Conservative sernes to series transformatnon matrices.
By P. VERMES in London

i lntroduction.

" In a recent paper 91y infinite matrices representmg regular senes to
" series summation methods have been discussed. The present. paper is mainly
concerned with coriservative series to series summation matrices, a more general
class of matrices. Regular matnces form a subclass. of these matrices, and
the results obtained in this paper are therefore valid also for this subclass.
The standard method of ‘summing’ a series of complex terms u,+u, 4 -+
with partial sums s,=u,+u,+ --- +u, is the transformation of the sequence
s, by a matrix of complex elemenis P=(p,,) info a convergent sequence
6,= X3, p,.S,.. The matrix is called conservative if .the convergence of Zu,
implies that o, exists for n >0 and that o, tends to a finite limit (which may
be different from Zu,). A conservative sequence to sequence summation matrix
is called a K-matrix [4, p. 388]. . :

. Another .method is the transformatton of the series Su,'info a convergent
sequence ¢,= =, g,,.u, by a matrix G=(g,.). A conservative series to sequence
summation matrix is called a g-matrix (4, 397]. Sufftczent and necessary con-
ditions for G to be a 3-matrix are [4,394—3096]: :

51 S w— 8 | SMG) for n=0,1,2,.
(l 2) L& tends to a finite limit ;S‘,, as 1 co for. k 0 l 2

We shall empIOy (l 1) and (1. 2) as the defmztwn of a ﬂ-matnx
‘A third method is the transformation .of the series Zu, by the matrix
B=(b,,) into a convergent series Zv,, so that v,—=3,b,,u,. If the matrix is
conseryative, i.e. if the convergence of Zu, 1mphes the existence of v, for
n=0,1,2,... and tie convergence of Su, (w_here the two sums may differ),
we shall call the matrix B a d-matrix.
" The followmg resuits will be proved in section 2: A necessary and
sufficient condition for a matnx to be a é-matrix is that the corresponding

1) Numbers in square brackets mdrcate references given at the end of this paper.
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series to sequence method is conservative; the product of a #-matrix and a
d-matrix is a #-matrix; the sum and 'pr_oduct‘ of d4-matrices, addition and
multiplication being associative; a norm can be defined for d-matrices under
which they form a non- commutatwe complex Banach algebra with umt ele-
ment [5, 1.14,p.12]

In section 3 we discuss the subclass of d-matrices A which satisfy the-
condition a,=lima,, =0 for every n, this being necesSary for a d-matrix

k>0

to be stronger than convergence. Denoting these matrices J matrices, we show
that they form a subalgebra of the algebra of d-matrices' under the same norm.
The sequence to sequenca summation matrix corresponding to a d,-matrix is
a K-matrix, and the correspondence is an isomorphism. The norm of K-matrices
can therefore be introduced to d,-matrices. Considering the class (8) of series
with bounded partial sums, if A and B are d,-matrices, they apply to every
series of (B) and transform it into a series of (B), and A(B(#,))=(AB)(u,).
A J,-matrix and the corresponding K-matrix are equivalent for series of (H),
but examples are given of series of unbounded partial sums and of d,-matri-
ces where the two methods are not equivalent. :
In section 4 the following d&-matrices. are studied:

M eu=(5}te,
(ii) b,,,,=("](l—-t)t"kt"‘

(i) o= (""‘k)(l—t YL

_ These matrices are d,-matrices when |f 4-['| < 1, they sum the Taylor

series Ju,2* of the function f(z) in some partial star-domains to the value

f(a2), a depending on the matrix . They also display a modified left- or right-

translativity. The corresponding series to sequence and sequence to sequence

matrices cannot be expressed in simple terms, so that the introduction of

d-matrices was essential. These matrices can be regarded as modified methods

of Euler, Taylor and Laurent series continuation discussed in recent papers
[3, 6, 9 and 10].

In section 5 special d,-matrices are constructed which - are efficient for

- Taylor series at an infinity of isolated points outside its circle of convergence.

2. J-matrices. A
We first consider @-matrices G, The following properties follow from
the definition and (1. 1), (1.2):
(2.1) If Su,=s, then the G-sum of Ei;k is givgn by 3.5+ 3(3. —B) (5. —5).
This is proved in [4, 394—395]. _
(2.2) The row limit lim g,. =@, exists for every n.

k>
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For Z.(g..—g.:+1) =&, —limg,, exists by (1.1).
k+ew
(2.3) S)8—Bin| = MiG). A A ,
For Z'ﬂk'—ﬂkv&l' =‘lim /;; \g. i —&. 11| = M(G), for every r.

(2.4) lim @, =g exists.
This follows from (2.3) as (2.2) followed from (1.1).
(2.5) The elements of G are bounded.

k—1
For |gul=|g.0— Z; (8:—£.r)| S K(G)+M(G , where

K(G) =sup,|gu-
The column limits g, their limit 8, and the row limits g, will be calied
the characteristic numbers of G. A -
We now consider the summation by series to series transformation. of .

'any series u,-+ u, 4. ... Summability by the matrix B means that
2.6) v,= =, b,,u, exists for n=0,1,..., and Jv,=s.

Writing v,+v,+--- +v,=o, and by, + b+ --- +b,,=g,., we have
2.7 ‘ . 0, = 3,8,

the existence being iniplied by (2.6). Conversely, writing g,,— g, 1.="b..
(n=0,1,..) and g_,,=0, we find that the exnstence of (2.7) implies the
existence of (2.6). Hence we obtain .

Lemma 2. 1. If the matrices B and G are connected by the relation
Gui=bo+ b+ -+ b, then the series to series transformation by B and
the series to sequence transformation by G are equivalent. .

An 1mmedxate consequence of the Lemma is:

Theorem 2. 1. The matric B=(b,,) is a d-matrix if and only 1f G,
given by g,,= by, + b.,,+ -+ b,., is a 3 -matrix.

We shall call matrices, when they are related as in Theorem 2 I, corre-
sponding matrices.

The following properties of A-matrices are easily obtained:
(2.8) 3]b,—b,.,| <2M(G);
(2.9) Z,b,—f for every k (4, is defined in (1.2);
(2.10) the row limit llm b,.==b, exists for every n, and, wntmo g =0,
b,=y¢,—g,_, (g is defined in (2. 2));
(2. 11) 1, -22K(G) +2M(G). ,
it follows from (2.9) that b,~0 as n-o for every k, so-that every
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d-matrix is a g-matrix with zero column’ limits. -But not every A-matrix satis-
fying (2.8) and (2.9) is a d-matrix, as shown by example (2. 10) of [9].
The unit matrix / and the zero matrix O are d-matrices.
Theorem 2.-1. The product GC of a @-matrix G and a é-matrix C
exists and is a g-matrix. . N
Proof By (2.9), Sjc;, is convergent, and since G is a g-matrix,
(GC),. == g.;¢; exists for every n and k,. hence Gc exists. Denoting the
product matrix by F, we have ' ’

hmf,—hm S 8.;€iv= G-sum of Ij¢;, eiists for every k&,
so that F satlsfxes condmon (1:2). If H is the A-matrix correspondmg to C,
.wnth column limits y,, we have. . ‘
(2.12) fu=23;g,;(h— i—_!,k)_Ef(guj—gn,i+l)hil+,!i:2 g,.-,-h,i,,;.'
hence I R

Jar— oo =Z(gs;— g.',,ﬂ)(h,; ,fo)“‘gn(h Yen)i

" Using (1. 1), (2.5) and (2.3) we obtain
(2-13) Sl fu—Lorn| S M(GYMH) H{K(G) + MG} M(H), -
" so that F satisfies condition (1.1). This concludes the proof.
Corollary 2 1L 1: The row limits of the product matrtx are:

f _g- +2 (g»; gn )+1)h 5
This follows from (2.12), taking the limit of the nght-hand ‘side when
k~occ. The series: being dominated by sup|h;.|-3;lg,.,—g.,.|, the:order of
summation and limit can.be interchanged. : :
Corollary 2. 1L 2. The colamn limits of the product matrtx are
Q= =;8,C;s-

For - ¢,=1limZ;g,; ¢ =G- S“m".: k—'rfo)’k’i“J(P)J ;«H)(h:k 7’1:)‘~

: -ﬂ: ;m-i-— (h,;— o, k)ﬂ _-IlT, ﬂ,_h;k—ﬂork,+j!_l’n; Biti-
Corollary 2. II. 3. klll";"‘§=/?7+2j(ﬁj—ﬂj+l)hj-
For the'previbus_ cofollar& gives o

¢k=z(h,k—h,_,,)ﬂ'=z,(ﬁ p’m)h,,,+hmﬂ,h,,, (

the last sum being dommated by sup|h,,| Iﬁ’ ,5‘_,,| Lettmg k»oo we
obtain the result. "~ }

Corollary 2. 1. 4. The elements .of the prod_uct matrix - are -bounded,

ful < MU+ K(H) @M@ +KG.
This follows from (2. 12), applying (I l‘)'fahd' @5y e

thus
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Theorem 2. lll. A sufficient and necessary condition for the matrix product
G C to exist and be a 3-matrix for every 3-matrix G is that C should be a d-matrix.
) The proof is the same as of [9, 2. V]. This result is parallel to a
-previous result on the product of a 7-matrix and a y-matrix [7]}, which can
be extended to the product of a K-matrix and a g-matrix in a similar way
as in theorem 2.1 of the-present paper. '

Theorem 2. IV. The product of two d-matrices exists and is a o-matrix.

Proof. In the notation of theorem 2.1l F= GC is a @-matrix, and the
corresponding J-matrix A is given by '

(2.14) ank=/nl.-_f:n—l,k:Sj(gni—gn-l.j) =23 bnjcjkl
which is the product of the d-matrices B and C.

Corcllary 2. IV. 1. The row limits of the product matrix are
. - an=: bn;'+:j(bni_bn,j+1)hi'. ‘
This follows from coroliary 2. II. 1.

Corollary 2. IV. 2. The elements of the product matrix are bounded,
thus
la..| = 2M(H)+2K(H)} {2M(G) + K(G)}-

This follows from corollary 2. II. IV.

Theorem 2. V. The product of d-matrices 1s associative.

Proof. Let A, B, C be d-matrices, F, G, H the corresponding @ matrices
respectively, AB=D, GC=R. We consider the double series o

(2. 15) =i ‘J(am Q,i01) (8 —&iie1) M
which converges absolutely. Summing as indicated, we obtain
i@, —a, ) {Si(h— Ry, L)g.i‘“l‘m g}
=3I(a,—a nis1) {58156 g.)"}— S, —0a,001) (i —8i70)
= S(ru—"ri1s) am"— hm A, — 7=, a,01) &
— 5,0,(BC)u—a,0,— 7, 58— €y i0) & '
—[A(BO)},.— a.0.—7,(d,—a,3) by corollary. 2. IV. 1.
Reversing the order of summation in (2. 15), we obtain
=jh ,-k{f-(b., L —8iint &) G liM a,,(g,—g:500)}
SihdSia,0(b; — biyin) —al (8, — ﬂ,n)} .
= 30 (d,;— o) — 8, 58— Bia) i
=I(h;,—h;_,.)d,, —-hm d,,,h,,‘ a, Eﬁ,c,,,-{-a ]I_Im Bih;,
LiCi—dyi— et 0,7, =[(AB)Cl,,—a,00—7,(d,—a,8),
showing that [A(BC)]=[(AB)C].

'——a
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Corollary 2. V. . The product of a p-matrix on the left followed by
d-mairices is associative. ' :

This follows from the fact that if (a,.) is a d-matrix, so is (@,_,,), i. e.*
if a zero row is added to A. Hence all the double sums Ea,,,b i¢; for
h=0,1,...,n can be inverted as well as thelr sum S.3;f..b

Theorem 2. VI. Every finite linear combmatton of d-matrices is a
d-matrix. '

Proof If A and B are d-matrices, F, G the corresponding 3-matrices,
x,y complex numbers, xF+yG=H, then |h,—nh, 0| Z|xX(foi—Foi1)|+
+|y(gnk_gn,k+1)‘, so that . )

(2.16) Silhai—h, ol < x| M(F)+|y| M(G),
and lim h,, exists. Thus A i$ a f-matrix and C=xA +vB a J-matrix.

It follows from the last three theorems that 9-matrices form a non-
commutative ring, with the unit matrix as unit element and the zero matrix
as zero element. The ring contains zero-divisors, for example AB=0 when
a,.== 1 for all k, all the other elements of A bemg Zero, b‘,,r — 1 by=1,
all the other elements of B being zero.

It is possible to define a norm for J-matrices in the following way:
If B is a d-matrix, G the corresponding g-matrix, N(G) = sugy,=.|€ui— &u.xs:1
K(G)=sup,g,, (as in (2.5)), the norm of B is defined as the number

@1, 1Bl =2{N(G) + K(G)).
The following properties of the norm are easily verified:
(2.18) (i) ||B||=0 and ||B|=0 if and only if B is the ~ero matrix. _

(ii) | xB|==|x|||Bj|. x being a complex number

@iii) [|B+Cll=lIBli+-1|C]|.

(iv) IBCj|<1BJ|-IIC]I.

V) [, <| Bl
Here (i), (ii) follow from the definition of the norm, (m) from (2.16), (v)
from (2. 11). To prove (iv), we use the notation in the proof of theorem 2. V.
It follows from (2. 13) that N(F)<N(H){2N(G)+K(G)} Also fio=Z;g,;C;o=
=3(g.,— g.,“)hm+hmgn, 5, hence K(F)=< K(H){2N(G +K(G)} -and

(iv) follows by addmo N(F) ‘and K(F).
Theorem 2. VIl. With the given norm, é-matrices forn 2 non-commu-
tative complex Banach algebra with unit element. [5,1.14, p...2; 1.11, p. 10}. -

Proof. It is sufficient to prove that the space of dJ-mnatrices is com-
plete in the topology induced by the metric d(B, C)—|IB Cll, i. e. that every -
Cauchy sequence A(@) (t=1,2,...) of d-matrices converges to a hmn matnx :
A which. is a d-matrix. We first prove 8 AT ‘
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Lemma 2. VII. 1. If 3| A(t)|| converges, then Z,A(t)= A exists and
is a d-matrix. ' : ' -

Proof. Let F(t) be the g-matrix corresponding to A(f). The sums
SIS —f (D)., k+1}'<22 fE)as—SEniar]s S S(Enr and hm S f(On=
=3, hm f(t),,,, are .all domlnated by the series I,||A(®)|i, hence the matrix

F= EF(l) exists and is a g-matrix, and A=3,4({) is the corresponding
J-matrix.

Corollary to the lemma. The characteristic numbers of the sum matrix
are the sums of the corresponding characteristic numbers.
This follows from the uniform convergence of all the series concerned.

Lemma 2.VIL. 2. The space of 6-matrices is.complete under the given norm.

Proof. Assuming that A(¢)is a Cauchy sequence, so that for ¢, ' > T'(e),
lA@)—A()|| <& we find that |a(t),,—a(t),.| <& hence a(t),,~a,. as
t-+oo. Thus A(f) tends in- each element to a matrix A= (a,,). Determining
a sequence of positive integers #;> 1, , such that ||A(t;)—A(t,_)]| <27, so
that the series SHA(!)—A( l)H converges, we find that, by the previous

lemma, the series A(f, H—Z {A(t})) —A(t;;)} .converges, and its sum-
]1m A(t)»—hm A(t)isa d matnx Since, for t> T(e), |'A(t)—A]|<e he
converoence |s strong. This proves the lemma, and therefore the theorem.

Corollary 2. VIL. 1. The norm of the limit matrix is the limit of the
norms

For ||| A(t)[|— || AQ >|||<nA(t>—A(t')||<e and hence |||A<t>|:—||A||l
ZlAag)—Al=e

Corollary 2. VIL. 2. The . characteristic numbers of the Ilmzt matrix
are the limits of the corresponding characteristic numbers

This follows from the corollary to lemma.2. VII..

It is known that in a-Banach algebra with unit element the nelghbourhood
of the unit element consists, of regular elements. If A is a d-matrix such that
|A—1T)| < 1, the reciprocal A™' is the power series /+(/ ~A)+(/—A)2 ..

[5, Theorem 5.2.1, p. 92]. More generally if |A —4/j|<|4!,- A has a two- S1ded
d-matrix reciprocal, given by I+ (U= AR+ (I—A[APR+. . )

.If all the column-sums @, of a d matrix B are equal to unity, the matrix
is a regular series to series summation matrix, célledl an «-matrix.[9, 541].
- The a-matrices form a subclass of the algebra of d-matrices which is not an
algebra since the sum of two a- matrlces is not an e-matrix. But if A .is an
e-matrix and |]A—1||<l then A™' obtained. as the sum of a convergent
power series is an a-matrix, since: all the column -sums of the matrix /— A
are zero, _and,l therefore, by, Co,roll:ary 2.11. 2, S0 are the column-sums of (( A).
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The same can be proved when ||A—Z/||<|4|, when the column-sums of -
the reciprocal are given by 27'I(1—1/4), giving unity.

A column vector u,, u,,... can be regarded as an infinite matrix with
zero columns except the first column. 1t is easy to verify that such a matrix
U is a d-matrix if and only if Zu, is convergent. In this sense, then conver-
gent series are elements of the algebra. This gives the following theorem:

Theorem 2. VIIL. If the e-matrix A has a right reciprocal A~ which
is a d-matrix, then A" is an a-matrix.

Proof. If U is a column vector such that Xu, is convergent, V=AU
is a column vector such that Sv, is convergent, since A™' is a d-matrix.
Hence AV=AA" 'U=U, and A bemg an e-matrix, it follows that S¢, = Ju,.
Thus A~ sums every convergent series to ‘its sum, and is therefore an a-matrix.

3. J,-matrices.

The class of d-matrices so far considered is the class of matrices which
transform convergent series into convergent series. Their use.for generalized
summmation of series however requires more: they should transform at least
one divergent series into a convergent series. In other words: they should
be ‘stronger than convergence’. It is possible, at this stage, to exclude a wide
class of trivial d-matrices from further investigations by the following result:

Theorem 3. 1. A necessary condition that a d-matrix B=(b,;) should
be stronger than convergence is that

@G. 1) b,=limb,,—0 for n=0,1,2,.
k>

The proof is based on the 'following lemma:

Lemma 3.1 If 3,|b,—b,..\| =M< e, and lim b,3=0, then the conver-
gence of Sb.u, implies the convergence of Zu,.

Proof of the lemma: By hypothe51s there exist positive numbers r and
R such that for k>r {b,] > R. Hence Z]l/b‘——l/b,,”l<M/R~ and by a

lemma due to ABEL and HADAMARD [4, 394], ¢, /b, converges whenever ¢,
converges. The lemma is proved by taking ¢, = b,u,. ’

The theorem then follows from (2.8) and (2. 10).

Corollary. A necessary condition that a 8-matrix G=(g,;) be stronger
than convergence is that

3.2 g—hmg,,,,__O for n=0,1,2,.
That the condltlon (3.1) is not sufficient, is shown by the unit matrix.

. We shall call a g-matrix satisfying (3.2) a J3-matrix, and a J-matrix
“satisfying (3. 1) a d,-matrix. Obviously conditions (3. 1) and (3. 2) are equi-
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valent: If B is a d,-matrzx, the correspondtncr matrix G is a j-matrix, and
conversely . . .
Theorem 3. ll Under the norm (2 I‘l) 6(,-matr1ces form a-non-commu-
tative complex Banadl algebra with unit element

Proof. The sum of two d,-matrices is obviously a g -matnx That the
product is a 6-matnx follows from corollary 2'IV. 1 since b,~=0, hj=0
implies a, <£0. The unit ‘matrix 'and the zero matrix are d,-matrices. Theorem
2. VI, the two lemmas and the corollanes apply to d,-matrices, and show
in partrcalar that the space is complete Thxs concludes the proof _
‘ The column vectors U, tegarded as infinife matrices, are &,-matrices’if
and only if Su, is convergent.. In this sense, convergent series are elements.:
of the algebra of d,-matrices.

A significant property of d-matnces is revealed by mvestxgatmg the
corresponding sequence to sequence summation matrices. Such a matrix P
is conservative, and called a K matrix, and is defined by [4, 385] '

3.3 ‘L|pnk|<M(P) for n=0,1,2,.

B4 .  pu ‘tends . to a finite llmnt T, as o for k O 1 2,.

(3.5), =« ‘p,,l_p,,.tends to a. finite limit p as n+oo.

The: correspondmg series’ to :sequence summation- matnx G is- given- by

(3 6) i - ..-. ‘ gnk—pnk+p.. k+1+ .

lt 1s known that if Pis a K—matnx Gis a #-matnx and m fact it is.
a f- matnx Conversely, .if G is gwen P |s given by
3.7 Pus=Eur™—Lni1-

If G is a p-matrix, P given by (3. 7) is not necessanly a K-matnx 4,
399). The correspondence between G and P, defined by (3. 7), is not one-to-one,
for P is unaltered when g, is replaced by g..+ 2., where g/ is an arbltrary
sequence. Starting with ‘G, and usmg (3 N and (3.6) in turn, the corre-
vspondence G~P->G’ glves ;

buk pnk+pn lt+l+ —gnl- gnl+l+gn L+1 n k+‘7+ ' l nl.‘ gn '

vand G=G’ if and only 1f g,,—O Usmg the one-one correspondence be-
tween 6, and S-matrices, we obtain : '

Theorem 3.1Il. Thereis a one-to-one correspondence between 0y matnces
B, and K-matrices P, expressed by either of the equivalent formulae o

. 8) p,.L = 2 (b,L i ul)

AT

3. 9) _ n—z (p,, —Pos, ,) with: p- ,,-—0

T h eore m 3 lV The correspondence in theorem 3. lll ls an rsomorphrsm
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Proof. If B, C are d,-matrices, G,H the corresponding g,-matrices and
P, Q the corresponding K-matrices, it fo lows from (3. 8) and (3.9) that B4-C
corresponds to P4 Q Again

(PH)i=Zp,ihis = Zi(8,;— & i) ik = Eigni(hjk_h,’-:!,k)ll
since g,;h;,~0 as j~=o. Thus (PH),,=(GC),:, and PH=GC is a gy-matrix,
PQ is the corresponding K-matrix, -and BC the corresponding d,-matrix. Thus
PQ corresponds to BC. This concludes the proof of the theorem.

We can now introduce a new norm for d,-matrices. It is known that
K-matrices form a Banach aigebra under the norm

(3. 10) APl = sup, S| p.sl»
and, using the last theorem, we can define the norm of a d,-matrix B as the
norm of the corresponding K-matrix P, i. e.
G.11) | Bllx =l[Pi.
The unit matrix is a K-matrix and the corresponding d,-matrix is the same
matrix. In the same way, the zéro matrix corresponds to itself. We ‘have
therefore |[/|l, = |/} =1, whereas the d-norm of I as defined in (2.17) has
the value 4. The norm (3. 11) for d-matrices has the properties (2. 18) in-
cluding the property (v) (which is not generally required in abstract algebras,
but is essential for infinite matrices to establish completeness of the space).

We consider now series Zu,.with partial sums s,, and use the following
notations. We denote a sequence to sequence transformation by P, Q,...:

0,== P(8,) = 3 posSt 5
a series to sequence transformation by G, H,...:
. s, =G(‘\:u1):5k'gnx”k§
a senes to series transformation by B, C,.
L . 20, _B(Euk)—‘\' ("’L b,.u,).
We denote the class of series Su,, such that the pdrtial sums s, are bounded,
by (3B). It is known that a K-matrix P transforms every bounded sequence
" s, into a bounded sequence o¢,. If G is the corresponding f,-matrix, we have

(3.12) ' P(s‘.)=G(Euk) [4, 398—399].
Hence we obtain

Theorem 3. V. Every d,-matrix B transforms evcry series. lu,‘ of (Y)
into a series Zv, of (). ' .

We also have

Theorem 3. VL. If B and C are- d-matrices, and the series Xu, belongs
to (B) then B[C(Su,)]=(BC)(Su,).

Proof. If.G, H are the corresponding s,-matrices, P, Q the correspondm«
fK-matnces s, the partial sums of Ju,, we have P[Q(s,)]=(PQ)(s;). Now

! . . .
i Bad ek e . PO U S DU RS
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Q(s)=HEuw)=e, and if o,—0,_,=v,, P[Q(s)]=P(s,)=B(Zv,)=
= B[C(Zu,)]. Again, (PQ)(s.)=(BC)(3u,). This proves the theorem.

‘ It follows from the . identity (3.12) that the sequence to sequence and

series to series summation methods are identical for all series of the class (B),

That this is not the case for series with unbounded partial sums, is shown

by the following examples:

(3.13) ,=(k~+1) b= (—=1)}(n+1)(n+2) (k+1)%
Here g, = (—1)*(1+1)/(1+2) (k-+1)" 50 that 5|, —g,ssl < 23(k+1)75,
and g, tends to a limit as n—-oo, and to zero as k-oo. Hence B is a
dy-matrix, and

3v,=3,3,b,,u,=3,3,(—1)/(k+ 1) (n+1) (n+2) =log 2, ,
so that the B-sum exists. Again p,, = g, — &, 1= O(k™3), 5, — O(k®), hence
3. PaiS; diverges, so that the P-sum does not exist.

(3. 14) = (—1@k+1), bu=1/(n+1)(n+2) (k+1).
Here 3.b,,.u, diverges, so that the B-sum does not exist. Again
Se=(—1)(k+1), gu=0+D/(n+2)(k+1),
Pue=(n+1)(n+2) (k+1) (k+2)
and 3. p,.Se =3 (=1 (n+1)/(k+2)(n+2)— 1—log2 as n-oc. Hence the -

- P-sum exists.

4. Some examples of d-matrices with applicafions
to Taylor series.

When a d,-matrix B is applied to the Taylor series Zu,2* representing
the function f(z) in its circle on convergence, it cannot be expected that the
generalized sum S(z) shall be the ‘right’ value f(2). The relation between
the two values for convergent series with partial sums s,(2)~f(2) can be
expressed, using (2.1), as S(2)=46,f(2) + =2 (6. — Bir1) {5:(2) —f(2)}, and the
generalized sum is the analytic continuation of S(2) in an open connected
domain of summability containing the circle of convergence.

In this section we consider matrices for which the relation f(z)~S(2)
is the simplest possible: S(z) =f(@z), ¢ being a complex number depending
on the matrix, but independent of the series to which it is applied. Such
matrices turn up as a natural generalization of matrices discussed by the
author in a previous paper [9, sections 3, 4, 5]. The corresponding sequence
to sequence sumimation matrices have recently also been discussed by other
writers [3 and 6]. We restrict, our attention to series to series methods, the
corresponding sequence to sequence matrices having too complicated expres-
sions to be of any use.

A3
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As in the case of regular summation methods, the domain of summa-
bility for general Taylor series can be -defined, if the ‘domain of summability
D(B) for the series 22* is known. For conservative methods we require a
modified restatement of a theorem due to E. BoreL [1, 197—200], which we
give here without proof:

Theorem 4. 1. Let f(2) be represented by the series Su,z* in its prin-

cipal star-domain. If o, (@)= %‘ 2, b,,2*— @(2) as n~ oo uniformly in every
closed region of a star-domam D(B), then the B-sum of JSu,2*=2,3.b,,u.2*
exists in the partial star-domain corresponding to D(B), and its value is
| w f(W) gp(2fw)dw, I' being a small circle about the origin, inside and on
r

which f(w) is regular. (Star-domains are defined in [9, 3.23, p. 551]).
In the particular case when ¢(2) =1/(1 —e2), the B-sum is

f fw)|(w—az)dw=f(az).

A natural generahzat:on of the Taylor series contmuatlon method [9,
section 3; 3 and 6 the method 7(a)], is the matrix A(f, ). dependmg on
the two complex parameters ¢ and ¢, given by

@.1) b= a(t, ') — (ﬁ) £ (0=0,1,2,..).
Applying A(t, t') to the series 32, we obtain

n@ =S, =10 3 (1) e,

Sv"(z)=(l—tz) Iz [1—tz)"=1[(1—az) (z=t+1);
provided that

“.2) @ H>|tl, (i) l%—ti>|t'l,

which defines the domain D(A).

D(A) contains the unit circle in its inside, hence
4.3) A(t, t') is a d-matrix when [f]+ || <1,
and we shall consider this case only. '

Assuming (4. 3), the following types of summability domains may occur,
(i) being always the inside of the circle with centre O, radius 1fj¢|:

(@) |t']|=|2¢|; D(A) is the inside of the circle (ii) which is inside the
circle (i); ’ '

(b) [2¢|>|t’| > [t the circles (i) and (ii) intersect, and D(A) is inside
both circles;

- (c) |t'|=|t], D(A) is the larger segment of circle (i) cut of by the
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fine (ii) which is the perpendicular bisector of the radius joining the origin
to the point z=1/t;

(d) tl< ltl, the two circies intersect, and D(A) is inside (i) and outside (ii).

In all cases D(a) depends on ¢ and [#’], but not on arg (¢’). The union
of all domains D(t,t’) for t,t’ satisfying (4. 3), is the whole ope1 z-plane.

The question also arises, whether A(t,t’) 'is ‘relatively conservative’,
i. €. whether-it contains all points z such that az is inside the circle of
convergence. This requires that D(A) contain the circle |2] < 1/|e|, which is
satisfied if and -only if |a]>|t]+|t] and since e=t+¢t, we must have
arg (H=arg(t’).

The method A(f,¢’) has’ restricted translative properties [e. g. 9, 3. 11,
547]. Wntmg, if they exist, v,= 3.4, 4, vtr=23,a, ;s U, 6, =Y +v,+...}v,,
g.=v,+vi+...+7, wehave »,—tv,=tv,_; forn=12, ..., v,—ty,=0,
hence o,=to,+t v, ,, so that when a,,»S, o, a8S. Thus: '

“A(t,t') sums the series u,-+u,+... to the value S” implies that it
sums the series 04 u,+u,+... to the value «S. We may say that A(¢,¢)
is translative to the left with fuctor c.

The generalization of the Euler matrix on similar lines gives the matrix
B(t,t') as the transpose of A(t’,¢) multiplied by (1—¢'), i.e.

(4.4) '“_b(tt),,k_()(l—t)t'"“
Applying B(t, ') to the series 52, we obtain

v()=(1—t)53, ( )t ) ==t +t2)",
Zp(2)=(0—t)(1—t —tz)=1/(1 —a2) (e=tj(1—1')),
provided. that
4.5) Szt < 1)t

defining D(B) which is a circle. This contains the unit circle in its interior,
i.e. B(t,t') is a d,-matrix when |t|+|t’| < 1. The union of all domalns D(B)
is the whole open z-plane.

The matrix is in addition ‘relatively conservative’ if D(B) contains the
circle |z| < 1f|a], i.e. if |1 —2'| = 1—|¢t’|; this requires that ¢’ be positive.

Translative properties of B(Z, ) follow from the identity t6,—=g,,,—1t'0,,
which can be established in the same way as for A(t, t’). When ¢+ S,
a,+8" (1—t')[t=_8"|a. Hence B(t, t’) is translative to the right with factor 1/a.

The generalization of the Laurent summation method [9, section 5] and
[6, the method S(@)] on similar lines gives the matrix C(t, t') defined by

(4.6) u=c(t, z'),,,:("‘,‘;") (1—1")t ¢t
Applying C(t, ) to the series 3z*, we obtain. -
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@) == 0=y 5 " e

SR == ) (1 —t2) (1 —t2)" = 1 (1 —e2) (e==t](1 — "))

provided that )

.7 () iz} < i Gy jz—1[H> t]t

This defines the domain D(C) inside the circle (i) and outside the circle (ii).

D(C) contains the unit circle in its inside, i.e. C(t, 1) is a d;matrix when

|[t!+1#'}==1. The union of all domains D C) is the whole open z-plane.
The method is in addition ‘relatively conservative' if D(C) contains the

circle [z' < 1f|ef, i.e. [1—¢'[- 71 —|t'[. This requires that ' be positive.
The translative properties of C(¢,¢') follow -from the identity fo,—

1,80 that when «/—.S’, then v,- S (1 —{")/t=8"]a.. Hence

C(t,t ) is translative to the right with factor 1/e.

=g, —{t'a’

5. d.-matrices, efficient at a countable infinity of isolated points.

Regular sequence to sequence summation methods which are efficient
at isolated points have been given in [2, 53—55], and later extended to a
finite number of points for series to sequence methods in [8, section 6,
11—13]. A further extension of thcse results is possible by constructing
d,-matrices as elements of an abelian multiplicative group of infinite matrices.

The group is generated by the unit matrix / and the diagonal vector

‘0‘100 .
0010
E:{OOOI..J‘

The matrix A is given by

(5. 1) A=Il+eEteE*+. ..,

where the e, are complex numbers, satisfying the following condition :
3.2y the function y (W)==1+4ew+e, w4 .. Lis r(':rulur and =0 fur jwi

-It follows from (5. 2) that Xje; l < ~, and that if 1/g(w) =1 —l—a’ Wk dywr -
then =.d;| < ~.

The reciprocal of A is the matrix
(5.3) . . A= P [l E- LdE +...
Both: A and A™"are d-matrices, with JAf, = 23 3| 2¢;} andllA ‘n <243 2d i1

Theorem 5. I/Ie J,- -matrix A, given by (5. 1) and (a 2), is l/I(:‘jle jesit
for all divergent series wu‘h bounded partial sums.

Proof. If Zu, is such a serizs, and if A 1s efflcient for thls ,series
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we have Xy, = A(JSu,) is convergent, hence so is A (3w ) = AT [A (S )]
But, by theorem 3. VI, the last expression is equal to (A™*A)(Su)=Z2un,,
which is divergent.

Applying A to the series X2*, we obtain

@) =z"(1+ez+e+..)=2"9(), 3 @) =9@)/(1-2),
both series being convergent inside the unit circle, and, tnvna”y, at those

zeros of ¢(2) which are inside (or possibly on) its circle of convergence.
If, for example, ¢(w) is an integral function with an infinity of zeros

w,, W, ... outside the unit circle, then A sums the series Z2* to the value
¢(2)/(1—2z) inside the unit circle, and to the value zero at the isolated points
Z==w,, W,,.... Asuitable function for construction is for example f(w) = cosw,

- and the corresponding matrix is the matrix

, 10 —1/20 0 Al
.. 0t 0 —1/20 0 ...

= [—F* U F4ig4t — —

A=I—FE?21 E*[4! IOO L0 —i ]

The behaviour of the matrix A (defined in (5. 1)), for other series than
32¢ outside the circle of convergence cannot be deducted from theorem 4. [.
For each Taylor series the set of isolated points of summability may differ.

For example if A ié applied to the binomial series ““p+k)z* (p——$2, 3,...),
we obtain .

n@=3a." T 2 =@l d g @)z,

so that A sums the series at points inside the circle of conve'rgence to the
value [(1 —2)p!]'d’[2*¢(2)}/dz*, and to the value O at those isolated zeros

of the function ¢, (2) =d”[zr¢(2)]/dz" whxch are inside (or p0551bly on) the
.of convergence of ¢(2).

I wish to express my thanks to Professor P. DiENES for suggesting
theorems 2.1—IV. 1 am also indebted to Dr. L. S. BOSANQUET, who gave
the proof of lemma 3.1, and to Dr. R. E. EDWARDS, wo suggested lemma 2.
VIL. 2 and simplified my original proof.

Added in proof (March 12, 1951): MEYER —KONIG [6, p. 257]
remarks that the Taylor summability method was introduced by G. H. HARDY
and J. E. LITTLEWoOD as ‘circle method’ in a paper in the Rendiconti
Circolo Mat. Palermo, 41 (1916), pp. 36—53. 1 found recently in the Hungarian
textbook of M. BEKE: Differentidl és Integrdlszdmitds, vol. 2 (Budapest,
1916), pp. 433—435 another interesting way of considering analytic continu-
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ation as a generalized mean by sequence to sequence transformation. BEKE
remarks that this method has been communicated to him verbally by M. FEKETE.
FEKETE obtains the summability matrix in the following way: :

If f(2)=Zu,z* has a radius of convergence R, and 0<|e|<|z|< R,
a/z being positive, then the series can be continued to

S0 (@) (z—a)|n!.
Denoting the pamal sums of the two series by s, (@) =u,+u,2+...+u,z* and
0,@)=f(@+f (&) (z—a) +..+ " (a) (z—a)/n!,
we see that . o :
0,(2)={(z—a)*'/n!}d" {g(a)}/de", where g(a)=f(a)/(z—a).
But ' ‘
g(a,=(Su,0") (Sa/z**)=Za's, (2)/2*,
hence '

6,(2) = (1—afzy*'X (:‘z) (a/z)"5.(2),

which is the transform of s.(2) by the upper semi-matrix

..z.—( J(a/z)‘ "(1—af2)"*,

Since a,=0 and Z,aq,=1, the method .is a regular sequence to
sequence summation method.
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