## Conservative series to series transformation matrices.

By P. Vermes in London.

## i. Introduction.

In a recent paper [9]') infinite matrices representing regular series to series summation methods have been discussed. The present paper is mainly concerned with coniservative series to series summation matrices, a more general class of matrices. Regular matrices form a subclass of these matrices, and the results obtained in this paper are therefore valid also for this subclass.

The standard method of 'summing' a series of complex terms $u_{0}+u_{1}+\ldots$ with partial sums $s_{k}=u_{0}+u_{1}+\cdots+u_{k}$ is the transformation of the sequence $s_{k}$ by a matrix of complex elements $P \equiv\left(p_{n k}\right)$ into a convergent sequence $\sigma_{a}=\Sigma_{k} p_{n k} s_{k}$. The matrix is called conservative if the convergence of $\Sigma u_{k}$ implies that $\sigma_{n}$ exists for $n \geq 0$ and that $\sigma_{n}$ tends to a finite limit (which may be different from $\Sigma u_{k}$ ). A conservative sequence to sequence summation matrix is called a $K$-matrix [4, p. 388].

Another method is the transformation of the series $\Sigma u_{k}$ into a convergent sequence $\sigma_{n}=\Sigma_{k} g_{n k} u_{k}$ by a matrix $G \equiv\left(g_{n k}\right)$. A conservative series to sequence summation matrix is called a $\beta$-matrix $[4,397]$. Sufficient and necessary conditions for $G$ to be a $\beta$-matrix are $[4,394-396]$ :

$$
\begin{equation*}
\Sigma_{k}\left|g_{n k}-g_{n, k+1}\right| \leqq M(G) \quad \text { for } \quad n=0,1,2, \ldots, \tag{1,1}
\end{equation*}
$$

(1.2) $\quad g_{n, k}$ tends to a finite limit $\beta_{k}$ as $n \rightarrow \infty$ for $k=0,1,2, \ldots$

We shall employ (1.1) and (1.2) as the definition of a $\beta$-matrix.
A third method is the transformation of the series $\Sigma u_{k}$ by the matrix $B \equiv\left(b_{n k}\right)$ into a convergent series $\Sigma_{v_{n}}$, so that $v_{n}=\Sigma_{k} b_{n k} u_{k}$. If the matrix is conservative, i. e. if the convergence of $\Sigma u_{k}$ implies the existence of $v_{n}$ for $n=0,1,2, \ldots$ and the convergence of $\Sigma_{v_{n}}$ (where the two sums may differ), we shall call the matrix $B$ a $\delta$-matrix.

The following results will be proved in section 2: A necessary and sufficient condition for a matrix to be a $\delta$-matrix is that the corresponding

[^0]series to sequence method is conservative; the product of a $\beta$-matrix and a $\delta$-matrix is a $\beta$-matrix; the sum and product of $\delta$-matrices, addition and multiplication being associative; a norm can be defined for $\delta$-matrices under which they form a non-commutative complex Banach algebra with unit element [5, 1.14, p. 12]

In section 3 we discuss the subclass of $\delta$-matrices $A$ which satisfy the condition $a_{n}=\lim _{k \rightarrow \infty} a_{n k}=0$ for every $n$, this being necessary for a $\delta$-matrix to be stronger than convergence. Denoting these matrices $\delta_{0}$-matrices, we show that they form a subalgebra of the algebra of $\delta$-matrices' under the same norm. The sequence to sequence summation matrix corresponding to a $\delta_{0}$-matrix is a $K$-matrix, and the correspondence is an isomorphism. The norm of $K$-matrices can therefore be introduced to $\delta_{0}$-matrices. Considering the class ( $\mathcal{B}^{( }$) of series with bounded partial sums, if $A$ and $B$ are $\delta_{0}$-matrices, they apply to every series of (Y) and transform it into a series of (Y), and $A\left(B\left(u_{k}\right)\right)=(A B)\left(u_{k}\right)$. A $\delta_{0}$-matrix and the corresponding $K$-matrix are equivalent for series of ( $\mathcal{W}^{( }$), but examples are given of series of unbounded partial sums and of $\boldsymbol{\delta}_{0}$-matrices where the two methods are not equivalent.

In section 4 the following $\delta_{0}$-marrices are studied:
(iii) $c_{n t}=\binom{n+k}{k}\left(1-t^{\prime}\right) t^{\prime} t^{\prime n}$.

These matrices are $\delta_{0}$-matrices when $\left|t+\left|t^{\prime}\right|<1\right.$, they sum the Taylor series $\Sigma u_{k} z^{k}$ of the function $f(z)$ in some partial star-domains to the value $f(\alpha z), a$ depending on the matrix. They also display a modified left- or righttranslativity. The corresponding series to sequence and sequence to sequence matrices cannot be expressed in simple terms, so that the introduction of $\delta$-matrices was essential. These matrices can be regarded as modified methods of Euler, Taylor and Laurent series continuation discussed in recent papers [3, 6, 9 and 10].

In section 5 special $\delta_{0}$-matrices are constructed which are efficient for Taylor series at an infinity of isolated points outside its circle of convergence.

## 2. $\delta$-matrices.

We first consider $\beta$-matrices $G$. The following properties follow from the definition and (1.1), (1.2):
(2.1) If $\Sigma u_{k}=s$, then the $G$-sum of $\Sigma u_{k}$ is given by $\beta_{v} s+\Sigma\left(\beta_{k}-\beta_{k+1}\right)\left(s_{k}-s\right)$.

This is proved in [4, 394-395].
(2.2) The row limit $\lim _{k \rightarrow \infty} g_{n k}=g_{n}$ exists for every $n$.

For $\Sigma_{k}\left(g_{n k}-g_{n, k+1}\right)=g_{n 0}-\lim _{k \rightarrow \infty} g_{n k}$ exists by (1.1).
(2.3) $\left.\quad \Sigma_{k}\left|\beta_{k}-\beta_{k+1}\right| \leq M i G\right)$.

For $\sum_{k=0}^{r}\left|\beta_{k}-\beta_{k+1}\right|=\lim _{n \rightarrow \infty} \sum_{k=0}^{r}!g_{n k}-g_{n, k+1} \mid \leq M(G)$, for every $r$.
(2.4) $\lim \beta_{k}=\beta$ exists.

This follows from (2.3) as (2.2) followed from (1.1).
(2.5) The elements of $G$ are bounded.

For $\left|g_{n k}\right|=\left|g_{n 0}-\sum_{i=0}^{k-1}\left(g_{n i}-g_{n, i+1}\right)\right| \leqq K(G)+M(G$, where

$$
K(G)=\sup _{n}\left|g_{n 0}\right| .
$$

The column limits $\beta_{k}$, their limit $\beta$, and the row limits $g_{n}$ will be called the chaiacteristic numbers of $\boldsymbol{G}$.

We now consider the summation by series to series transformation of any series $u_{0}+u_{1}+\ldots$. Summability by the matrix $B$ means that

$$
\begin{equation*}
v_{n}=\Sigma_{k} b_{n k} u_{k} \text { exists for } n=0,1, \ldots, \text { and } \Sigma_{v_{n}}=s \tag{2.6}
\end{equation*}
$$

Writing $v_{0}+v_{1}+\cdots+v_{n}=\sigma_{n}$ and $b_{0 k}+b_{1 k}+\cdots+b_{n k}=g_{n k}$, we have (2.7)

$$
\sigma_{n}=\Sigma_{k} g_{n k} u_{k},
$$

the existence being implied by (2.6). Conversely, writing $g_{n k}-g_{n-1 \cdot k}=b_{n k}$ ( $n=0,1, \ldots$ ) and $g_{-1, k}=0$, we find that the existence of (2.7) implies the existence of (2.6). Hence we obtain

Lemma 2. I. If the matrices $B$ and $G$ are connected by the relation $g_{n k}=b_{0 k}+b_{1 k}+\cdots+b_{n k}$, then the series to series transformation by $B$ and the series to sequence transformation by $G$ are equivalent.

An immediate consequence of the Lemma is:
Theorem 2. I. The matric $B \equiv\left(b_{n k}\right)$ is a d-matrix if.and only if $G$, given by $g_{n k}=b_{0 k}+b_{1 k}+\cdots+b_{n k}$, is a $\beta$-matrix.

We shall call matrices, when they are related as in Theorem 2 I , corresponding matrices.

The following properties of $\beta$-matrices are easily obtained:
(2.8) $\quad \Sigma_{k}\left|b_{m k}-b_{n, k+1}\right| \leqq 2 M(G)$;
(2.9) $\quad \Sigma_{n} b_{n k}=\beta_{k}$ for every $k$ ( $\beta_{k}$ is defined in (1.2));
(2.10) the row limit $\lim _{k \rightarrow \infty} b_{n k}=b_{n}$ exists for every $n$, and, writing $g_{-1}=0$, $b_{n}=\underline{g}_{n}-g_{n-1}\left(g_{n}\right.$ is defined in (2.2));
(2. 11) $\left|b_{n k}\right| \leq 2 K(G)+2 M(G)$.

It follows from (2.9) that $b_{a k} \rightarrow 0$ as $n \rightarrow \infty$ 'for every $k$, so that every
$\delta$-matrix is a $\beta$-matrix with zero column limits. But not every $\beta$-matrix satisfying (2.8) and (2.9) is a $\delta$-matrix, as shown by example (2.10) of [9].

The unit matrix $l$ and the zero matrix $O$ are $\delta$-matrices.
Theorem $2:$ II. The product $G C$ of $a \beta$-matrix $G$ and $a d$-matrix $C$ exists and is a $\beta$-matrix.

Proof By (2.9), $\Sigma_{j} c_{j k}$ is convergent, and since $G$ is a $\beta$-matrix, $(G C)_{n k}=\Sigma_{j} g_{n j} c_{j k}$ exists for every $n$ and $k$, hence $G C$ exists. Denoting the product matrix by $F$, we have

$$
\lim _{n \rightarrow \infty} f_{n k}=\lim _{n \rightarrow \infty} \Sigma_{j} g_{n j} c_{j k}=G \text {-sum of } \Sigma_{j} c_{j k} \text { exists for every } k
$$

so that $F$ satisfies condition (1:2). If $H$ is the $\beta$-matrix corresponding to $C$, with column limits $\gamma_{k}$, we have.

$$
\begin{equation*}
f_{n k}=\Sigma_{j} g_{n j}\left(h_{i k}-h_{j-1, k}\right)=\Sigma_{j}\left(g_{n j}-g_{n, j+1}\right) h_{j k}+\lim _{j \rightarrow \infty} g_{n j} h_{j k} \tag{2.12}
\end{equation*}
$$

hence

$$
f_{n k}-f_{n, k+1} \doteq \Sigma_{j}\left(g_{i j}-g_{m ;+1}\right)\left(h_{j k}-h_{j, k+1}\right)+g_{\mathrm{n}}\left(\gamma_{k}-\gamma_{k+1}\right) .
$$

Using (1.1), (2.5) and (2.3) we obtain

$$
\begin{equation*}
\Sigma_{k}\left|f_{n k}-f_{n, k+1}\right| \leq M(G) M(H)+\{K(G)+M(G)\} M(H), \tag{2:13}
\end{equation*}
$$

so that $F$ satisfies condition (1.1). This concludes the proof.
Corollary 2. II. 1: The row limits of the product matrix are:

$$
f_{n}=g_{n} \gamma+\Sigma_{j}\left(g_{n j}-g_{n, j+1}\right) h_{j} .
$$

This follows from (2.12), taking the limit of the right-hand side when $k \rightarrow \infty$. The series being dominated by $\sup \left|h_{j k}\right| \cdot \Sigma_{j}\left|\dot{g}_{n j}-g_{n, j+1}\right|$, the order of summation and limit can be interchanged.

Corollary 2. II. 2. The column limits of the product matrix are

$$
\boldsymbol{\varphi}_{k} \stackrel{\dot{\prime}}{=} \Sigma_{j,}, \sigma_{j} c_{j k}
$$

For

$$
\begin{aligned}
\Gamma_{k} & =\lim _{n \rightarrow \infty} \Sigma_{j} g_{n j} c_{j k}=G \cdot \text { sum }-\Sigma_{j} c_{j k}=\beta_{0} \gamma_{k}+\Sigma_{j}\left(\beta_{j}-\beta_{j+1}\right)\left(h_{j k}-\gamma_{k}\right) \rightleftharpoons \\
& =\beta_{0} \gamma_{k}+\Sigma_{j}\left(h_{j k}-h_{j-1, k}^{\prime k}\right) \beta_{j}^{\prime}-\lim _{j \rightarrow \infty} \dot{\beta}_{j} h_{j k}-\beta_{0} \gamma_{k}+\lim _{j \rightarrow \infty} \beta_{j} \gamma_{k} .
\end{aligned}
$$

Corollary 2. II. 3. $\lim _{k \rightarrow \infty} r_{k}=\beta \gamma+\Sigma_{j}\left(\beta_{j}-\beta_{j+1}\right) h_{j}$.
For the previous corollary gives

$$
r_{k}=\Sigma_{j}\left(h_{j k}-h_{j-1, k}\right) \beta_{j}=\Sigma_{j}\left(\beta_{j}-\beta_{j+1}\right) \hat{h}_{j k}+\lim _{j \rightarrow \infty} \beta_{j} h_{j k}
$$

the last sum being dominated by $\sup \left|h_{j k}\right| \cdot \Sigma_{j}\left|\beta_{j}-\beta_{j-1}\right|$. Letting $k \rightarrow \infty$, we obtain the result.

Corollary 2. II. 4. The elements of the product matrix are bounded, thus

$$
\left|f_{n k}\right| \leq\{M(H)+K(H)\}\{2 M(G)+K(G)\} .
$$

This follows from (2.12), applying (1. i) and (2 5).

Theorem 2. III. A sufficient and necessary condition for the matrix product $G C$ to exist and be a $\beta$-matrix for every $\beta$-matrix $G$ is that $C$ should be a $\delta$-matrix.

The proof is the same as of $[9,2 . V]$. This result is parallel to a previous result on the product of a $T$-matrix and a $\gamma$-matrix [7], which can be extended to the product of a $K$-matrix and a $\beta$-matrix in a similar way as in theorem 2. II of the present paper.

Theorem 2. IV. The product of two $\delta$-matrices exists and is a $\delta$-matrix.
Proof. In the notation of theorem $2.11 F=G C$ is a $\beta$-matrix, and the corresponding $\delta$-matrix $A$ is given by

$$
\begin{equation*}
a_{n k}=f_{n k}-f_{n-1, k}=\dot{\Sigma}_{j}\left(g_{n j}-g_{n-1, j}\right) c_{j k}=\Sigma_{j} b_{n j} c_{j k}, \tag{2.14}
\end{equation*}
$$

which is the product of the $\delta$-matrices $B$ and $C$.
Corollary 2. IV. 1. The row limits of the product matrix are

$$
a_{n} \doteq b_{n} \gamma^{\prime}+\Sigma_{j}\left(b_{n j}-b_{n, j+1}\right) h_{j} .
$$

This follows from corollary 2. II. 1 .
Corollary 2.IV. 2. The elements of the product matrix are bounded, thus

$$
\left|a_{n k}\right| \leqq\{2 M(H)+2 K(H)\}\{2 M(G)+K(G)\} .
$$

This follows from corollary 2. II. IV.
Theorem 2. V. The product of $\delta$-matrices is associative.
Proof. Let $A, B, C$ be $\delta$-matrices, $F, G, H$ the corresponding $\beta$ matrices respectively, $A B=D, G C=R$. We consider the double series

$$
\begin{equation*}
\sum_{i} \Sigma_{j}\left(a_{n i}-a_{n, i+1}\right)\left(g_{i j}-g_{i, j+1}\right) h_{i k} \tag{2.15}
\end{equation*}
$$

which converges absolutely. Summing as indicated, we obtain

$$
\begin{aligned}
& \Sigma_{i}\left(a_{n i}-a_{n, i+1}\right)\left\{\Sigma_{j}\left(h_{j k}-h_{j-1, k}\right) g_{i j}-\lim _{j \rightarrow \infty} g_{i j} h_{j k}\right\} \\
& \quad=\Sigma_{i}\left(a_{n i}-a_{n, i+1}\right)\left\{\Sigma_{j} g_{i j} c_{j k}-g_{i} \gamma_{k}\right\}=\infty \Sigma_{i}\left(a_{n i}-a_{n, i+1}\right)\left(r_{i k}-g_{i} \gamma_{k}\right) \\
& \quad=\Sigma_{i}\left(r_{i k}-r_{i-1, k}\right) a_{n i}-\lim _{i \rightarrow \infty} a_{n i} r_{i k}-\gamma_{k} \Sigma_{i}\left(a_{n i}-a_{n, i+1}\right) g_{i} \\
& =\Sigma_{i} a_{n i}(B C)_{i k}-a_{n} o_{k}-\gamma_{k} \Sigma_{i}\left(a_{n i}-a_{n, i+1}\right) g_{i} \\
& =[A(B C)]_{n k}-a_{n} o_{k}-\gamma_{k}\left(d_{n}-a_{n i}\right) \quad \text { by corollary 2. IV. 1. }
\end{aligned}
$$

Reversing the order of summation in (2.15), we obtain

$$
\begin{aligned}
& \Sigma_{j} h_{j k}\left\{\Sigma_{i}\left(g_{i j}-g_{i-1, j}-g_{i, j+1}+g_{i-1, j+1}\right) a_{n i}-\lim _{i \rightarrow \infty} a_{n i}\left(g_{i j}-g_{i, j+1}\right)\right\} \\
& \quad=\Sigma_{j} h_{j k}\left\{\Sigma_{i} a_{n i}\left(b_{i j}-b_{i, j+1}\right)-a_{n}\left(\beta_{j}-\beta_{j+1}\right)\right\} \\
& \quad=\Sigma_{j} h_{j k}\left(d_{n j}-d_{n, j+1}\right)-a_{n} \Sigma_{j}\left(\beta_{j}-\beta_{j+1}\right) h_{j k} \\
& \quad=\Sigma_{j}\left(h_{j k}-h_{j-1 ; k}\right) d_{n j}-\lim _{j \rightarrow \infty} d_{n j} h_{j k}-a_{n} \Xi_{j} \beta_{j} c_{j k}+a_{n} \lim _{j \rightarrow \infty} \beta_{j} h_{j k} \\
& \quad=\Sigma_{j} d_{n j} c_{j k}-d_{n} \gamma_{k}-a_{n} 0_{k}+a_{n} \gamma_{k}=[(A B) C]_{n k}-a_{n} \underline{o}_{k}-\gamma_{k}\left(d_{n}-a_{n} \beta^{\prime}\right),
\end{aligned}
$$

showing that $[A(B C)]=[(A B) C]$.

Corollary 2. V. 1. The product of a p-matrix on the left followed by $\delta$-matrices is associative.

This follows from the fact that if $\left(a_{n k}\right)$ is a $\delta$-matrix, so is $\left(a_{n-1, k}\right)$, i. e. : if a zero row is added to $A$. Hence all the double sums $\Sigma_{i} \sum_{j} a_{i j} b_{i j} c_{j k}$ for $h=0,1, \ldots, n$ can be inverted as well as their sum $\Sigma_{i} \Sigma_{j} f_{n i} b_{i j} c_{j k}$.

Theorem 2. VI. Every finite linear combination of $\delta$-matrices is a $\delta$-matrix.

Proof. If $A$ and $B$ are $\delta$-matrices, $F, G$ the corresponding $\beta$-matrices, $x, y$ complex numbers, $x F+y G=H$, then $\left|h_{n k}-h_{n, k+1}\right| \leqq\left|x\left(f_{n k}-f_{n, k+1}\right)\right|+$ $+\left|y\left(g_{n k}-g_{n, k+1}\right)\right|$, so that

$$
\begin{equation*}
\Sigma_{k}\left|h_{n k}-h_{n, k+1}\right| \leqq|x| M(F)+|y| M(G) \tag{2.16}
\end{equation*}
$$

and $\lim h_{n k}$ exists. Thus $H$ is a $\beta$-matrix and $C=x A+y B$ a $\delta$-matrix.
It follows from the last three theorems that 9 -matrices form a noncommutative ring, with the unit matrix as unit element and the zero matrix as zero element. The ring contains zero-divisors, for example $A B=0$ when $a_{0 k}=1$ for all $k$, all the other elements of $A$ being zero, $b_{0 k}=-1, b_{1 k}=1$, all the other elements of $B$ being zero.

It is possible to define a norm for $\delta$-matrices in the following way: If $B$ is a $\delta$-matrix, $G$ the corresponding $\beta$-matrix, $N(G)=\operatorname{su}_{a_{k}} \Sigma_{k}\left|g_{n k}-g_{n, k+1}\right|$, $K(G)=\sup _{n} g_{n 0}$ (as in (2.5)), the norm of $B$ is defined as the number

$$
\begin{equation*}
\|B\|=2\{N(G)+K(G)\} \tag{2.17}
\end{equation*}
$$

The following properties of the norm are easily verified:
(2.18) (i) $\|B\| \geqq 0$ and $\|B\|=0$ if and only if $B$ is the ero matrix.
(ii) $|x B|=|x||B| \|, x$ being a complex number.
(iii) $\|B+C\| \leq\|B\|+\|C\|$.
(iv) $\left\|B C_{\|} \leqq\right\| B\|\cdot\| C \|$.
(v) $\mid b_{n, k}!\leq\|B\|$.

Here (i), (ii) follow from the definition of the norm, (iii) from (2.16), (v) from (2.11). To prove (iv), we use the notation in the proof of theorem 2. V. It follows from (2.13) that $N(F) \leqq N(H)\{2 N(G)+K(G)\}$. Also $f_{0}=\Sigma_{j} g_{n} c_{j 0}=$ $=\Sigma_{j}\left(g_{n},-g_{n, j+1}\right) h_{j 0}+\lim _{j \rightarrow \infty} g_{n j} h_{j 0}$, hence $K(F) \leqq K(H)\{2 N(G)+K(G)\}$, and (iv) follows by adding $N(F)$ and $K(F)$.

Theorem 2. VII. With the given norm, $\delta$-matrices forr a non-commutative complex Banach algebra with unit element. [5, 1.14, p. $2 ; 1.11$, p.10].

Proof. It is sufficient to prove that the space of $\delta-$ natrices is complete in the topology induced by the metric $d(B, C)=\|B-C\|$, i. e. that every Cauchy sequence $A(t)(t=1,2, \ldots)$ of $\delta$-matrices converges to a limit matrix $A$ which is a $\delta$-matrix. We first prove

Lemma 2. VII. 1. If $\Sigma_{\mathrm{t}} \mid A(t) \|$ converges, then $\Sigma_{1} A(t)=A$ exists and is a $\delta$-matrix:

Proof. Let $F(t)$ be the $\beta$-matrix corresponding to $A(t)$. The sums $\left.\Sigma_{k}^{\prime} \Sigma_{1}\left\{f(t)_{n k}-f(t)_{n, k+1}\right\}\left|\leqq \Sigma_{i} \Sigma_{k}\right| f(t)_{n k}-f(t)_{n, k+1}\right\}, \Sigma_{t} f(t)_{n k}$ and $\lim _{n \rightarrow \infty} \Sigma_{t} f(t)_{n k}=$ $\doteq \Sigma_{1} \lim _{n \rightarrow \infty} f(t)_{n k}$ are all dominated by the series $\Sigma_{t}\|A(t)\|$, hence the matrix $F=\sum_{t} F(t)$ exists and is a $\beta$-matrix, and $A=\Sigma_{t} A(t)$ is the corresponding $\delta$-matrix.

Corollary to the lemma. The characteristic numbers of the sum matrix are the sums of the corresponding characteristic numbers.

This follows from the uniform convergence of all the series concerned.
Lemma 2. VII. 2. The space of $\delta$-matrices is complete under the given norm.
Proof. Assuming that $A(t)$ is a Cauchy sequence, so that for $t, t^{\prime}>T(\varepsilon)$, $\left\|A(t)-A\left(t^{\prime}\right)\right\|<\varepsilon$, we find that $\left|a(t)_{n k}-a\left(t^{\prime}\right)_{n k}\right|<\varepsilon$, hence $a(t)_{n k} \rightarrow a_{n k}$ as $t \rightarrow \infty$. Thus $A(t)$ tends in each element to a matrix $A=\left(a_{n k}\right)$. Determining a sequence of positive integers $t_{j}>t_{j-1}$ such that $\left\|A\left(t_{j}\right)-A\left(t_{j-1}\right)\right\|<2^{-j}$, so that the series $\sum_{j, j}\left\|A\left(t_{j}\right)-A\left(t_{j-1}\right)\right\|$ converges, we find that, by the previnus lemma, the series $A\left(t_{1}\right)+\sum_{j=2}^{\infty}\left\{A\left(t_{j}\right)-A\left(t_{j-1}\right)\right\}$ converges, and its sum $\lim _{j \rightarrow \infty} A\left(t_{j}\right) \leftrightharpoons \lim _{t \rightarrow \infty} A(t)$ is a $d$ matrix. Since, for $t>T(\varepsilon),\left\|^{\prime} A(t)-\dot{A}\right\| \leqq \varepsilon$, the ${ }_{j \rightarrow \infty}{ }_{\text {convergence }}$ is ${ }^{i \rightarrow \infty}$ strong. This proves the lemma, and therefore the theorem.

Corollary 2. VII. 1. The norm of the limit matrix is the limit of the norms

For $\mid\|A(t)\|-\left\|A\left(t^{\prime}\right)\right\| \leqq\left\|A(t)-A\left(t^{\prime}\right)\right\|<\varepsilon$, and hence $|\|A(t)\|-\|A\|| \leqq$ $\leq\|A(t)-A\| \leqq \varepsilon$.

Corollary.2. VII. 2. The characteristic numbers of the limit matrix are the limits of the corresponding characteristic numbers.

This follows from the corollary to lemma 2. VII. . 1.
It is known that in a Banach algebra with unit element the neighbourhood of the unit element consists, of regular elements. If $A$ is a $\delta$-matrix such that $\|A-I\|<1$, the reciprocal $A^{-1}$ is the power series $I+(I-A)+(I-A)^{2}+\ldots$ [5, Theorem 5.2.1, p. 92]. More generally if $\| A-\lambda I_{1}|<|\lambda|, A$ has a two-sided $\delta$-matrix reciprocal, given by $\lambda^{-1}\left\{I+(I-A / \lambda)+(I-A / \lambda)^{2}+\ldots\right\}$.

If all the column-sums $\beta_{k}$ of a $\delta$ matrix $B$ are equal to unity, the matrix is a regular series to series summation matrix, called an $\alpha$-matrix.[ 9,541$]$. The $\alpha$-matrices form a subclass of the algebra of $\delta$-matrices which is not an algebra since the sum of two $\alpha$-matrices is not an $\alpha$-matrix. But if $A$ is an $\alpha$-matrix and $\|A-I\|<1$, then $A^{-1}$, obtained as the sum of a convergent power series is an $\alpha$-matrix, since all the column-sums of the matrix $I-A$ are zero, and therefore, by Corollary 2. II. 2, so are the column-sums of ( $I$ - $-A)^{j}$.

The same can be proved when $\|A-\lambda I\|<|\lambda|$, when the column-sums of the reciprocal are given by $\lambda^{-1} \Sigma(1-1 / \lambda)^{j}$, giving unity.

A column vector $u_{0}, u_{1}, \ldots$ can be regarded as an infinite matrix with zero columns except the first column. It is easy to verify that such a matrix $U$ is a $\delta$-matrix if and only if $\Sigma u_{k}$ is convergent. In this sense, then convergent series are elements of the algebra. This gives the following theorem:

Theorem 2. VIII. If the $\alpha$-matrix $A$ has a right reciprocal $A^{-1}$ whidh is a d-matrix, then $A^{-1}$ is an $\alpha$-matrix.

Proof. If $U$ is a column vector such that $\Sigma u_{k}$ is convergent, $V=A^{-1} U$ is a column vector such that $\Sigma v_{n}$ is convergent, since $A^{-1}$ is a $\delta$-matrix. Hence $A V=A A^{-1} U=U$, and $A$ being an $\alpha$-matrix, it follows that $\Sigma_{v_{n}}=\Sigma u_{b}$. Thus $A^{-2}$ sums every convergent series to its sum, and is therefore an $\alpha$-matrix.

## 3. $\delta_{0}$-matrices.

The class of $\delta$-matrices so far considered is the class of matrices which transform convergent series into convergent series. Their use for generalized summation of series however requires more: they should transform at least one divergent series into a convergent series. In other words: they should be 'stronger than convergence'. It is possible, at this stage, to exclude a wide class of trivial $\delta$-matrices from further investigations by the following result:

Theorem 3. I. A necessary condition that a $\delta$-matrix $B \equiv\left(b_{n k}\right)$ should be stronger than convergence is that

$$
\begin{equation*}
b_{n}=\lim _{k \rightarrow \infty} b_{n k}=0 \quad \text { for } \quad n=0,1,2, \ldots \tag{3.1}
\end{equation*}
$$

The proof is based on the following lemma:
Lemma 3. I. If $\Sigma_{k}\left|b_{k}-b_{k+1}\right|=M<\infty$, and $\lim b_{k} \neq 0$, then the convergence of $\Sigma b_{k} u_{k}$ implies the convergence of $\Sigma u_{k}$.

Proof of the lemma: By hypothesis there exist positive numbers $r$ and $R$ such that for $k \geq r,\left|b_{k}\right| \geq R$. Hence $\sum_{r}^{\infty}|1| b_{k}-1 / b_{k+1} \mid \leqq M / R^{2}$, and by a lemma due to Abel and Hadamard [4,394], $\Sigma c_{k} \mid b_{k}$ converges whenever $\Sigma c_{k}$ converges. The lemma is proved by taking $c_{k}=b_{k} u_{k}$.

The theorem then follows from (2.8) and (2.10).
Corollary. A necessary condition that a $\beta$-matrix $G \equiv\left(g_{n k}\right)$ be stronger than convergence is that

$$
\begin{equation*}
g_{n}=\lim _{k \rightarrow \infty} g_{n k}=0 \quad \text { for } \quad n=0,1,2, \ldots \tag{3.2}
\end{equation*}
$$

That the condition (3.1) is not sufficient, is shown by the unit matrix.
We shall call a $\beta$-matrix satisfying (3.2) a $\hat{\beta}_{0}$-matrix, and a $\delta$-matrix satisfying (3.1) a $\delta_{0}$-matrix. Obviously conditions (3.1)' and (3.2) are equi-
valent: If $B$ is a $\delta_{0}$-matrix, the corresponding matrix $G$ is a $\boldsymbol{b}_{0}$-matrix, and conversely.

Theorem 3. II. Under the norm (2.17) $\delta_{0}$-matrices form a non-commutative complex Banach algebra with unit element

Proof. The sum of two $\delta_{0}$-matrices is obviously a $\delta_{0}$-matrix. That the product is a $\delta_{0}$-matrix follows from corollary 2.IV. 1 since $b_{n}=0, h_{j}=0$ implies $a_{n}=0$. The unit matrix and the zero matrix are $\delta_{0}$-matrices. Theorem 2. VII, the two lemmas and the corollaries apply to $\delta_{0}$-matrices, and show in particalar that the space is complete. This concludes the proof.

The column vectors $\dot{U}$, regarded as infinite matrices, are $\delta_{0}$-matrices if and only if $\Sigma u_{k}$ is convergent. In this sense, convergent series are elements of the algebra of $\delta_{0}$-matrices.

A significant property of $\delta_{0}$-matrices is revealed by investigating the corresponding sequence to sequence summation matrices. Such a matrix $P$ is conservative, and called a $K$ matrix, and is defined by $[4,385]$

$$
\begin{equation*}
\Sigma_{k}\left|\ddot{p_{k} k}\right| \leq M(P) \text { for } n=0,1,2, \ldots, \tag{3.3}
\end{equation*}
$$

(3.4) : $\quad p_{n k}$ tends to a finite limit $\pi_{k}$ as $n \rightarrow \infty$ for $k=0,1,2, \ldots$,
(3.5) $\quad \Sigma_{k} p_{n k}=p_{n}$ tends to a finite limit $p$ as $n \rightarrow \infty$.

The corresponding series to sequence summation matrix $G$ is given by

$$
\begin{equation*}
g_{n k}=p_{n k}+p_{n, k+1}+\ldots \tag{3.6}
\end{equation*}
$$

It is known that if $P$ is a $K$-matrix, $G$ is a $\beta$-matrix, and in fact it is a $\beta_{0}$-matrix. Conversely, if $G$ is given, $P$ is given by

$$
\begin{equation*}
p_{n k}=g_{n k}-g_{n, k+1} \tag{3.7}
\end{equation*}
$$

If $G$ is a $\beta$-matrix, $P$ given by (3.7) is not necessarily a $K$-matrix [4, 399]. The correspondence between $G$ and $P$, defined by (3. 7), is not one-to-one, for $P$ is unaltered when $g_{n k}$ is replaced by $g_{n k}+g_{n}^{\prime}$, where $g_{n}^{\prime}$ is an arbitrary sequence. Starting with $G$, and $u$ ing (3.7) and (3.6) in turn, the correspondence $G \rightarrow P \rightarrow G^{\prime}$ gives

$$
g_{n k}^{\prime}=p_{n k}+p_{n, k+1}+\ldots=g_{n k}-g_{n, k+1}+g_{n, k+1}-g_{n, k+2}+\ldots=g_{n k}-g_{n}
$$

and $G=G^{\prime}$ if and only if $g_{n}=0$. Using the one-one correspondence between $\delta_{0}$ - and $\beta_{0}$-matrices, we obtain

Theorem 3. III. There is a one-to-one correspondence between $\delta_{0}$ matrices $B$, and $K$-matrices $P$, expressed by either of the equivalent formulae

$$
\begin{align*}
p_{n k} & =\sum_{j=0}^{n}\left(b_{j k}-b_{j, k+1}\right),  \tag{3.8}\\
b_{n k} & =\sum_{j=k}^{x}\left(p_{n j}-p_{n-1, j}\right) \text { with } p_{-1, j}=0 \tag{3.9}
\end{align*}
$$

The orem 3. IV. The correspondence in theorem 3. Ill is an isomorphism.

Proof. If $B, C$ are $\delta_{0}$-matrices, $G, H$ the corresponding $\beta_{0}$-matrices and $P, Q$ the corresponding $K$-matricts, it fo lows from (3.8) and (3.9) that $B+C$ corresponds to $P+Q$ Again

$$
(P H)_{n k}=\Sigma_{j} p_{n j} h_{j k}=\Sigma_{j}\left(g_{n j}-g_{n, j+1}\right) h_{j k}=\Sigma_{j} g_{n j}\left(h_{j k}-h_{j-1, k}\right),
$$

since $g_{n j} h_{j k} \rightarrow 0$ as $j \rightarrow \infty$. Thus $(P H)_{n k}=(G C)_{n k}$, and $P H=G C$ is a $\dot{\beta}_{0}$-matrix, $P Q$ is the corresponding $K$-matrix, and $B C$ the corresponding $\delta_{0}$-matrix. Thus $P Q$ corresponds to $B C$. This concludes the proof of the theorem.

We can now introduce a new norm for $\delta_{0}$-matrices. It is known that $K$-matrices form a Banach aigebra under the norm

$$
\begin{equation*}
\cdot\|P\|=\sup _{n} \Sigma_{k}\left|p_{n k}\right|, \tag{3.10}
\end{equation*}
$$

and, using the last theorem, we can define the norm of a $\delta_{0}$-matrix $B$ as the norm of the corresponding $K$-matrix $P$, i. e.

$$
\begin{equation*}
\|B\|_{\kappa}=\|P\| . \tag{3.11}
\end{equation*}
$$

The unit matrix is a $K$-matrix and the corresponding $\delta_{0}$-matrix is the same matrix. In the same way, the zeero matrix corresponds to itself. We have therefore $\|I\|_{K}=\|I\|=1$, whereas the $\delta$-norm of $I$ as defined in (2.17) has the value 4: The norm (3.11) for $\delta_{0}$-matrices has the properties (2.18) including the property (v) (which is not generally required in abstract algebras, but is essential for infinite matrices to establish completeness of the space).

We consider now series $\Sigma u_{k}$. with partial sums $s_{k}$, and use the following notations. We denote a sequence to sequence transformation by $P, Q, \ldots$ :

$$
\sigma_{n}=P\left(s_{k}\right)=\Sigma_{k} p_{n k} s_{k} ;
$$

a series to sequence transformation by $G, H, \ldots$ :

$$
\sigma_{n}=G\left(\Sigma u_{k}\right)=\Sigma_{k} \cdot g_{n k} u_{k} ;
$$

a series to series transformation by $B, C, \ldots$ :

$$
\Sigma_{v_{n}}=B\left(\Sigma u_{k}\right) \coprod_{n_{n}}\left(\Sigma_{k} b_{n k} u_{k}\right) .
$$

We denote the class of series $\Sigma u_{k}$, such that the partial sums $s_{k}$ are bounded, by ( $\mathfrak{F}$ ). It is known that a $K$-matrix $P$ transforms every bounded sequence $s_{k}$ into a bounded sequence $\sigma_{n}$. If $G$ is the corresponding $\beta_{0}$-matrix, we have

$$
\begin{equation*}
P\left(s_{k}\right)=G\left(\Sigma u_{k}\right) \quad[4,398-399] . \tag{3.12}
\end{equation*}
$$

Hence we obtain
Theorem 3. V. Every $\delta_{0}$-matrix $B$ transforms evcry series $\searrow u_{k}$ of (ß). intó a series $\mathbf{\Sigma}_{v_{n}}$ of ( $\mathfrak{V}$ ).

We also have
Theorem 3. VI. If $B$ and $C$ are $\delta_{0}$-matrices, and the series $\underbrace{}_{u_{k}}$ belongs to $(\mathbb{H})$ then $B\left[C\left(\Sigma u_{k}\right)\right]=(B C)\left(\Sigma u_{k}\right)$.

Proof. If. $G, H$ are the corresponding $\beta_{0}$-matrices, $P, Q$ the corresponding $K$-matrices, $s_{k}$ the partial sums of $\Sigma u_{k}$, we have $P\left[Q\left(s_{k}\right)\right]=(P Q)\left(s_{k}\right)$. Now
$Q\left(s_{k}\right)=H\left(\Sigma u_{k}\right)=\sigma_{n}$, and if $\sigma_{n}-\sigma_{n-1}=v_{n}, \quad P\left[Q\left(s_{k}\right)\right]=P\left(\sigma_{n}\right)=B\left(\Sigma v_{n}\right)=$ $=B\left[C\left(\Sigma u_{n}\right)\right]$. Again, $(P Q)\left(s_{k}\right)=(B C)\left(\Sigma u_{k}\right)$. This proves the theorem.

It follows from the identity (3.12) that the sequence to sequence and series to series summation methods are identical for all series of the class ( $\mathfrak{B}$ ), That this is not the case for series with unbounded partial sums, is shown by the following examples:

$$
\begin{equation*}
u_{k}=(k+1)^{3}, b_{n k}=(-1)^{k} /(n+1)(n+2)(k+1)^{3} . \tag{3.13}
\end{equation*}
$$

Here $g_{n k}=(-1)^{k}(n+1) /(n+2)(k+1)^{8}$ so that $\Sigma_{k}\left|g_{n k}-g_{n, k+1}\right|<2 \Sigma(k+1)^{-3}$, and $g_{n k}$ tends to a limit as $n \rightarrow \infty$, and to zero as $k \rightarrow \infty$. Hence $B$ is a $\delta_{0}$-matrix, and

$$
\Sigma v_{n}=\Sigma_{n} \Sigma_{k} b_{n k} u_{k}=\Sigma_{n} \Sigma_{k}(-1)^{k} /(k+1)(n+1)(n+2)=\log 2,
$$

so that the $B$-sum exists. Again $p_{n k}=g_{n k}-g_{n, h+1}=O\left(k^{-3}\right), s_{k}=O\left(k^{8}\right)$, hence $\Sigma_{k} p_{n k} s_{k}$ diverges, so that the $P$-sum does not exist.

$$
\begin{equation*}
u_{k}=(-1)^{k}(2 k+1), b_{n k}=1 /(n+1)(n+2)(k+1) \tag{3.14}
\end{equation*}
$$

Here $\Sigma_{k} b_{n k} u_{k}$ diverges, so that the $B$-sum does not exist. Again

$$
\begin{gathered}
s_{k}=(-1)^{k}(k+1), g_{n k}=(n+1) /(n+2)(k+1), \\
p_{n k}=(n+1) /(n+2)(k+1)(k+2)
\end{gathered}
$$

and $\Sigma_{k} p_{n k} s_{k}=\Sigma_{k}(-1)^{k}(n+1) /(k+2)(n+2) \rightarrow 1-\log 2$ as $n \rightarrow \infty$. Hence the $P$-sum exists.

## 4. Some examples of $\delta_{0}$-matrices with applications to Taylor series.

When a $\delta_{0}$-matrix $B$ is applied to the Taylor series $\Sigma u_{k} z^{k}$ representing the function $f(z)$ in its circle on convergence, it cannot be expected that the generalized sum $S(z)$ shall be the 'right' value $f(z)$. The relation between the two values for convergent series with partial sums $s_{k}(z) \rightarrow f(z)$ can be expressed, using (2.1), as $S(z)=\beta_{0} f(z)+\Sigma\left(\beta_{k}-\beta_{k+1}\right)\left\{s_{k}(z)-f(z)\right\}$, and the generalized sum is the analytic continuation of $S(z)$ in an open connected domain of summability containing the circle of convergence.

In this section we consider matrices for which the relation $f(z) \rightarrow S(z)$ is the simplest possible: $S(z) \equiv f(\alpha z)$, $\alpha$ being a complex number depending on the matrix, but independent of the series to which it is applied. Such matrices turn up as a natural generalization of matrices discussed by the author in a previous paper [ 9 , sections $3,4,5$ ]. The corresponding sequence to sequence summation matrices have recently also been discussed by other writers [3 and 6]. We restrict. our attention to series to series methods, the corresponding sequence to sequence matrices having too complicated expressions to be of any use.

As in the case of regular summation methods, the domain of summability for general Taylor series can be defined, if the domain of summability $D(B)$ for the series $\Sigma z^{k}$ is known. For conservative methods we require a modified restatement of a theorem due to E. Borel [1, 197-200], which we give here without proof:

Theorem 4. I. Let $f(z)$ be represented by the series $\Sigma u_{k} z^{k}$ in its principal star-domain. If $\varphi_{n}(z)==\sum_{j=0}^{n} \sum_{k=0}^{\infty} b_{n k} z^{k} \rightarrow \varphi(z)$ as $n \rightarrow \infty$ uniformly in every closed region of a star-domain $D(B)$, then the $B$-sum of $\Sigma u_{k} z^{k}=\Sigma_{n} \Sigma_{k} b_{n k} u_{k} z^{k}$ exists in the partial star-domain corresponding to $D(B)$, and its value is $\int_{\Gamma} w^{-1} f(w) \varphi(z / w) d w, I$ being a small circle about the origin, inside and on which $f(w)$ is regular. (Star-domains are defined in [9, 3.23, p. 551]).

In the particular case when $q(z) \equiv 1 /(1-\alpha z)$, the $B$-sum is

$$
\int_{I} f(w) /(w-\alpha z) d w=f(\alpha z)
$$

A natural generalization of the Taylor series continuation method [9, section 3 ; 3 and 6 the method $T(\alpha)$ ], is the matrix $A\left(t, t^{\prime}\right)$ depending on the two complex parameters $t$ and $t^{\prime}$, given by

$$
\begin{equation*}
a_{n k}=a\left(t, t^{\prime}\right)_{n k}=\binom{k}{n} t^{k-n} t^{\prime n} \quad(n=0,1,2, \ldots) . \tag{4.1}
\end{equation*}
$$

Applying $A\left(t, t^{\prime}\right)$ to the series $\Sigma z^{k}$, we obtain

$$
\begin{gathered}
v_{n}(z) \equiv \Sigma_{k} a_{n k} z^{k}=\left(t^{\prime} / t\right)^{n} \sum_{k=n}^{\infty}\binom{k}{n}(t z)^{k} \\
\Sigma_{n}(z)=(1-t z)^{-1} \Sigma\left(t^{\prime} z\right)^{n} /(1-t z)^{n}=1 /(1-\alpha z) \quad\left(\alpha=t+t^{\prime}\right)
\end{gathered}
$$

provided that
(i) $\left|\frac{1}{z}\right|>|t|$,
(ii) $\left|\frac{1}{z}-t\right|>\left|t^{\prime}\right|$,
which defines the domain $D(A)$.
$D(A)$ contains the unit circle in its inside, hence

$$
\begin{equation*}
A\left(t, t^{\prime}\right) \text { is a } \delta_{0} \text {-matrix when }|t|+\left|t^{\prime}\right|<1 \tag{4.3}
\end{equation*}
$$

and we shall consider this case only.
Assuming (4.3), the following types of summability domains may occur, (i) being always the inside of the circle with centre 0 , radius $1 / i t \mid$ :
(a) $\left|t^{\prime}\right| \geq|2 t| ; D(A)$ is the inside of the circle (ii) which is inside the circle (i);
(b) $|2 t|>\left|t^{\prime}\right|>\mid t$, the circles (i) and (ii) intersect, and $D(A)$ is inside both circles;
(c) $\left|t^{\prime}\right|=|t|, D(A)$ is the larger segment of circle (i) cut of by the
line (ii) which is the perpendicular bisector of the radius joining the origin to the point $z=1 / t$;
(d) $t^{\prime}|<|t|$, the two circles intersect, and $D(A)$ is inside (i) and outside (ii).

In all cases $D(a)$ depends on $t$ and $\left|t^{\prime}\right|$, but not on $\arg \left(t^{\prime}\right)$. The union of all domains $D\left(t, t^{\prime}\right)$ for $t, t^{\prime}$ satisfying (4.3), is the whole ope $1 z$-plane.

The question also arises, whether $A\left(t, t^{\prime}\right)$ is 'relatively' conservative', i. e. whether it contains all points $z$ such that $\alpha z$ is inside the circle of convergence. This requires that $D(A)$ contain the circle $|z|<1 /|\alpha|$, which is satisfied if and only if $|\alpha| \geq|t|+\left|t^{\prime}\right|$, and since $\alpha=t+t^{\prime}$, we must have $\arg (t)=\arg \left(t^{\prime}\right)$.

The method $A\left(t, t^{\prime}\right)$ has restricted translative properties [e.g. 9, 3.11, 547]. Writing, if they exist, $v_{n}=\Sigma_{k} a_{n k} u_{k}, v_{n}^{\prime}=\Sigma_{k} a_{n, k+1} u_{k}, \sigma_{n}=v_{0}+v_{1}+\ldots+v_{n}$, $\sigma_{n}^{\prime}=v_{0}^{\prime}+v_{1}^{\prime}+\ldots+v_{n}^{\prime}$, we have $v_{n}^{\prime}-t v_{n}=t^{\prime} v_{n-;}$ for $n=1,2 \ldots, v_{0}^{\prime}-t v_{0}=0$, hence $\sigma_{n}^{\prime}=t \sigma_{n}+t^{\prime} \sigma_{n-1}$, so that when $\sigma_{n} \rightarrow \dot{S}, \sigma_{n}^{\prime} \rightarrow \alpha S$. Thus:
" $A\left(t, t\right.$ ') sums the series $u_{1}+u_{1}+\ldots$ to the value $S$ " implies that it sums the series $0+u_{0}+u_{1}+\ldots$ to the value $a S$. We may say that $A\left(t, t^{\prime}\right)$ is translative to the left with factor $\alpha$.

The generalization of the Euler matrix on similar lines gives the matrix $B\left(t, t^{\prime}\right)$ as the transpose of $A\left(t^{\prime}, t\right)$ multiplied by $\left(1-t^{\prime}\right)$, i. e.

$$
\begin{equation*}
b_{n k}=b\left(t, t^{\prime}\right)_{n k}=\binom{n}{k}\left(1-t^{\prime}\right) t^{t^{n-k}} t^{k} \tag{4.4}
\end{equation*}
$$

Applying $B\left(t, t^{\prime}\right)$ to the series $\Sigma z^{k}$, we obtain

$$
\begin{gathered}
v_{n}(z)=\left(1-t^{\prime}\right) \Sigma_{k}\binom{n}{k} t^{\prime n-k}(t z)^{k}=\left(1-t^{\prime}\right)\left(t^{\prime}+t z\right)^{n} \\
\Sigma_{n}(z)=\left(1-t^{\prime}\right) /\left(1-t^{\prime}-t z\right)=1 /(1-\alpha z) \quad\left(\alpha=t /\left(1-t^{\prime}\right)\right)
\end{gathered}
$$

provided. that

$$
\begin{equation*}
\left|z+t^{\prime}\right| t|<1 /|t| \tag{4.5}
\end{equation*}
$$

defining $D(B)$ which is a circle. This contains the unit circle in its interior, i. e. $B\left(t, t^{\prime}\right)$ is a $\delta_{0}$-matrix when $|t|+\left|t^{\prime}\right|<1$. The union of all domalns $D(B)$ is the whole open $z$-plane.

The matrix is in addition 'relatively conservative' if $D(B)$ contains the circle $|z|<1 /|\alpha|$, i. e. if $\left|1-t^{\prime}\right| \leqq 1-\left|t^{\prime}\right|$; this requires that $t^{\prime}$, be positive.

Translative properties of $B\left(t, t^{\prime}\right)$ follow from the identity $t \sigma_{n}=\sigma_{n+1}^{\prime}-t^{\prime} \sigma_{n}^{\prime}$, which can be established in the same way as for $A\left(t, t^{\prime}\right)$. When $\sigma_{n}^{\prime} \rightarrow S^{\prime}$, $\sigma_{n} \rightarrow S^{\prime}\left(1-t^{\prime}\right) \mid t=S^{\prime} / \alpha$. Hence $B\left(t, t^{\prime}\right)$ is translative to the right with factor $1 / \alpha$.

The generalization of the Laurent summation method [9, section 5] and [6, the method $S(\alpha)$ ] on similar lines gives the matrix $C\left(t, t^{\prime}\right)$ defined by

$$
\begin{equation*}
c_{n k}=c\left(t, t^{\prime}\right)_{n k}=\binom{n+k}{k}\left(1-t^{\prime}\right) t^{k} t^{\prime} \tag{4.6}
\end{equation*}
$$

Applying $C\left(t, t^{\prime}\right)$ to the series $\Sigma z^{k}$, we obtain

$$
\begin{gathered}
\ell_{n}(z)=-\left(1-t^{\prime}\right) t^{\prime n} \sum_{k}\left|\begin{array}{c}
n+k \\
k
\end{array}\right|(t z)^{k} \\
\Xi_{\ell_{n}}(z)=\left(1-t^{\prime}\right)(1-t z)^{-1}={ }_{4} t^{\prime n} /(1-t z)^{n}=1 /(1-a z) \quad\left(\alpha=t /\left(1-t^{\prime}\right)\right)
\end{gathered}
$$ provided that (4. 7)

(i) $|z|<1 /|t|$
(ii) $|z-|/ t|>=t| t \mid$

This defines the domain $D(C)$ inside the circle (i) and outside the circle (ii). $D(C)$ contains the unit circle in its inside, i. e. $C\left(t, t^{\prime}\right)$ is a $\delta_{n}$ matrix when $\left|t_{1}^{\prime}+\left|t^{\prime}\right|==1\right.$. The union of all domains $D C$ ) is the whole open $z$-plane.

The method is in addition 'relatively conservative' if $D(C)$ contains the circle ${ }^{\prime} z^{\prime}<1 /|a|$, i. e. $\left|1-t^{\prime}\right|=1-\left|t^{\prime}\right|$. This requires that $t^{\prime}$ be positive.

The translative properties of $C\left(t, t^{\prime}\right)$ follow from the identity $t \sigma_{n}-\ldots$ $=\sigma_{n}^{\prime}-t^{\prime} \sigma_{m-1}^{\prime}$, so that when $\sigma_{n}^{\prime} \cdots \cdot S^{\prime}$, then $\sigma_{n} \cdots S^{\prime}\left(1-t^{\prime}\right)\left|t=S^{\prime}\right| a \ldots$. Hence $C\left(t, t^{\prime}\right)$ is translative to the right with factor $1 / a$.

## 5. $\delta_{n}$-matrices, efficient at a countable infinity of isolated points.

Regular sequence to sequence summation methods which are efficient at isolated points have been given in $[2,53-55]$, and later extended to a finite number of points for series to sequence methods in $[8$, section 6 , 11-13]. A further extension of thise results is possible by constructing $\delta_{1}$-matrices as elements of an abelian multiplicative group of infinite matrices.

The group is generated by the unit matrix $I$ and the diagonal vector

$$
E \equiv\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 1 & \ldots \\
. & . & . & . & \ldots
\end{array}\right)
$$

The matrix $A$ is given by

$$
\begin{equation*}
A=I+e_{1} E+e_{2} E^{2}+\ldots \tag{5.1}
\end{equation*}
$$

where the $\dot{e}_{j}$ are complex numbers, satisfying the following condition:
(5.2) the function $y(w)=-1+e_{1} w+e_{2} w^{2}+\ldots$ is regular and $=0$ for $|w|: 1$.

It follows from (5.2) that $>\left|\varepsilon_{j}\right|<\lambda$, and that if $1 / \tau(w)=1+d_{1} 1 w_{1}+d_{2} u^{2}+\ldots$, then $\Sigma_{;} d_{j} \mid<\infty$.

The reciprocal of $A$ is the matrix

$$
\begin{equation*}
A^{-1}=1+d_{1} E+d_{2} E^{2}+\ldots \tag{5.3}
\end{equation*}
$$

Both $A$ and $A^{-1}$ are $\delta_{0}$-matrices, with,$A_{i} \leq 2+\leq\left|2 e_{j}\right|$ and $\left\|A^{-1}\right\| \leq 2+\Sigma_{1} 2 d_{j} \mid$.
Theorem 5. I. The $\delta_{n}-$ matrix A. given by (5.1) and (5.2), is inefficient for all divergent series with bounded partial sums.

Proof. If $\Sigma_{u_{k}}$ is such a series, and if $A$ is efficient for this stries
we have $\Sigma_{v_{n}}=A\left(\Sigma u_{k}\right)$ is convergent, hence so is $A^{-1}\left(\Sigma v_{n}\right)=A^{-1}\left[A\left(\Sigma u_{k}\right)\right]$. But, by theorem 3. VI, the last expression is equal to $\left(A^{-1} A\right)\left(\searrow u_{k}\right)=\searrow u_{k}$, which is divergent.

Applying $A$ to the series $\Sigma z^{k}$, we obtain

$$
v_{n}(z)=z^{n}\left(1+e_{1} z+e_{2} z^{\mathbf{0}}+\ldots\right)=z^{n} \varphi(z), \Sigma_{v_{n}}(z)=\varphi(z) /(1-z),
$$

both series being convergent inside the unit circle, and, trivially, at those zeros of $\varphi(z)$ which are inside (or possibly on) its circle of convergence.

If, for example, $\varphi(w)$ is an integral function with an infinity of zeros $w_{1}, w_{3}, \ldots$ outside the unit circle, then $A$ sums the series $\Sigma z^{k}$ to the value $f(z) /(1-z)$ inside the unit circle, and to the value zero at the isolated points $z=w_{1}, w_{2}, \ldots$. A suitable function for construction is for example $f(w) \equiv \cos w$, and the corresponding matrix is the matrix

$$
A=I-E^{v} / 2!+E^{4} / 4!-\ldots=\left(\begin{array}{cccccc}
1 & 0 & -1 / 2! & 0 & 1 / 4! & \ldots \\
0 & 1 & 0 & -1 / 2! & 0 & \ldots \\
0 & 0 & 1 & 0 & -1 / 2! & \ldots \\
. & . & . & . & . & \ldots
\end{array}\right) .
$$

The behaviour of the matrix $A$ (defined in (5.1)), for other series than $\Sigma z^{k}$ outside the circle of convergence cannot be deducted from theorem 4.I. For each Taylor series the set of isolated points of summability may differ. For example if $A$ is applied to the binomial series $\Sigma_{k}\binom{p+k}{k} z^{k}(p=2,3, \ldots)$, we obtain

$$
v_{n}(z) \equiv \Sigma_{k} a_{n k}\binom{p+k}{k} z^{k}=\left(z^{n} \mid p!\right) d^{\prime \prime}\left[z^{p} \varphi(z)\right] d z^{\prime},
$$

so that $A$ sums the series at points inside the circle of convergence to the value $[(1-z) p!]^{-1} d^{y}\left[z^{y} \varphi(z)\right] / d z^{y}$, and to the value 0 at those isolated zeros of the function $\mathscr{P}_{p}(z) \equiv d^{p}\left[z^{p} \varphi(z)\right] / d z^{p}$ which are inside (or possibly on) the of convergence of $\varphi(z)$.

I wish to express my thanks to Professor P. Dienes for suggesting theorems 2.I-IV. I am also indebted to Dr. L. S. Bosanquet, who gave the proof of lemma 3.I, and to Dr. R. E. Enwards, wo suggested lemma 2. VII. 2 and simplified my original proof.

Added in proof (March 12, 1951): Meyer-König [6, p. 257] remarks that the Taylor summability method was introduced by G. H. Hardy and J. E. Littlewood as 'circle method' in a paper in the Rendiconti Circolo Mat. Palermo, 41 (1916), pp. 36-53. I found recently in the Hungarian textbook of M. Beke: Differentiàl és Integrálszámitás, vol. 2 (Budapest, 1916), pp. 433-435 another interesting way of considering analytic continu-
ation as a generalized mean by sequence to sequence transformation. Beke remarks that this method has been communicated to him verbally by M. Fekete. Fekete obtains the summability matrix in the following way:

If $f(z)=\Sigma u_{k} z^{k}$ has a radius of convergence $R$, and $0<|a|<|z|<R$, $a / z$ being positive, then the series can be continued to

$$
\leq f^{(n)}(\alpha)(z-\alpha)^{n} \mid n!.
$$

Denoting the partial sums of the two series by $s_{k}(z)=u_{0}+u_{1} z+\ldots+u_{k} z^{k}$ and

$$
\mho_{n}(z)=f(\alpha)+f^{\prime}(\alpha)(z-\alpha)+\ldots+f^{(n)}(\alpha)(z-\alpha)^{n} / n!,
$$

we see that

$$
\sigma_{n}(z)=\left\{(z-\alpha)^{n+1} / n!\right\} d^{n}\{g(\alpha)\} / d \alpha^{n}, \text { where } g(\alpha) \equiv f(\alpha) /(z-\alpha) .
$$

But

$$
g\left(a,=\left(\Sigma u_{k} \alpha^{k}\right)\left(\Sigma \alpha^{k} / z^{k+1}\right)=\Sigma \alpha^{k} s_{k}(z) / z^{k+1},\right.
$$

hence

$$
\sigma_{n}(z)=(1-\alpha / z)^{n+1} \leq\binom{ k}{n}(\alpha / z)^{k-n} s_{k}(z),
$$

which is the transform of $s_{k}(z)$ by the upper semi-matrix

$$
a_{n k k}=\binom{k}{n}(\alpha / z)^{k-n}(1-\alpha / z)^{n+1}
$$

Since $a_{n k} \geqq 0$ and $\Xi_{k} a_{n k}=1$, the method is a regular sequence to sequence summation method.

## References.

1. E. Borel, Legons sur les séries divergentes, 2nd' ed: (Paris, 1928).
2. R. G. Cooke and P. Dienes, On the effective range of generalized limit processes, Proceedings London Math. Soc., (2) 45 (1939), pp. 45-63.
3. V. F. Cowling, Summability and analytic'continuation, Proceedings American Math. Soc., 1 (1950), pp. 536.-542.
4. P. Dienes, The Taylor Series (Oxford, 1931).
5. E. Hille, Functional Analysis and Semi-Groups (New York, 1948).
6. W. Meyer-Könia, Untersuchungen über einige verwandte Limitierungsverfahren, Mathematische Zeitschrift, 52 (1949), pp. 257-304.
7. P. Vermes, Product of a $T$-matrix and a $\gamma$-matrix, Journal London Math. Soc., 21 (1946), pp. 129-134.
8.     - On $\gamma$-matrices and their application to the binomial series, Proc. Edinburgh Math. Soc., (3), 8 (1947), pp. 1-13.
9. __ Series to'series transformations and analytic continuation by matrix methods, American Journal of Math., 71 (1949), pp. 541-562.
10. _ Certain classes of series to seriès transformation matrices, American Journal of Math., 72 (1950), pp. 615-620.

University of London, Birkipec College.


[^0]:    ${ }^{1}$ ) Numbers in square brackets indicate references given at the end of this paper.

