translative properties of C(t,t') follow from the identity t"„—~ 
— <f'„—/'<r,',_i> so that when <r,'---S', then <r„-~»S'(I—i ')\t-— S'ja.:..Hence 
C(t,t') is translative to the right with factor \ja. 

5. ¿„-matrices, efficient at a countable infinity of isolated points. 

Regular sequence to sequence summation methods which are efficient 
at isolated points have . been given in [2, 53—55], and later extended to a 
finite number of points for series to sequence methods in [8, section 6, 
11 —13]. A further extension of thrse results is possible by constructing 
¿„-matrices as elements of an abelian multiplicative group of infinite matrices. 

The group is generated by the unit matrix / and the diagonal vector 

I 0 '1 0 0 . . . 
0 0 1 0 . . . 

j 0 0 0 I . . . 

The matrix A is given by 

(5.1) A^J.+ etE + e,E- + ..., 

where the e, are complex numbers, satisfying the following condition : 

(5. 2) the function </ (n>) — 1 + e, w-j-e.,wl + • • • '-'>' regular and 4-0 for\w\ ; . 1. 

-It follows from (5. 2) that ^ ' j^l < >;, and that if I /y(iv) = I + i/ ,•+(/. ,u<2-f . . . , 
then ~ ,dj | < CM. 

The reciprocal of A is the matrix 

(5.3) , A~' -- l.-\~diE'\-d..E'1-\r. . . . 

Both /4 and A-'.are ¿0-matrices, with ¡\A\K < 2:4-^| '2f ;J and <2 + 2i2dJ\. 
T h e o r e m 5. I. The 3,,-matrix A, given by (5. 1) a nil (5. 2), is inefficient 

for all divergent series with bounded partial sums. 
P r o o f . If -ii;. is such a series, and if A is efficient for this tstries-
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we have 2v„ = A{2ut) is convergent, hence so is 4 _ 1 P X ) = = . A _ 1 [ 4 P X ) ] -
But, by theorem 3. VI, the last expression is equal to (A~1A)(2ui) = -ui, 
which is divergent. 

Applying A to the series 2zk, we obtain 

t>,,(z) = z»(l + eiz + e«za- + .. .) = z«<p(z), Zvn(z) = cP(z)l(\-z), 

both series being convergent inside the unit circle, and, trivially, at those 
zeros of qp(2) which are inside (or possibly on) its circle of convergence. 

If, for example, <p(w) is an integral function with an infinity of zeros 
w,, i v 2 l . . . outside the unit circle, then A sums the series 2z1' to the value 
<p(z)l( 1—z) inside the unit circle, and to the value zero at the isolated points 
z = wlt w., A suitable function for construction is for example/(w) = cosw, 
and the corresponding matrix is the matrix 

0 —1/2! 0 1/4! . . 
0 I 0 — 1 / 2 ! 0 . . 

0 0 1 0 — 1 / 2 ! . . 
A — I—£'- /2! + £ 4 / 4 ! — . . . = 

The behaviour of the matrix A (defined in (5. 1)), for other series than 
2zL' outside the circle of convergence cannot be deducted from theorem 4. I. 
For each Taylor series the set of isolated points of summability may differ. 

For example if A is applied to the binomial series - i C J r ^ j z * (p=2,3,...), 
we obtain 

= ^1 (z"lpl)ci"lz»<f(z)}jdzr, 

so that A sums the series at points inside the circle of convergence to the 
value [(\-z)p\Y]d"[z>'<j>(z)]ldz'\ and to the value 0 at those isolated zeros 
of the function rpl,(z)^dp[z>'<f>(z)]ldz" which are inside (or possibly on) the 
of convergence of <p(z). 

I wish to express my thanks to Professor P. D IENES for suggesting 
theorems 2.1—IV. 1 am also indebted to Dr. L. S. BOSANQUET, who gave 
the proof of lemma 3 . 1 , and to Dr. R . E . EDWARDS, wo suggested lemma 2 . 

VII. 2 and simplified my original proof. 

A d d e d i n . p r o o f (March 12, 1951): M E Y E R - K O N J G [6 , p. 2 5 7 ] 

remarks that the Taylor summability method was introduced by G. H . HARDY 

and j . E. L ITTLEWOOD as 'circle method' in a paper in the ftendiconti 
Circolo Mat. Palermo, 4 1 ( 1 9 1 6 ) , pp. 3 6 — 5 3 . I found recently in the Hungarian 
textbook of M . В Е К Е : Differential ¿s Integralszamitas, vol. 2 (Budapest, 
1 9 1 6 ) , pp. 4 3 3 — 4 3 5 another interesting way of considering analytic continu-
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ation as a generalized mean by sequence to sequence transformation. В Е К Е 

remarks that this method has been communicated to him verbally by M . F E K E T E . 

F E K E T E obtains the summability matrix in the following way : 
If f ( z ) = 2ukzk has a radius of convergence R, and 0 < | a | < | z \ < R, 

alz being positive, then the series can be continued to 

-/<n) (a) (z—a)"ln). 

Denoting the partial sums of the two series by sk (z) — u„ + u, z +... + ukzk and 

(2) = / ( « ) + / ' (а) (г—a) + . . . +/<»> (a) (z-a)"/nl, 

we see that 

<7„ (z) = {(z— «)"+'/л !} d" {g(a) }/da", where g (a) =f(a)/(z— a). 
But 

g(a, = {2ukai)(2a4zM) = 2aksk(z)lzi+\ 

hence 

o„{z) = (1 - a / z r ^ (J) (a/zy-sk (z), 

which is the transform of sk(z) by the upper semi-matrix 

Since а„ к ш0 and 2 k à „ k = I, the method is a regular sequence to 
sequence summation method. 
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