Remarks on factorizable groups.

By NOBORU ITÔ in Nagoya (Japan).

Recently J. SZEP¹) obtained some results on factorizable groups. His results permit a slight and easily provable generalization which we wish to remark in this note.

(1) Let (5) be a factorizable group such that

${\mathfrak S}\,{=}\,{\mathfrak S}\,{\cdot}\,{\mathfrak A}$

where \mathfrak{S} is nilpotent and \mathfrak{A} abelian. Then \mathfrak{G} is solvable.

Proof. An induction argument can be used with respect to the order of \mathfrak{G} ; thus we may assume that every proper factor group of \mathfrak{G} is solvable, and we have only to prove the existence of a solvable normal subgroup of \mathfrak{G} .

We can suppose that \mathfrak{S} is a maximal subgroup of \mathfrak{G} . In fact, if a proper subgroup \mathfrak{H} of \mathfrak{G} contains \mathfrak{S} properly, $\mathfrak{H} = \mathfrak{S} \cdot \mathfrak{A} \cap \mathfrak{H}$. Therefore \mathfrak{H} is solvable by our induction hypothesis. Further \mathfrak{H} contains a normal subgroup \mathfrak{N} of \mathfrak{G} . which is seen by a result of J. Szép and L. Rédel²). Since \mathfrak{H} is solvable and $\mathfrak{H} \supset \mathfrak{N}$, \mathfrak{N} is solvable. Then \mathfrak{G} is solvable.

Further we san suppose that \mathfrak{S} and \mathfrak{A} have relatively prime orders. In fact, if p is a common prime factor of the order of \mathfrak{S} and that of \mathfrak{A} , we consider any p-Sylow subgroup \mathfrak{S}_p of \mathfrak{S} . Let $S \cdot A \neq e$ be an element of the center of \mathfrak{S}_p , S and A being elements of \mathfrak{S} and \mathfrak{A} respectively, and let P be any element of the center of a p-Sylow subgroup of \mathfrak{S} which is contained in \mathfrak{S}_p . Then $P^{-1} \cdot S \cdot A \cdot P = S \cdot P^{-1} \cdot A \cdot P = S \cdot A$, whence $P^{-1} \cdot A \cdot P = A$. Therefore if $A \neq e$, the centralizer $\mathfrak{Z}(P)$ of P in \mathfrak{S} contains \mathfrak{S} properly. Since \mathfrak{S} is maximal, $\mathfrak{Z}(P) = \mathfrak{S}$ and $\{P\}$ is an abelian normal subgroup of \mathfrak{S} . Then \mathfrak{S} is solvable. If A = e, the centralizer $\mathfrak{Z}(S)$ of S in \mathfrak{S} contains \mathfrak{S} properly. Since \mathfrak{S} is maximal, $\mathfrak{Z}(S) = \mathfrak{S}$ and $\{S\}$ is an abelian normal subgroup of \mathfrak{S} .

Let p be a prime factor of the order of S. Then we can suppose that \mathfrak{G} has no p-normality in the sense of O. GRON³). In fact, if \mathfrak{G} is p-normal, then, by a theorem of O. GRON, the p-factor commutator subgroup of \mathfrak{G} is isomorphic to that of the normalizer $\mathfrak{N}(\mathfrak{C}(\mathfrak{S}_p))$ of the center $\mathfrak{C}(\mathfrak{S}_p)$ of a p-Sylow subgroup of \mathfrak{G} . Since $\mathfrak{N}(\mathfrak{C}(\mathfrak{S}_p)) \supset \mathfrak{S}$ and \mathfrak{S} is maximal, $\mathfrak{N}(\mathfrak{C}(\mathfrak{S}_p)) = \mathfrak{G}$ or $=\mathfrak{S}$. If $\mathfrak{N}(\mathfrak{C}(\mathfrak{S}_p)) = \mathfrak{G}$, $\mathfrak{C}(\mathfrak{S}_p)$ is an abelian normal subgroup of \mathfrak{G} and \mathfrak{G} is

¹⁾ J. Szép, On factorisable, not simple groups, these Acta, 13 (1950), pp. 239-241.

³) J. SZÉP and L. RÉDEI, On factorisable groups, these Acta, 13 (1950), pp. 235-238. ³) H. ZASSENHAUS, Lehrbuch der Gruppentheorie. 1. (Leipzig, 1937), p. 135.

solvable. If $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p)) = \mathfrak{S}$, then $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p)) \neq \mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p))'(p)$, where $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p))'(p)$ is the *p*-commutator subgroup of $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p))$. Therefore $\mathfrak{S} \neq \mathfrak{S}'(p)$, where $\mathfrak{S}'(p)$ is the *p*-commutator subgroup of \mathfrak{S} . Since $\mathfrak{S}'(p) \supset \mathfrak{A}$, $\mathfrak{S}'(p) = (\mathfrak{S}'(p) \cap \mathfrak{S}) \cdot \mathfrak{A}$ and therefore $\mathfrak{S}'(p)$ solvable by induction hypothesis. Hence \mathfrak{S} is solvable.

Last we can suppose that $\mathfrak{S} = \mathfrak{S}_p$ is a *p*-group. In fact, since \mathfrak{G} is not *p*-normal, $\mathfrak{G}(\mathfrak{S}_p)$ is contained in at least two distinct *p*-Sylow subgroups of \mathfrak{G} one of which may be \mathfrak{S}_p itself Therefore $\mathfrak{G}(\mathfrak{S}_p)$ is contained in at least two distinct conjugate subgroups of \mathfrak{S} in \mathfrak{G} one of which may be \mathfrak{S} itself. Let \mathfrak{S}^A be the other subgroup, where A is an element of \mathfrak{A} . Since $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p)) \supset \mathfrak{S}$ and \mathfrak{S} is maximal, $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p)) = \mathfrak{G}$ or $=\mathfrak{S}$ If $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p)) = \mathfrak{G}$, then $\mathfrak{S}(\mathfrak{S},\mathfrak{S}_p)$ is an abelian normal subgroup of \mathfrak{G} and \mathfrak{G} is solvable. If $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p)) = \mathfrak{S}$, then $\mathfrak{H}_p(\mathfrak{S}) = \mathfrak{H}_p^A(\mathfrak{S})$, since $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p)) \supset \mathfrak{H}_p(\mathfrak{S})$ and $\mathfrak{N}(\mathfrak{S}(\mathfrak{S}_p)) \supset \mathfrak{H}_p^A(\mathfrak{S})$, where $\mathfrak{H}_p(\mathfrak{S})$ is the *p*-Sylow complement of \mathfrak{S} , and since \mathfrak{S} is nilpotent. Then the normalizer $\mathfrak{N}(\mathfrak{H}_p(\mathfrak{S}))$ of $\mathfrak{H}_p(\mathfrak{S})$ contains \mathfrak{S} properly and coincides with \mathfrak{G} . Then $\mathfrak{H}_p(\mathfrak{S})$ is a nilpotent normal subgroup of \mathfrak{G} and \mathfrak{G} is solvable.

Then, by a theorem of W. BURNSIDE⁴), \mathfrak{G} is not simple. Let \mathfrak{N} be a proper normal subgroup of \mathfrak{G} distinct from $\{e\}$. If $\mathfrak{S} \cdot \mathfrak{N} \neq \mathfrak{G}$, then $\mathfrak{S} \cdot \mathfrak{N} = \mathfrak{S} \cdot (\mathfrak{A} \cap \mathfrak{S} \cdot \mathfrak{N})$ and $\mathfrak{S} \cdot \mathfrak{N}$ is solvable by induction hypothesis. Therefore \mathfrak{N} is a solvable normal subgroup of \mathfrak{G} and \mathfrak{G} is solvable. If $\mathfrak{S} \cdot \mathfrak{N} = \mathfrak{G}$, then the index of \mathfrak{N} in \mathfrak{G} is a power of p and \mathfrak{N} contains \mathfrak{A} . Then $\mathfrak{N} = (\mathfrak{N} \cap \mathfrak{S}) \cdot \mathfrak{N}$ and \mathfrak{N} is solvable by induction hypothesis. Therefore \mathfrak{N} is a solvable by induction hypothesis. Therefore $\mathfrak{N} = \mathfrak{S} \cdot \mathfrak{N} = \mathfrak{S}$, then the index of \mathfrak{N} in \mathfrak{G} is a power of p and \mathfrak{N} contains \mathfrak{A} . Then $\mathfrak{N} = (\mathfrak{N} \cap \mathfrak{S}) \cdot \mathfrak{N}$ and \mathfrak{N} is solvable by induction hypothesis. Therefore \mathfrak{N} is a solvable normal subgroup of \mathfrak{G} , whence \mathfrak{G} is solvable, q. e. d.

(II) Let S be a factorizable group such that

§ = S. P

where \mathfrak{S} is nilpotent and \mathfrak{B} is a p-group. Then \mathfrak{S} is solvable.

Proof. The induction argument can be used with respect to the order of \mathfrak{G} ; thus we may assume that every proper factor group of \mathfrak{G} is solvable, and we have only to prove the existence of a solvable normal subgroup of \mathfrak{G} .

By a theorem of W. BURNSIDE, G is not simple. Let \mathfrak{N} be a proper normal subgroup of G distinct from $\{e\}$. If $\mathfrak{P} \cdot \mathfrak{N} \neq \mathbb{G}$, then $\mathfrak{P} \cdot \mathfrak{N} = (\mathfrak{P} \cdot \mathfrak{N} \cap \mathbb{S}) \cdot \mathfrak{P}$ and $\mathfrak{P} \cdot \mathfrak{N}$ is solvable by induction hypothesis. Therefore \mathfrak{N} is a solvable normal subgroup of G and G is solvable. If $\mathfrak{P} \cdot \mathfrak{N} = \mathbb{G}$, then the index of \mathfrak{N} in G is a power of p. Let $\mathfrak{H}_p(\mathbb{S})$ be a p-Sylow complement of \mathbb{S} . Then $\mathfrak{N} = \mathfrak{H}_p(\mathbb{S}) \cdot \mathfrak{S}_p(\mathfrak{N})$ where $\mathfrak{S}_p(\mathfrak{N})$ is a p-Sylow subgroup of \mathfrak{N} and \mathfrak{N} is solvable by our induction hypothesis. Therefore \mathfrak{N} is a solvable normal subgroup of G and G is solvable. q. e. d.

MATHEMATICAL INSTITUTE, NAGOYA UNIVERSITY.

(Received May 23, 1951.)

4) A. Speiser, Theorie der Gruppen von endlicher Ordnung (Berlin, 1923), p. 136.