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On abelian groups 
every multiple of which is a direct summand. 

To Professor Reinhold Baer on his 50th birthday. 

By A . K E R T E S Z a n d T . S Z E L E in D e b r e c e n (Hunga ry ) . 

§ 1. Introduction. 

In a previous paper [3] one of us has determined all groups every 
subgroup of which is a direct summand.1) These groups are exactly the ele-
mentary abelian torsion groups.2)8) The concept of endomorphic image being 
a notion of intermediate character between those of a subgroup and of a 
direct summand, the problem mentioned splits up into the following two 
problems: 

P r o b l e m I. Determine all groups every endomorphic image of which 
is a direct summand. 

P r o b l e m II. Determine all groups every subgroup of which is an 
endomorphic image of the group. 

These problems seem to be very difficult, even in the case of abelian 
groups. The present paper is devoted to Problem I in case of abelian groups, 
and this problem will be solved completely for torsion groups as well as for 
torsion-free groups. There will also be given a class of mixed groups, con-
taining all solutions of Problem I; however, we cannot decide for the moment 
whether each group of this class has the property involved in Problem I. 

1) The numbers in brackets refer to the Bibliography at the end of this paper. 
2) For notation and terminology see § 2. 
8) We are indebted to Professor R B A E R who has kindly informed us of this result 

being closely related to one of his results (Theorem 3, p. 504 in [2]). In fact, the concept 
of "retract" and that of direct summand being identical for abelian groups, the result of 
BAER and that of [ 3 ] coincide in case of abelian groups. For arbitrary groups, however, it 
is not a priori evident that exactly the same groups exhaust the solutions of both prob-
lems. This follows only from the fact that a group which is an "absolute retract" in 
the sense of B A E R , as well as a group every subgroup of which is a direct summand,. 
is proved in |2) resp. [3] to be necessarily commutative. 
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As a matter of fact, our main result (Theorem 1) gives the complete solu-
tion of describing all abelian groups with the 

P r o p e r t y (P): Every multiple of the group is a direct summand of 
the group. 

By a multiple of an additive abelian group G we mean the subgroup 
nG for some natural number n, i. e. the set of all elements ng with g£ G. 
Therefore property (P) means that the endomorphic image of the group G 
under the special endomorphism g—*ng is a direct summand of G for each 
natural number n. We shall see that for torsion-free groups the groups, of 
property (P) are identical with the solutions of Problem I, and that for tor-
sion groups also the latter are easy to select from.among the former. In case 
of mixed groups, however, we have not yet succeeded completely in effec-
tuating.this selection. 

Among the abelian groups of the property (P) described completely by 
Theorem 1, we can distinguish essentially three main categories: the ele-
mentary torsion groups, the algebraically closed groups, and some mixed 
groups which we shall call — by virtue of a generalization given later of 
the concept of direct sum — "p-direct sums over their torsion subgroups". 
The groups of the first two categories are well-known. On the other hand, 
the third category is that of an interesting class of mixed groups which 
seems to be new, and deserves, for this as well as for other reasons, further 
investigation. Let us mention but one of their properties: these groups are 
the simplest and most lucid example of a mixed group the torsion subgroup 
of which is not a direct summand of the group (see Corollary of Theorem 
3). The examples hitherto known in mathematical literature are namely based 
on more complicated constructions or are groups given by defining relations. 

Our investigations are yielding in the way of an additional result also 
the determination of all mixed abelian. groups G, the torsion subgroup T of 
which is an elementary group, and the factor group G T algebraically closed 
(Theorem 3). 

§ 2. Preliminaries. 
In what follows, by a group we shall mean always an additively written 

abelian group with more than one element. Groups will be denoted by Latin 
capital letters and their elements by x,a,b,...,g. The other small Latin let-
ters are reserved for rational integers (in particular p and q for prime num-
bers). We shall denote the endomorphisms of a group by small Greek letters. 
A subgroup generated by the elements a,b,... of a group is denoted by 
{'a, b,...}. A group every element of which is of finite order, is called a 
torsion group. In the contrary case, when every nonzero element of the 
group is of infinite order, the group is called torsion-free. A group which is 
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neither a torsion group nor torsion-free is said to be a mixed group. All 
elements of finite order of a mixed group form a subgroup which we call 
the torsion subgroup of the group. 

Let p be an arbitrary prime number. If the group G contains an ele-
ment of order p, then p is called an actual prime for G. The set of all actual 
primes for G will be called the actual prime system of G. If pG = G for 
each prime p, then G is called algebraically closed. Obviously the algebraic-
ally closed groups G are exactly those, in' which the equation nx = a has 
a solut ion 'x£G for any o £ G and n>0. It is easy to see that any homo-
morphic image of an algebraically closed group is at the same time itself 
an algebraically closed group. According to an important theorem of R. BAER 

an algebraically closed group is always a direct summand of every contain-
ing group [1]. ^ 

In what follows, we shall need a generalization of the concept of the 
direct sum which,*,for a finite number of summands, coincides with the usual 
direct sum, and which has plaid already an important role in investigations 
on mixed groups with commutative ring of endomorphisms [5]. 

A group G will be called a direct sum of its subgroups £/„, if there 
exist endomorphisms xsv of G such that 

' 1) «„G = i/„; ^ 

7 " / 0 if ft =t=p; X 

3) g^G and evg = 0 for every v implies g = 0. 
Among the direct sums of the groups £/„ there exists a "greatest" one 

G, satisfying the additional requirement: 
4) For any choice of a system of representative elements gv£U, there 

exists an element g of G such t h a t - e „ g - = ^ holds for every v. 
This group Gc having the properties 1)—4) is obviously uniquely 

determined (up to an isomorphism) by the groups . Uv, and will be called 
the complete direct sum of the UJs. We denote it by 

(1) o ( = I t / , . 

The group Gc may also be described as the set of all possible "vectors" 
< . . .,gy,... > which contain exactly one component gv from each group U>. 
and which are added component-wise. Clearly any direct sum of the groups 
Uv is a subgroup of (1). 

On the other hand, among all direct sums of the groups Uv there exists a 
"smallest" one Gt, which is a subgroup of any direct sum. This is charac-
terized as the direct sum satisfying 

4*) For any element g£G, there are only, a finite number of v's with 
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This group 
( 2 ) a , = u . 

V 

determined uniquely by the groups U, as the group satisfying 1), 2), 3) and 
4*), is called the discrete direct sum of thé U„'s. The group (2) may also be 
described as the set of all vectors < . . . , £ „ , . . . > having only a finite number 
of components 4= 0. 

In terms of the complete and discrete direct sums the direct sums of 
the Uv's may be characterized as the groups G for which G d S G E G , . For 
a finite number of UJs we have G,r = G,; thus in this case there exists only 
one direct sum of the UJs. Therefore the concept of the direct summand in 
the generalized sense is the same as that in the old sense. 

Let us mention an important example. It is well known that a torsion 
group 7 may be represented as the discrete direct sum of its uniquely 
determined primary components 7,,, where 7,. is a p-group, i . e . a group 
containing only elements of /7-power order: 

(3) 
Therefore the complete direct sum 
(4) t ^ z r(; 
is uniquely determined be 7 ; it may be called the complete p-direct sum 
over 7. In accordance with this, the groups between 7 and 7 ( 7 and 7 
included), in other words, the direct sums of the groups Tn, may be called 
the p-direct sums over 7 . It is obvious that, if the actual prime system of T 
contains an infinity of primes, then all of these, except 7, are mixed groups 
and their torsion subgroup is just 7. 

We denote by R the additive group of all rational numbers, by C(p"') 
the cyclic group of order p" for an arbitrary natural number m, and by C(p') 
the additive group of alL rational numbers mod 1 whose denominators are 
powers of p. It is known [4] that any algebraically closed group A can be 
represented in the form 

(5) (/?,*) + 
where the pv's are arbitrary primes (distinct or not) and one of the two 
of the right member may vanish. 

The torsion group 7 is called an elementary group if the order of each 
element in 7 is a square-free number. Each primary component of such a 
group is of the form 

(6) T„=Zc{p), 
so that an elementary group 7 can be represented as a discrete direct sum 

(7) 7— T C ( p . ) 
where the /;„'s are arbitrary primes (distinct or not). 
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§ 3. The main result. 

T h e o r e m 1. An abelian group G has the property (P) — i. e. nG is 
a direct summand of G for any natural number n — if and only if G can 
be represented as a direct sum 
(8) G=A + B 
where : 

a) A is an algebraically closed group or A = 0 ; 
b) B is a p-direct sum over its torsion subgroup 7=|= 0 or B = 0 ; 
c) 7 is an elementary group; 
d) the factor group B/T is algebraically closed. 

R e m a r k s . The direct summand A of G as well as the torsion sub-
group 7 of B is completely described by (5) resp. (7). We show that there 
exist groups B with the properties b)—d) and we give an oversight on all 
of them. Indeed, the complete p-direct sum over the group (3), i. e. the group 
(4) — 7 being now an arbitrary elementary group — has the property that 
the factor group 7 7 is algebraically closed. To prove this we must show 
that if the ' 'vector" c — \ . . . , Cfc,... / (ci, £ .7~/>t) is an arbitrary element of 7 
and q is a prime, then there exists an x£T such that c—qx^T. This is 
obvious, since one may plainly construct a "vector" x with c—qx = 0 or 
c—qx£ Tv., according as q + pk, (k= 1, 2, 3 , . . . ) or q = pj. Now, for a 
given elementary group 7, the determination of all groups B with the pro-
perties c) and d) is naturally equivalent to giving all algebraically closed 
subgroups B/T of the algebraically closed group 7 7. Since the group T T 
is torsion-free, this process becomes easier by taking into account that if S 
is an arbitrary subgroup of 7 7 and if we adjoin to 5 all those elements e 
of T T for which re with some natural number r, then we obtain an 
algebraically closed subgroup Sn of 7 T. 

The groups G given by (8) are in general mixed groups. According 
to Theorem 1 the only torsion-free groups with the property (P) are the 
groups 'of type 

(9) V > > 

i. e. the algebraically closed torsion-free groups, and the only torsion groups 
with the property (P) are the groups of type 

(10) T C { P Z ) + ^ J C ( q „ ) , 
i.e. the direct sums of an algebraically closed torsion group and of an elemen-
tary group. (This is the case B—.T, with a torsion group A.) 

Proof of the necessity of the conditions a)—d) of Theorem 1. We shall 
show that if pG is a direct summand of the group G for any prime p, then 
G is a group given by (8) with the properties a)—d). 

A 11 
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Consider the union A of all algebraically closed subgroups of G. Clearly 
4 itself is an algebraically closed subgroup of G and so, by the theorem 
of BAER mentioned in § 2 , the direct decomposition (8) holds with a suit-
able group B which contains no algebraically closed subgroup =j= 0. Now we 
state that B contains the subgroup pB as a direct summand for each prime p. 
Indeed, by our hypothesis and by (8), 

(11) G = p G + D = A + pB + D, 

where, because of D ^ G , p G , 
(12) pD = 0. 
Hence 

and consequently, by B^G A, 
(13) pB=plB. 

Now we can show that for the group H=pB + D, pH is a direct summand 
of H. This follows immediately from 

pB + D=p(pB + D) + D 

which is a consequence of (12) and (13). On the other hand, by (8) and (11) 

B^G'A^pB + D = H 

and so our assertion on B is proved. 
In what follows, let P t , P i , p A , . . . denote the sequence of all primes. 

Then we have, by the property of B just proved, 

(14) B=pkB+Uk (k= 1 , 2 , 3 , . . . ) 
where, because of Uk~BjpkB, 

(15) iA = Z " C ( A ) or ( / , = 0 

according as pk is an actual prime for B or not. From (14) and (15) we 
obtain 
(16) p,B = p,(pkB) 

which of course is the same as (13). Now we are going to show that in 
(14) the direct summand Uk too is defined invariantly as the subset of B 
containing all elements of B of order pk, and the zero. In order to prove 
this, it is sufficient to show, that pkB does not contain any element of 
order pk. As a matter of fact, in case of pkB containing an element cl of 
order pk, by (16) there would exist a chain cx,c.,, c „ , . . . of elements of B, for 
which 

c,4=0, pkc, = 0, pkc, = cu p,.c.==c,, 

In that case however {c„ c>, c s , . . . } ^ C(pk) would be an algebraically closed 
subgroup of B, which is impossible. 
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From the above statement thus proved, there follows also that the pri-
mary component T,,t of the torsion group T of the group B coincides with 
the group Uk in (15). This being true for an arbitrary prime pk, we obtain 
that T is an elementary group, i. e. the statement c) of Theorem 1 is true for 
the group B. 

Now we can show that B is a p-direct sum over T. By the uniqueness 
proved above of both terms on the-right hand of (14) we conclude that each 
element b of B may be written in exactly one way as the sum of an ele-
ment t,:b in Uk and of an element in pkB. It is clear that the mapping 
b—+*kb is an endomorphism of B. The endomorphisms thus defined pos-
sess obviously the following properties: 

\)e,,.B=Ui.; 

2V f , - ) f ; if i = k ' 2 ) SlCi ~l 0 if i + k; 
3) if b £ B and «,,6 = 0 for every k, then ¿> = 0. 

Only the third statement requires a proof. skb = 0 being equivalent to 
b£pi.B, it is sufficient to show that the cross cut of the groups p,B,p.,B, 

B , . . . contains the only element 0. Assume this is not true and let c be 
an element of infinite order or of prime number order common to all groups 
Pi. B (k= 1, 2, 3, . . . ) . Then there exists, by (16), a chain of elements cj*\ ri",... 
of B for each natural number k such that 

Pi. c\k) — c, pkdl> == ciw, pkc!,'1 = ci1"',.. . 
Clearly {cj'\ ri",...... ., cl*', c',l\ . . . , . . . } is a subgroup of type R or of type 
C(/?x) of B according as c is an element of infinite order or of order p. 
This is however a contradiction, since B contains no algebraically closed 
subgroup =|=0. This completes the proof of the statement b) of Theorem 1. 

Finally consider the factor group B T. We have, by t A C T a n d by (14), 
pkB^B U,. ~B T. 

Hence it follows from (16) 
pk(B'T) = B T 

for every prime number pu, i. e. also d) of Theorem 1 holds for the group B. 

Proof of the sufficiency of the conditions a)—d) of Theorem 1. We are 
going to show that if G is a group given by (8) and having the properties 
a)—d) of Theorem 1, then nG is a direct summand of G for each natural 
number n. We have by nA = A 

nG = A + nB 
and so it is enough to show that nB is a direct summand of B. Let n = 
= p'i...p,- be the prime power decomposition of n. Then we prove the 
validity of 
(17) B~(U,+ --- + Ur) + nB. 
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Clearly 
n f ln ( i / , + . . . + t/ ,) = 0 

as the group U, -j h Ur contains only elements of order which is a di-
visor of p,...pr while nB contains no such element 4=0. On the other 
hand, we have to show that any element b ^ B has a representation 

(18) b = d -f.n b' 

with r Ur and b'£B. From condition d) we infer the existence 
of an element b a £B such that 
(19) b—nb„ = d„i T. 
Now, according to 

T= (U, + • • • + Ur)+ T, 
the representation 

(20) d„ = d + d' (d£U + -- + Ur,d'£T') 

holds. Here d' = nd" with d"£T' (the order of d' being prime to n), conse-
quently, by (19) and (20), the validity of (18) is proved with b' = b„ + d". 
This completes the proof of (17) and at the same time that of Theorem 1. 

§ 4. On abelian groups every endomorphic image 
of which is a direct summand. 

Concerning Problem I mentioned in § 1, we prove the following 

T h e o r e m 2. In order that an abelian group G may contain each of 
its endomorphic images as a direct summand, it is necessary that G be a 
group described in Theorem 1, with the additional property: 

e) There exist no elements a£A,b€B with the same finite order > 1 
(i. e. the actual prime systems of A and B contain no prime in common). 

R e m a r k s . Condition e) says that for the torsion subgroup (10) of G 
P:> =t= Q" holds. — We conjecture that the conditions a)—e) for the group G 
are always sufficient for every endomorphic image of G to be a direct sum-
mand of G. For the moment, however, we can prove this only in case of G 
being either a torsion-free group (i. e. a group of type (9)), or a torsion 
group (i. e. a group of type (10) with In these cases the mentioned 
property of G is an immediate consequence of the fact that an arbitrary 
endomorphic image of. an algebraically closed group is itself .algebraically 
closed (i. e., in virtue of the theorem of BAER quoted in § 2 , a direct sum-
mand), and that every subgroup of an elementary group is a direct sum-
mand. It is an open question whether the groups B, characterized by the 
conditions b)—d) of Theorem 1, always have each of their endomorphic 
images as a direct summand. "At present we know only that the answer to 
this question is affirmative whenever B is a complete p-direct sum. 
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P r o o f of T h e o r e m 2. Let G be a group every endomorphic image 
of which is a. direct summand. Then by Theorem 1 G is a group with the 
properties a)—d). Now we suppose that the condition e) is not true for G. 
Then there exists a prime pk which is actual for both groups A and B. 
This means, by (8), (5), (14) and (15), that G can be represented in the 
form 

G = C{pk) + C(pt) + H. 
Hence there exists an endomorphism of G which maps G onto the subgroup 
of order pi. of C(pf). In this case, however, the endomorphic image is not 
a direct summand of G. This contradiction proves the validity of Theorem 2. 

§ 5. On a special class of mixed groups. 
In conclusion we give a full oversight on all mixed groups G the tor-

sion subgroup T of which is an elementary group so that G T is algebrai-
cally closed, and we show that these groups form a part of the class of 
groups G described by Theorem 1. More exactly, there holds the following 

T h e o r e m 3. If the torsion subgroup T of an abelian mixed group G 
is elementary and the factor group G T is algebraically closed, then 
(21) G ^ A + B, 
where A is an algebraically closed torsion-free group (i. e. a group of type 
(9)) or A = 0, and B is a p-direct sum over T such that B T is algebraic-
ally closed. 

R e m a r k s . It is well known that each primary component (6) of an 
elementary group T can be uniquely characterized by the cardinal number 
of its direct summands C(p). Accordingly the group T itself is completely 
described by a system of cardinal numbers as its invariants. Similarly, the 
algebraically closed torsion-free group G¡T is in abstracto uniquely deter-
mined by the cardinal number of the direct components R in the represen-
tation (9). The question remains however open, whether or not the group B 
described in Theorem 3 is (up to an isomorphism) uniquely determined by 
the full system of invariants of T and B T. 

Since the group B contains obviously no algebraically closed subgroup 
=j=0(the equation px -^biB being not solvable for each element b =¡=0 in B 
with a suitable prime p), the main assertion of Theorem 3 is the following: 
if the torsion subgroup T of an abelian mixed group B containing no algeb-
raically closed subgroup ={= 0 is an elementary group and B T is algebraic-
ally closed, then B is a p-direct sum ever T. — On the other hand, the 
^-direct sums B over an elementary torsion group T with algebraically clo-
sed B T (especially the complete p-direct sum T defined by (4)), are very 
simple examples of mixed groups, the torsion subgroup of which is not a 
direct summand. As a matter of fact, if for such a group B the representa-
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tion would hold, then by V^BT, V would be an algebraically 
closed subgroup of B which is impossible. 

P r o o f of T h e o r e m 3. Let G be a mixed group the torsion sub-
group T of which is elementary and suppose that G T is algebraically clo-
sed. The union A of all algebraically closed subgroups of G being itself an 
algebraically closed subgroup, the decomposition (21) holds with a suitable 
group B which contains no algebraically closed subgroup =4=0. The torsion 
subgroup T of G being elementary, A must be a torsion-free group. There-
fore T is a subgroup of B. Now we state that B T is algebraically closed. 
This follows immediately from 

G T=(A+B).T^A + (B T) 
and from the fact that G, T and A are algebraically closed. 

In what follows, we have only to prove that B is a /^-direct sum over T-
Let pk be an arbitrary prime and Uk the /^-primary component of T or 
Uk = 0 in case of pk being no actual prime for B. Clearly 
(22) p,BnUk = 0. 
On the other hand, B T being algebraicálly closed, for any element b^B 
there exists an element b'^B such that 
(23) b—pb=--diT. 
Now, according to T= U,.-+ T, the representation d = dk + d (d,: £ Ui,, d'^ T') 
holds. Here d' = pd"(d"£T'); consequently, by (23), 

b = d+pb' = dl: + d'+pb' = 
= dk+p{b' + d")d{Uk,PkB). 

Thus, owing to (22), we have shown that 

(24) B = PkB+Uk. 
where on the right hand both direct summands are uniquely determined by 
p,.. The equation (24) being the same as the ^equation (14), from this point 
onwards the proof is identical with the next to last paragraph of the proof 
of the necessity of the conditions of Theorem 1 in § 3. 
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